Skip to main content

Graphitic carbon nitride with different dimensionalities for energy and environmental applications

Abstract

As a metal-free semiconductor, graphitic carbon nitride (g-C3N4) has received extensive attention due to its high stability, nontoxicity, facile and low-cost synthesis, appropriate band gap in the visible spectral range and wide availability of resources. The dimensions of g-C3N4 can influence the regime of the confinement of electrons, and consequently, g-C3N4 with various dimensionalities shows different properties, making them available for many stimulating applications. Although there are some reviews focusing on the synthesis strategy and applications of g-C3N4, there is still a lack of comprehensive review that systemically summarises the synthesis and application of different dimensions of g-C3N4, which can provide an important theoretical and practical basis for the development of g-C3N4 with different dimensionalities and maximises their potential in diverse applications. By reviewing the latest progress of g-C3N4 studies, we aim to summarise the preparation of g-C3N4 with different dimensionalities using various structural engineering strategies, discuss the fundamental bottlenecks of currently existing methods and their solution strategies, and explore their applications in energy and environmental applications. Furthermore, it also puts forward the views on the future research direction of these unique materials.

References

  1. [1]

    Yu, Z. N.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci.2015, 8, 702–730.

    CAS  Google Scholar 

  2. [2]

    Pokropivny, V. V.; Skorokhod, V. V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C2007, 27, 990–993.

    CAS  Google Scholar 

  3. [3]

    Gu, W.; Yan, Y. H.; Pei, X. Y.; Zhang, C. L.; Ding, C. P.; Xian, Y. Z. Fluorescent black phosphorus quantum dots as label-free sensing probes for evaluation of acetylcholinesterase activity. Sens. Actuators B: Chem.2017, 250, 601–607.

    CAS  Google Scholar 

  4. [4]

    Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater.2017, 29, 1604436.

    Google Scholar 

  5. [5]

    Kroupa, D. M.; Hughes, B. K.; Miller, E. M.; Moore, D. T.; Anderson, N. C.; Chernomordik, B. D.; Nozik, A. J.; Beard, M. C. Synthesis and spectroscopy of silver-doped PbSe quantum dots. J. Am. Chem. Soc.2017, 139, 10382–10394.

    CAS  Google Scholar 

  6. [6]

    Hou, L. Z.; Mead, J. L.; Wang, S. L.; Huang, H. The kinetic frictional shear stress of ZnO nanowires on graphite and mica substrates. Appl. Surf. Sci.2018, 465, 584–590.

    Google Scholar 

  7. [7]

    Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci.2017, 10, 1820–1827.

    CAS  Google Scholar 

  8. [8]

    Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science2017, 355, 271–276.

    CAS  Google Scholar 

  9. [9]

    Ge, M. Z.; Li, Q. S.; Cao, C. Y.; Huang, J. Y.; Li, S. H.; Zhang, S. N.; Chen, Z.; Zhang, K. Q.; Al-Deyab, S. S.; Lai, Y. K. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci.2017, 4, 1600152.

    Google Scholar 

  10. [10]

    Pei, L.; Lv, B. H.; Wang, S. B.; Yu, Z. T.; Yan, S. C.; Abe, R.; Zou, Z. G. Oriented growth of Sc-doped Ta3N5 nanorod photoanode achieving low-onset-potential for photoelectrochemical water oxidation. ACS Appl. Energy Mater.2018, 1, 4150–4157.

    CAS  Google Scholar 

  11. [11]

    Li, X. Y.; Li, D.; Tian, H.; Zeng, L.; Zhao, Z. J.; Gong, J. L. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Appl. Catal. B: Environ.2017, 202, 683–694.

    CAS  Google Scholar 

  12. [12]

    Hao, Q.; Chen, T.; Wang, R. T.; Feng, J. R.; Chen, D. M.; Yao, W. Q. A separation-free polyacrylamide/bentonite/graphitic carbon nitride hydrogel with excellent performance in water treatment. J. Clean. Prod.2018, 197, 1222–1230.

    CAS  Google Scholar 

  13. [13]

    Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der Waals heterostructures. Science2016, 353, aac9439.

    CAS  Google Scholar 

  14. [14]

    Liao, S. H.; Jhuo, H. J.; Cheng, Y. S.; Chen, S. A. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater.2013, 25, 4766–4771.

    CAS  Google Scholar 

  15. [15]

    Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics2016, 10, 227–238.

    CAS  Google Scholar 

  16. [16]

    Erdoğan, I. Y.; Güllü, Ö. Optical and structural properties of CuO nanofilm: Its diode application. J. Alloys Compd.2010, 492, 378–383.

    Google Scholar 

  17. [17]

    Wang, X.; Tian, W.; Liao, M. Y.; Bando, Y.; Golberg, D. Recent advances in solution-processed inorganic nanofilm photodetectors. Chem. Soc. Rev.2014, 43, 1400–1422.

    CAS  Google Scholar 

  18. [18]

    Du, M. S.; Cui, L. S.; Cao, Y.; Bard, A. J. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate. J. Am. Chem. Soc.2015, 137, 7397–7403.

    CAS  Google Scholar 

  19. [19]

    Hao, Q.; Niu, X. X.; Nie, C. S.; Hao, S. M.; Zou, W.; Ge, J. M.; Chen, D. M.; Yao, W. Q. A highly efficient g-C3N4/SiO2 heterojunction: The role of SiO2 in the enhancement of visible light photocatalytic activity. Phys. Chem. Chem. Phys.2016, 18, 31410–31418.

    CAS  Google Scholar 

  20. [20]

    Hao, Q.; Hao, S. M.; Niu, X. X.; Li, X.; Chen, D. M.; Ding, H. Enhanced photochemical oxidation ability of carbon nitride by π–π stacking interactions with graphene. Chin. J. Catal.2017, 38, 278–286.

    CAS  Google Scholar 

  21. [21]

    Ersan, G.; Apul, O. G.; Perreault, F.; Karanfil, T. Adsorption of organic contaminants by graphene nanosheets: A review. Water Res. 2017, 126, 385–398.

    CAS  Google Scholar 

  22. [22]

    Xia, P. F.; Zhu, B. C.; Yu, J. G.; Cao, S. W.; Jaroniec, M. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A2017, 5, 3230–3238.

    CAS  Google Scholar 

  23. [23]

    Park, J.; Mangeri, J.; Zhang, Q. T.; Yusuf, M. H.; Pateras, A.; Dawber, M.; Holt, M. V.; Heinonen, O. G.; Nakhmanson, S.; Evans, P. G. Domain alignment within ferroelectric/dielectric PbTiO3/SrTiO3 superlattice nanostructures. Nanoscale2018, 10, 3262–3271.

    CAS  Google Scholar 

  24. [24]

    Khayyami, A.; Karppinen, M. Reversible photoswitching function in atomic/molecular-layer-deposited ZnO:azobenzene superlattice thin films. Chem. Mater.2018, 30, 5904–5911.

    CAS  Google Scholar 

  25. [25]

    Tayari, V.; Hemsworth, N.; Fakih, I.; Favron, A.; Gaufrès, E.; Gervais, G.; Martel, R.; Szkopek, T. Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat. Commun.2015, 6, 7702.

    CAS  Google Scholar 

  26. [26]

    Freundlich, A.; Alemu, A. Multi quantum well multijunction solar cell for space applications. Phys. Status Solidi (C)2005, 2, 2978–2981.

    CAS  Google Scholar 

  27. [27]

    Guo, F.; Creighton, M.; Chen, Y. T.; Hurt, R.; Külaots, I. Porous structures in stacked, crumpled and pillared graphene-based 3D materials. Carbon2014, 66, 476–484.

    CAS  Google Scholar 

  28. [28]

    Silveira, J. F. R. V.; Muniz, A. R. Diamond nanothread-based 2D and 3D materials: Diamond nanomeshes and nanofoams. Carbon2018, 139, 789–800.

    CAS  Google Scholar 

  29. [29]

    Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater.2017, 29, 1605148.

    Google Scholar 

  30. [30]

    Wang, X. S.; Zhou, C.; Shi, R.; Liu, Q. Q.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Res.2019, 12, 2385–2389.

    CAS  Google Scholar 

  31. [31]

    Zhou, C.; Shi, R.; Shang, L.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Res.2018, 11, 3462–3468.

    CAS  Google Scholar 

  32. [32]

    Zhao, H.; Ding, X. L.; Zhang, B.; Li, Y. X.; Wang, C. Y. Enhanced photocatalytic hydrogen evolution along with byproducts suppressing over Z-scheme CdxZn1−xS/Au/g-C3N4 photocatalysts under visible light. Sci. Bull.2017, 62, 602–609.

    CAS  Google Scholar 

  33. [33]

    Liebig, J. About some nitrogen compounds. Ann. Pharm.1834, 10, 10.

    Google Scholar 

  34. [34]

    Zhou, Z. X.; Zhang, Y. Y.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev.2018, 47, 2298–2321.

    CAS  Google Scholar 

  35. [35]

    Franklin, E. C. The ammono carbonic acids. J. Am. Chem. Soc.1922, 44, 486–509.

    CAS  Google Scholar 

  36. [36]

    Liu, A. Y.; Cohen, M. L. Prediction of new low compressibility solids. Science1989, 245, 841–842.

    CAS  Google Scholar 

  37. [37]

    Teter, D. M.; Hemley, R. J. Low-compressibility carbon nitrides. Science1996, 271, 53–55.

    CAS  Google Scholar 

  38. [38]

    Zhang, J. S.; Wang, B.; Wang, X. C. Chemical synthesis and applications of graphitic carbon nitride. Acta Phys. Chim. Sin.2013, 29, 1865–1876.

    CAS  Google Scholar 

  39. [39]

    Molina, B.; Sansores, L. E. Electronic structure of six phases of C3N4: A theoretical approach. Mod. Phys. Lett. B1999, 13, 193–201.

    CAS  Google Scholar 

  40. [40]

    Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A. D. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J. Chem.2002, 26, 508–512.

    CAS  Google Scholar 

  41. [41]

    Hao, Q.; Xie, C. A.; Huang, Y. M.; Chen, D. M.; Liu, Y. W.; Wei, W.; Ni, B. J. Accelerated separation of photogenerated charge carriers and enhanced photocatalytic performance of g-C3N4 by Bi2S3 nanoparticles. Chin. J. Catal.2020, 41, 249–258.

    Google Scholar 

  42. [42]

    Li, Y. D.; Ruan, Z. H.; He, Y. Z.; Li, J. Z.; Li, K. Q.; Yang, Y. L.; Xia, D. B.; Lin, K. F.; Yuan, Y. Enhanced photocatalytic H2 evolution and phenol degradation over sulfur doped meso/macroporous g-C3N4 spheres with continuous channels. Int. J. Hydrogen Energy2019, 44, 707–719.

    CAS  Google Scholar 

  43. [43]

    Zhou, J.; Yang, Y.; Zhang, C. Y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem. Commun.2013, 49, 8605–8607.

    CAS  Google Scholar 

  44. [44]

    Mishra, A.; Mehta, A.; Basu, S.; Shetti, N. P.; Reddy, K. R.; Aminabhavi, T. M. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review. Carbon2019, 149, 693–721.

    CAS  Google Scholar 

  45. [45]

    Wen, J. Q.; Xie, J.; Chen, X. B.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci.2017, 391, 72–123.

    CAS  Google Scholar 

  46. [46]

    Zhang, S.; Gu, P. C.; Ma, R.; Luo, C. T.; Wen, T.; Zhao, G. X.; Cheng, W. C.; Wang, X. K. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review. Catal. Today2019, 335, 65–77.

    CAS  Google Scholar 

  47. [47]

    Cao, S. W.; Yu, J. G. g-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett.2014, 5, 2101–2107.

    CAS  Google Scholar 

  48. [48]

    Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater.2015, 27, 2150–2176.

    CAS  Google Scholar 

  49. [49]

    Ren, Y. J.; Zeng, D. Q.; Ong, W. J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chin. J. Catal.2019, 40, 289–319.

    CAS  Google Scholar 

  50. [50]

    Nikokavoura, A.; Trapalis, C. Graphene and g-C3N4 based photocatalysts for NOx removal: A review. Appl. Surf. Sci.2018, 430, 18–52.

    CAS  Google Scholar 

  51. [51]

    Masih, D.; Ma, Y. Y.; Rohani, S. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl. Catal. B: Environ.2017, 206, 556–588.

    CAS  Google Scholar 

  52. [52]

    Zhang, C.; Li, Y.; Shuai, D. M.; Shen, Y.; Xiong, W.; Wang, L. Q. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review. Chemosphere2019, 214, 462–479.

    CAS  Google Scholar 

  53. [53]

    Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater.2018, 8, 1701503.

    Google Scholar 

  54. [54]

    Jiang, L. B.; Yuan, X. Z.; Pan, Y.; Liang, J.; Zeng, G. M.; Wu, Z. B.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl. Catal. B: Environ.2017, 217, 388–406.

    CAS  Google Scholar 

  55. [55]

    Zhu, B. C.; Zhang, L. Y.; Cheng, B.; Yu, J. G. First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Appl. Catal. B: Environ.2018, 224, 983–999.

    CAS  Google Scholar 

  56. [56]

    Mousavi, M.; Habibi-Yangjeh, A.; Pouran, S. R. Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci.: Mater. Electron.2018, 29, 1719–1747.

    CAS  Google Scholar 

  57. [57]

    Baughman, R. H. Solid-state synthesis of large polymer single crystals. J. Polym. Sci.: Polym. Phys. Ed.1974, 12, 1511–1535.

    CAS  Google Scholar 

  58. [58]

    Wang, W. H.; Zhan, Y. J.; Wang, G. H. One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant. Chem. Commun.2001, 8, 727–728.

    Google Scholar 

  59. [59]

    Ganesh, I.; Srinivas, B.; Johnson, R.; Saha, B. P.; Mahajan, Y. R. Microwave assisted solid state reaction synthesis of MgAl2O4 spinel powders. J. Eur. Ceram. Soc.2004, 24, 201–207.

    CAS  Google Scholar 

  60. [60]

    Kouvetakis, J.; Todd, M.; Wilkens, B.; Bandari, A.; Cave, N. Novel synthetic routes to carbon-nitrogen thin films. Chem. Mater.1994, 6, 811–814.

    CAS  Google Scholar 

  61. [61]

    Khabashesku, V. N.; Zimmerman, J. L.; Margrave, J. L. Powder synthesis and characterization of amorphous carbon nitride. Chem. Mater.2000, 12, 3264–3270.

    CAS  Google Scholar 

  62. [62]

    Zhang, Z. H.; Leinenweber, K.; Bauer, M.; Garvie, L. A. J.; McMillan, P. F.; Wolf, G. H. High-pressure bulk synthesis of crystalline C6N9H3-HCl: A novel C3N4 graphitic derivative. J. Am. Chem. Soc.2001, 123, 7788–7796.

    CAS  Google Scholar 

  63. [63]

    Gu, Y. L.; Chen, L. Y.; Shi, L.; Ma, J. H.; Yang, Z. H.; Qian, Y. T. Synthesis of C3N4 and graphite by reacting cyanuric chloride with calcium cyanamide. Carbon2003, 41, 2674–2676.

    CAS  Google Scholar 

  64. [64]

    Lu, X. F.; Gai, L. G.; Cui, D. L.; Wang, Q. L.; Zhao, X.; Tao, X. T. Synthesis and characterization of C3N4 nanowires and pseudocubic C3N4 polycrystalline nanoparticles. Mater. Lett.2007, 61, 4255–4258.

    CAS  Google Scholar 

  65. [65]

    Shaikh, A. V.; Mane, R. S.; Joo, O. S.; Han, S. H.; Pathan, H. M. Electrochemical deposition of cadmium selenide films and their properties: Areview. J. Solid State Electrochem.2017, 21, 2517–2530.

    CAS  Google Scholar 

  66. [66]

    Li, J. D.; Zhang, X. L.; Raziq, F.; Wang, J. S.; Liu, C.; Liu, Y. D.; Sun, J. W.; Yan, R.; Qu, B. H.; Qin, C. L. et al. Improved photocatalytic activities of g-C3N4 nanosheets by effectively trapping holes with halogen-induced surface polarization and 2,4-dichlorophenol decomposition mechanism. Appl. Catal. B: Environ.2017, 218, 60–67.

    CAS  Google Scholar 

  67. [67]

    Ozel, T.; Zhang, B. A.; Gao, R. X.; Day, R. W.; Lieber, C. M.; Nocera, D. G. Electrochemical deposition of conformal and functional layers on high aspect ratio silicon micro/nanowires. Nano Lett.2017, 17, 4502–4507.

    CAS  Google Scholar 

  68. [68]

    Fu, Q.; Cao, C. B.; Zhu, H. S. Preparation of carbon nitride films with high nitrogen content by electrodeposition from an organic solution. J. Mater. Sci. Lett.1999, 18, 1485–1488.

    CAS  Google Scholar 

  69. [69]

    Li, C.; Cao, C. B.; Zhu, H. S. Graphitic carbon nitride thin films deposited by electrodeposition. Mater. Lett.2004, 58, 1903–1906.

    CAS  Google Scholar 

  70. [70]

    Bai, X. J.; Li, J.; Cao, C. B. Synthesis of hollow carbon nitride microspheres by an electrodeposition method. Appl. Surf. Sci.2010, 256, 2327–2331.

    CAS  Google Scholar 

  71. [71]

    Chen, T.; Hao, Q.; Yang, W. J.; Xie, C. L.; Chen, D. M.; Ma, C.; Yao, W. Q.; Zhu, Y. F. A honeycomb multilevel structure Bi2O3 with highly efficient catalytic activity driven by bias voltage and oxygen defect. Appl. Catal. B: Environ.2018, 237, 442–448.

    CAS  Google Scholar 

  72. [72]

    Ni, Z.; Masel, R. I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc.2006, 128, 12394–12395.

    CAS  Google Scholar 

  73. [73]

    Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} Facets. J. Am. Chem. Soc.2009, 131, 4078–4083.

    CAS  Google Scholar 

  74. [74]

    Choucair, M.; Thordarson, P.; Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol.2009, 4, 30–33.

    CAS  Google Scholar 

  75. [75]

    Montigaud, H.; Tanguy, B.; Demazeau, G.; Alves, I.; Courjault, S. C3N4: Dream or reality? Solvothermal synthesis as macroscopic samples of the C3N4 graphitic form. J. Mater. Sci.2000, 35, 2547–2552.

    CAS  Google Scholar 

  76. [76]

    Guo, Q. X.; Xie, Y.; Wang, X. J.; Lv, S. C.; Hou, T.; Liu, X. M. Characterization of well-crystallized graphitic carbon nitride nano-crystallites via a benzene-thermal route at low temperatures. Chem. Phys. Lett.2003, 380, 84–87.

    CAS  Google Scholar 

  77. [77]

    Guo, Q. X.; Xie, Y.; Wang, X. J.; Zhang, S. Y.; Hou, T.; Lv, S. C. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures. Chem. Commun.2004, 26–27.

  78. [78]

    Bai, Y. J.; Lü, B.; Liu, Z. G.; Li, L.; Cui, D. L.; Xu, X. G; Wang, Q. L. Solvothermal preparation of graphite-like C3N4 nanocrystals. J. Cryst. Growth2003, 247, 505–508.

    CAS  Google Scholar 

  79. [79]

    Li, J.; Cao, C. B.; Zhu, H. S. Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes. Nanotechnology2007, 18, 115605.

    Google Scholar 

  80. [80]

    Gillan, E. G. Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem. Mater.2000, 12, 3906–3912.

    CAS  Google Scholar 

  81. [81]

    Lotsch, B. V.; Schnick, W. From triazines to heptazines: Novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials. Chem. Mater.2006, 18, 1891–1900.

    CAS  Google Scholar 

  82. [82]

    Li, Y. Y.; Xue, L. H.; Fan, L. F.; Yan, Y. W. The effect of citric acid to metal nitrates molar ratio on sol–gel combustion synthesis of nano-crystalline LaMnO3 powders. J. Alloys Compd.2009, 478, 493–497.

    CAS  Google Scholar 

  83. [83]

    Dong, F.; Wu, L. W.; Sun, Y. J.; Fu, M.; Wu, Z. B.; Lee, S. C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem.2011, 21, 15171–15174.

    CAS  Google Scholar 

  84. [84]

    Hong, J. H.; Xia, X. Y.; Wang, Y. S.; Xu, R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem.2012, 22, 15006–15012.

    CAS  Google Scholar 

  85. [85]

    Cui, Y. J.; Ding, Z. X.; Liu, P.; Antonietti, M.; Fu, X. Z.; Wang, X. C. Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys. Chem. Chem. Phys.2012, 14, 1455–1462.

    CAS  Google Scholar 

  86. [86]

    Dong, F.; Wang, Z. Y.; Sun, Y. J.; Ho, W. K.; Zhang, H. D. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. J. Colloid Interface Sci.2013, 401, 70–79.

    CAS  Google Scholar 

  87. [87]

    Long, B. H.; Lin, J. L.; Wang, X. C. Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. J. Mater. Chem. A2014, 2, 2942–2951.

    CAS  Google Scholar 

  88. [88]

    Lan, Z. A.; Zhang, G G; Wang, X. C. A facile synthesis of Br-modfied g-C3N4 semiconductors for photoredox water splitting. Appl. Catal. B Environ.2016, 192, 116–125.

    CAS  Google Scholar 

  89. [89]

    Shan, W. J.; Hu, Y.; Bai, Z. G.; Zheng, M. M.; Wei, C. H. In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl. Catal. B: Environ.2016, 188, 1–12.

    CAS  Google Scholar 

  90. [90]

    Liu, S.; Tian, J. Q.; Wang, L.; Luo, Y. L.; Zhai, J. F.; Sun, X. P. Preparation of photoluminescent carbon nitride dots from CCl4 and 1,2-ethylenediamine: A heat-treatment-based strategy. J. Mater. Chem.2011, 21, 11726–11729.

    CAS  Google Scholar 

  91. [91]

    Liu, S.; Wang, L.; Tian, J. Q.; Zhai, J. F.; Luo, Y. L.; Lu, W. B.; Sun, X. P. Acid-driven, microwave-assisted production of photoluminescent carbon nitride dots from N, N-dimethylformamide. RSC Adv.2011, 1, 951–953.

    CAS  Google Scholar 

  92. [92]

    Liu, S.; Tian, J. Q.; Wang, L.; Luo, Y. L.; Sun, X. P. A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Adv.2012, 2, 411–413.

    CAS  Google Scholar 

  93. [93]

    Barman, S.; Sadhukhan, M. Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J. Mater. Chem.2012, 22, 21832–21837.

    CAS  Google Scholar 

  94. [94]

    Tang, Y. R.; Su, Y. Y.; Yang, N.; Zhang, L. C.; Lv, Y. Carbon nitride quantum dots: A novel chemiluminescence system for selective detection of free chlorine in water. Anal. Chem.2014, 86, 4528–4535.

    CAS  Google Scholar 

  95. [95]

    Li, H.; Shao, F. Q.; Huang, H.; Feng, J. J.; Wang, A. J. Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sens. Actuators B: Chem.2016, 226, 506–511.

    CAS  Google Scholar 

  96. [96]

    Cao, X. T.; Ma, J.; Lin, Y. P.; Yao, B. X.; Li, F. M.; Weng, W.; Lin, X. C. A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions. Spectrochim. Acta A2015, 151, 875–880.

    CAS  Google Scholar 

  97. [97]

    Zhang, X. D.; Wang, H. X.; Wang, H.; Zhang, Q.; Xie, J. F.; Tian, Y. P.; Wang, J.; Xie, Y. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv. Mater.2014, 26, 4438–4443.

    CAS  Google Scholar 

  98. [98]

    Bai, X. J.; Yan, S. C.; Wang, J. J.; Wang, L.; Jiang, W. J.; Wu, S. L.; Sun, C. P.; Zhu, Y. F. A simple and efficient strategy for the synthesis of a chemically tailored g-C3N4 material. J. Mater. Chem. A2014, 2, 17521–17529.

    CAS  Google Scholar 

  99. [99]

    Chen, X.; Liu, Q.; Wu, Q. L.; Du, P. W.; Zhu, J.; Dai, S. Y.; Yang, S. F. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement. Adv. Funct. Mater.2016, 26, 1719–1728.

    CAS  Google Scholar 

  100. [100]

    Wang, X. P.; Wang, L. X.; Zhao, F.; Hu, C. G.; Zhao, Y.; Zhang, Z. P.; Chen, S. L.; Shi, G. Q.; Qu, L. T. Monoatomic-thick graphitic carbon nitride dots on graphene sheets as an efficient catalyst in the oxygen reduction reaction. Nanoscale2015, 7, 3035–3042.

    CAS  Google Scholar 

  101. [101]

    Song, Z. P.; Lin, T. R.; Lin, L. H.; Lin, S.; Fu, F. F.; Wang, X. C.; Guo, L. Q. Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew. Chem., Int. Ed.2016, 55, 2773–2777.

    CAS  Google Scholar 

  102. [102]

    Fan, X. Q.; Feng, Y.; Su, Y. Y.; Zhang, L. C.; Lv, Y. A green solid-phase method for preparation of carbon nitride quantum dots and their applications in chemiluminescent dopamine sensing. RSC Adv.2015, 5, 55158–55164.

    CAS  Google Scholar 

  103. [103]

    Li, X. H.; Zhang, J. S.; Chen, X. F.; Fischer, A.; Thomas, A.; Antonietti, M.; Wang, X. C. Condensed graphitic carbon nitride nanorods by nanoconfinement: Promotion of crystallinity on photocatalytic conversion. Chem. Mater.2011, 23, 4344–4348.

    CAS  Google Scholar 

  104. [104]

    Zhang, J. S.; Guo, F. S.; Wang, X. C. An optimized and general synthetic strategy for fabrication of polymeric carbon nitride nanoarchitectures. Adv. Funct. Mater.2013, 23, 3008–3014.

    CAS  Google Scholar 

  105. [105]

    Liu, J.; Huang, J. H.; Zhou, H.; Antonietti, M. Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Appl. Mater. Interfaces2014, 6, 8434–8440.

    CAS  Google Scholar 

  106. [106]

    Bai, X. J.; Wang, L.; Zong, R. L.; Zhu, Y. F. Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C2013, 117, 9952–9961.

    CAS  Google Scholar 

  107. [107]

    Xu, L.; Xia, J. X.; Wang, L. G.; Ji, H. Y.; Qian, J.; Xu, H.; Wang, K.; Li, H. M. Graphitic carbon nitride nanorods for photo-electrochemical sensing of trace copper(II) ions. Eur. J. Inorg. Chem.2014, 23, 3665–3673.

    Google Scholar 

  108. [108]

    Hu, S. Z.; Ma, L.; Xie, Y.; Li, F. Y.; Fan, Z. P.; Wang, F.; Wang, Q.; Wang, Y. J.; Kang, X. X.; Wu, G. Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions. Dalton Trans.2015, 44, 20889–20897.

    CAS  Google Scholar 

  109. [109]

    Tang, Y. Q.; Yuan, M.; Jiang, B. J.; Xiao, Y. T.; Fu, Y.; Chen, S.; Deng, Z. P.; Pan, Q. J.; Tian, C. G.; Fu, H. G. Inorganic acid-derived hydrogen-bonded organic frameworks to form nitrogen-rich carbon nitrides for photocatalytic hydrogen evolution. J. Mater. Chem. A2017, 5, 21979–21985.

    CAS  Google Scholar 

  110. [110]

    Li, H. J.; Qian, D. J.; Chen, M. Templateless infrared heating process for fabricating carbon nitride nanorods with efficient photocatalytic H2 evolution. ACS Appl. Mater. Interfaces2015, 7, 25162–25170.

    CAS  Google Scholar 

  111. [111]

    Suenaga, K.; Johansson, M. P.; Hellgren, N.; Broitman, E.; Wallenberg, L. R.; Colliex, C.; Sundgren, J. E.; Hultman, L. Carbon nitride nanotubulite-densely-packed and well-aligned tubular nanostructures. Chem. Phys. Lett.1999, 300, 695–700.

    CAS  Google Scholar 

  112. [112]

    Sung, S. L.; Tsai, S. H.; Tseng, C. H.; Chiang, F. K.; Liu, X. W.; Shih, H. C. Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition. Appl. Phys. Lett.1999, 74, 197–199.

    CAS  Google Scholar 

  113. [113]

    Tragl, S.; Gibson, K.; Glaser, J.; Duppel, V.; Simon, A.; Meyer, H. J. Template assisted formation of micro- and nanotubular carbon nitride materials. Solid State Commun.2007, 141, 529–534.

    CAS  Google Scholar 

  114. [114]

    Bian, S. W.; Ma, Z.; Song, W. G. Preparation and characterization of carbon nitride nanotubes and their applications as catalyst supporter. J. Phys. Chem. C2009, 113, 8668–8672.

    CAS  Google Scholar 

  115. [115]

    Li, Y. G.; Zhang, J.; Wang, Q. S.; Jin, Y. X.; Huang, D. H.; Cui, Q. L.; Zou, G. T. Nitrogen-rich carbon nitride hollow vessels: Synthesis, characterization, and their properties. J. Phys. Chem. B2010, 114, 9429–9434.

    CAS  Google Scholar 

  116. [116]

    Cao, C. B.; Huang, F. L.; Cao, C. T.; Li, J.; Zhu, H. S. Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route. Chem. Mater.2004, 16, 5213–5215.

    CAS  Google Scholar 

  117. [117]

    Jordan, T.; Fechler, N.; Xu, J. S.; Brenner, T. J. K.; Antonietti, M.; Shalom, M. “Caffeine doping” of carbon/nitrogen-based organic catalysts: Caffeine as a supramolecular edge modifier for the synthesis of photoactive carbon nitride tubes. ChemCatChem2015, 7, 2826–2830.

    CAS  Google Scholar 

  118. [118]

    Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed.2016, 55, 1830–1834.

    CAS  Google Scholar 

  119. [119]

    Jin, Z. Y.; Zhang, Q. T.; Yuan, S. S.; Ohno, T. Synthesis high specific surface area nanotube g-C3N4 with two-step condensation treatment of melamine to enhance photocatalysis properties. RSC Adv.2015, 5, 4026–4029.

    CAS  Google Scholar 

  120. [120]

    Tahir, M.; Cao, C. B.; Mahmood, N.; Butt, F. K.; Mahmood, A.; Idrees, F.; Hussain, S.; Tanveer, M.; Ali, Z.; Aslam, I. Multifunctional g-C3N4 nanofibers: A template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl. Mater. Interfaces2014, 6, 1258–1265.

    CAS  Google Scholar 

  121. [121]

    Xie, M.; Wei, W.; Jiang, Z. F.; Xu, Y. G.; Xie, J. M. Carbon nitride nanowires/nanofibers: A novel template-free synthesis from a cyanuric chloride-melamine precursor towards enhanced adsorption and visible-light photocatalytic performance. Ceram. int.2016, 42, 4158–4170.

    CAS  Google Scholar 

  122. [122]

    Han, Q.; Wang, B.; Zhao, Y.; Hu, C. G.; Qu, L. T. A graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution. Angew. Chem., Int. Ed.2015, 54, 11433–11437.

    CAS  Google Scholar 

  123. [123]

    Zhang, K.; Wang, L. Y.; Sheng, X. W.; Ma, M.; Jung, M. S.; Kim, W.; Lee, H.; Park, J. H. Tunable bandgap energy and promotion of H2O2 oxidation for overall water splitting from carbon nitride nanowire bundles. Adv. Energy Mater.2016, 6, 1502352.

    Google Scholar 

  124. [124]

    Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater.2012, 22, 4763–4770.

    CAS  Google Scholar 

  125. [125]

    Li, Y. F.; Jin, R. X.; Xing, Y.; Li, J. Q.; Song, S. Y.; Liu, X. C.; Li, M.; Jin, R. C. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv. Energy Mater.2016, 6, 1601273.

    Google Scholar 

  126. [126]

    Gholipour, M. R.; Béland, F.; Do, T. O. Post-calcined carbon nitride nanosheets as an efficient photocatalyst for hydrogen production under visible light irradiation. ACS Sustainable Chem. Eng.2017, 5, 213–220.

    CAS  Google Scholar 

  127. [127]

    Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc.2013, 135, 18–21.

    CAS  Google Scholar 

  128. [128]

    Lu, Y. T.; Chu, D. M.; Zhu, M. S.; Du, Y. K.; Yang, P. Exfoliated carbon nitride nanosheets decorated with NiS as an efficient noble-metal-free visible-light-driven photocatalyst for hydrogen evolution. Phys. Chem. Chem. Phys.2015, 17, 17355–17361.

    CAS  Google Scholar 

  129. [129]

    Wang, X.; Hong, M. Z.; Zhang, F. W.; Zhuang, Z. Y.; Yu, Y. Recyclable nanoscale zero valent iron doped g-C3N4/MoS2 for efficient photocatalysis of RhB and Cr(VI) driven by visible light. ACS Sustainable Chem. Eng.2016, 4, 4055–4063.

    CAS  Google Scholar 

  130. [130]

    Bao, N.; Hu, X. D.; Zhang, Q. Z.; Miao, X. H.; Jie, X. Y.; Zhou, S. Synthesis of porous carbon-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Appl. Surf. Sci.2017, 403, 682–690.

    CAS  Google Scholar 

  131. [131]

    Fang, L. J.; Li, Y. H.; Liu, P. F.; Wang, D. P.; Zeng, H. D.; Wang, X. L.; Yang, H. G. Facile fabrication of large-aspect-ratio g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. ACS Sustainable Chem. Eng.2017, 5, 2039–2043.

    CAS  Google Scholar 

  132. [132]

    Xu, J.; Zhang, L. W.; Shi, R.; Zhu, Y. F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A2013, 1, 14766–14772.

    CAS  Google Scholar 

  133. [133]

    Zhao, H. X.; Yu, H. T.; Quan, X.; Chen, S.; Zhao, H. M.; Wang, H. Atomic single layer graphitic-C3N4: Fabrication and its high photocatalytic performance under visible light irradiation. RSC Adv.2014, 4, 624–628.

    CAS  Google Scholar 

  134. [134]

    Zhao, H. X.; Yu, H. T.; Quan, X.; Chen, S.; Zhang, Y. B.; Zhao, H. M.; Wang, H. Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl. Catal. B: Environ.2014, 152–153, 46–50.

    Google Scholar 

  135. [135]

    Dang, X. M.; Zhang, X. F.; Zhang, W. Q.; Dong, X. L.; Wang, G. W.; Ma, C.; Zhang, X. X.; Ma, H. C.; Xue, M. Ultra-thin C3N4 nanosheets for rapid charge transfer in the core-shell heterojunction of α-sulfur@C3N4 for superior metal-free photocatalysis under visible light. RSC Adv.2015, 5, 15052–15058.

    CAS  Google Scholar 

  136. [136]

    Bojdys, M. J.; Müller, J. O.; Antonietti, M.; Thomas, A. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem.—Eur. J.2008, 14, 8177–8182.

    CAS  Google Scholar 

  137. [137]

    Cheng, N. Y.; Jiang, P.; Liu, Q.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. Graphitic carbon nitride nanosheets: One-step, high-yield synthesis and application for Cu2+ detection. Analyst2014, 139, 5065–5068.

    CAS  Google Scholar 

  138. [138]

    Liu, G. G.; Wang, T.; Zhang, H. B.; Meng, X. G.; Hao, D.; Chang, K.; Li, P.; Kako, T.; Ye, J. H. Nature-inspired environmental “phosphorylation” boosts photocatalytic H2 production over carbon nitride nanosheets under visible-light irradiation. Angew. Chem., Int. Ed.2015, 54, 13561–13565.

    CAS  Google Scholar 

  139. [139]

    Lu, X. L.; Xu, K.; Chen, P. Z.; Jia, K. C.; Liu, S.; Wu, C. Z. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. J. Mater. Chem. A2014, 2, 18924–18928.

    CAS  Google Scholar 

  140. [140]

    Dong, G. H.; Jacobs, D. L.; Zang, L.; Wang, C. Y. Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets. Appl. Catal. B: Environ.2017, 218, 515–524.

    CAS  Google Scholar 

  141. [141]

    Yin, Y.; Han, J. C.; Zhang, X. H.; Zhang, Y. M.; Zhou, J. G.; Muir, D.; Sutarto, R.; Zhang, Z. H.; Liu, S. W.; Song, B. Facile synthesis of few-layer-thick carbon nitride nanosheets by liquid ammonia-assisted lithiation method and their photocatalytic redox properties. RSC Adv.2014, 4, 32690–32697.

    CAS  Google Scholar 

  142. [142]

    Yu, Y. Z.; Zhou, Q.; Wang, J. G. The ultra-rapid synthesis of 2D graphitic carbon nitride nanosheets via direct microwave heating for field emission. Chem. Commun.2016, 52, 3396–3399.

    CAS  Google Scholar 

  143. [143]

    Davis, M. E. Ordered porous materials for emerging applications. Nature2002, 417, 813–821.

    CAS  Google Scholar 

  144. [144]

    Dong, G. H.; Zhang, L. Z. Porous structure dependent photoreactivity of graphitic carbon nitride under visible light. J. Mater. Chem.2012, 22, 1160–1166.

    CAS  Google Scholar 

  145. [145]

    Liang, Q. H.; Li, Z.; Yu, X. L.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater.2015, 27, 4634–4639.

    CAS  Google Scholar 

  146. [146]

    Wu, X. Y.; Li, S. M.; Wang, B.; Liu, J. H.; Yu, M. From biomass chitin to mesoporous nanosheets assembled loofa sponge-like N-doped carbon/g-C3N4 3D network architectures as ultralow-cost bifunctional oxygen catalysts. Micropor. Mesopor. Mater.2017, 240, 216–226.

    CAS  Google Scholar 

  147. [147]

    Tian, N.; Zhang, Y. H.; Li, X. W.; Xiao, K.; Du, X.; Dong, F.; Waterhouse, G. I. N.; Zhang, T. R.; Huang, H. W. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy2017, 38, 72–81.

    CAS  Google Scholar 

  148. [148]

    Wang, Y. G.; Xia, Q. N.; Bai, X.; Ge, Z. G.; Yang, Q.; Yin, C. C.; Kang, S. F.; Dong, M. D.; Li, X. Carbothermal activation synthesis of 3D porous g-C3N4/carbon nanosheets composite with superior performance for CO2 photoreduction. Appl. Catal. B: Environ.2018, 239, 196–203.

    CAS  Google Scholar 

  149. [149]

    Zhou, Y. J.; Li, J. Z.; Liu, C. Y.; Huo, P. W.; Wang, H. Q. Construction of 3D porous g-C3N4/AgBr/rGO composite for excellent visible light photocatalytic activity. Appl. Surf. Sci.2018, 458, 586–596.

    CAS  Google Scholar 

  150. [150]

    Chen, Z. F.; Lu, S. C.; Wu, Q. L.; He, F.; Zhao, N. Q.; He, C. N.; Shi, C. S. Salt-assisted synthesis of 3D open porous g-C3N4 decorated with cyano groups for photocatalytic hydrogen evolution. Nanoscale2018, 10, 3008–3013.

    CAS  Google Scholar 

  151. [151]

    Sun, J. H.; Zhang, J. S.; Zhang, M. W.; Antonietti, M.; Fu, X. Z.; Wang, X. C. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun.2012, 3, 1139.

    Google Scholar 

  152. [152]

    Zhang, S. B.; Li, M.; Qiu, W. J.; Wei, Y.; Zhang, G F.; Han, J. Y.; Wang, H.; Liu, X. Super small polymeric carbon nitride nanospheres with core-shell structure for photocatalysis. ChemistrySelect2017, 2, 10580–10585.

    CAS  Google Scholar 

  153. [153]

    Chen, J. H.; Shi, W. B.; Zhang, X. Y.; Arandiyan, H.; Li, D. F.; Li, J. H. Roles of Li+ and Zr4+ Cations in the catalytic performances of Co1−xMxCr2O4 (M = Li, Zr; x = 0–0.2) for Methane Combustion. Environ. Sci. Technol.2011, 45, 8491–8497.

    CAS  Google Scholar 

  154. [154]

    Cai, J. B.; Wu, X. Q.; Li, Y. H.; Lin, Y.; Yang, H.; Li, S. X. Noble metal sandwich-like TiO2@Pt@C3N4 hollow spheres enhance photocatalytic performance. J. Colloid Interface Sci.2018, 514, 791–800.

    CAS  Google Scholar 

  155. [155]

    Jun, Y. S.; Lee, E. Z.; Wang, X. C.; Hong, W. H.; Stucky, G. D.; Thomas, A. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater.2013, 23, 3661–3667.

    CAS  Google Scholar 

  156. [156]

    Yang, J. J.; Chen, D. M.; Zhu, Y.; Zhang, Y. M.; Zhu, Y. F. 3D-3D porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation. Appl. Catal. B: Environ.2017, 205, 228–237.

    CAS  Google Scholar 

  157. [157]

    Tong, Z. W.; Yang, D.; Shi, J. F.; Nan, Y. H.; Sun, Y. Y.; Jiang, Z. Y. Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance. ACS Appl. Mater. Interfaces2015, 7, 25693–25701.

    CAS  Google Scholar 

  158. [158]

    Wang, X.; Liang, Y. H.; An, W. J.; Hu, J. S.; Zhu, Y. F.; Cui, W. Q. Removal of chromium (VI) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light. Appl. Catal. B: Environ.2017, 219, 53–62.

    CAS  Google Scholar 

  159. [159]

    Liang, Y. H.; Wang, X.; An, W. J.; Li, Y.; Hu, J. S.; Cui, W. Q. A g-C3N4@ppy-rGO 3D structure hydrogel for efficient photocatalysis. Appl. Surf. Sci.2019, 466, 666–672.

    CAS  Google Scholar 

  160. [160]

    Zhang, M.; Luo, W. J.; Wei, Z.; Jiang, W. J.; Liu, D.; Zhu, Y. F. Separation free C3N4/SiO2 hybrid hydrogels as high active photocatalysts for TOC removal. Appl. Catal. B: Environ.2016, 194, 105–110.

    CAS  Google Scholar 

  161. [161]

    Zhang, M.; Jiang, W. J.; Liu, D.; Wang, J.; Liu, Y. F.; Zhu, Y. Y.; Zhu, Y. F. Photodegradation of phenol via C3N4-agar hybrid hydrogel 3D photocatalysts with free separation. Appl. Catal. B: Environ.2016, 183, 263–268.

    CAS  Google Scholar 

  162. [162]

    Yan, J.; Rodrigues, M. T. F.; Song, Z. L.; Li, H. P.; Xu, H.; Liu, H.; Wu, J. J.; Xu, Y. G.; Song, Y. H.; Liu, Y. et al. Reversible formation of g-C3N4 3D hydrogels through ionic liquid activation: Gelation behavior and room-temperature gas-sensing properties. Adv. Funct. Mater.2017, 27, 1700653.

    Google Scholar 

  163. [163]

    Zhang, Y. Y.; Zhou, Z. X.; Shen, Y. F.; Zhou, Q.; Wang, J. H.; Liu, A. R.; Liu, S. Q.; Zhang, Y. J. Reversible assembly of graphitic carbon nitride 3D network for highly selective dyes absorption and regeneration. ACS Nano2016, 10, 9036–9043.

    CAS  Google Scholar 

  164. [164]

    Dong, F.; Zhao, Z.; Sun, Y.; Zhang, Y.; Yan, S.; Wu, Z. An advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification. Environ. Sci. Technol.2015, 49, 12432–12440.

    CAS  Google Scholar 

  165. [165]

    Xu, Y. L.; Niu, X. Y.; Zhang, H. J.; Xu, L. F.; Zhao, S. G.; Chen, H. L.; Chen, X. G. Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg2+ chemosensor. J. Agric. Food Chem.2015, 63, 1747–1755.

    CAS  Google Scholar 

  166. [166]

    Lin, X.; Xu, D.; Zheng, J.; Song, M. S.; Che, G. B.; Wang, Y. S.; Yang, Y.; Liu, C.; Zhao, L. N.; Chang, L. M. Graphitic carbon nitride quantum dots loaded on leaf-like InVO4/BiVO4 nanoheterostructures with enhanced visible-light photocatalytic activity. J. Alloys Compd.2016, 688, 891–898.

    CAS  Google Scholar 

  167. [167]

    Yin, Y.; Zhang, Y. M.; Gao, T. L.; Yao, T.; Han, J. C.; Han, Z. B.; Zhang, Z. H.; Wu, Q.; Song, B. One-pot evaporation-condensation strategy for green synthesis of carbon nitride quantum dots: An efficient fluorescent probe for ion detection and bioimaging. Mater. Chem. Phys.2017, 194, 293–301.

    CAS  Google Scholar 

  168. [168]

    Sun, B.; Lu, N.; Su, Y.; Yu, H. T.; Meng, X. Y.; Gao, Z. M. Decoration of TiO2 nanotube arrays by graphitic-C3N4 quantum dots with improved photoelectrocatalytic performance. Appl. Surf. Sci.2017, 394, 479–487.

    CAS  Google Scholar 

  169. [169]

    Su, J. Y.; Zhu, L.; Chen, G. H. Ultrasmall graphitic carbon nitride quantum dots decorated self-organized TiO2 nanotube arrays with highly efficient photoelectrochemical activity. Appl. Catal. B: Environ.2016, 186, 127–135.

    CAS  Google Scholar 

  170. [170]

    Zhang, H.; Guo, L. H.; Zhao, L. X.; Wan, B.; Yang, Y. Switching oxygen reduction pathway by exfoliating graphitic carbon nitride for enhanced photocatalytic phenol degradation. J. Phys. Chem. Lett.2015, 6, 958–963.

    CAS  Google Scholar 

  171. [171]

    Chen, W.; Duan, G. R.; Liu, T. Y.; Chen, S. M.; Liu, X. H. Fabrication of Bi2MoO6 nanoplates hybridized with g-C3N4 nanosheets as highly efficient visible light responsive heterojunction photocatalysts for rhodamine B degradation. Mater. Sci. Semicond. Process2015, 35, 45–54.

    CAS  Google Scholar 

  172. [172]

    Li, Y.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Zheng, Y. F.; Yeung, K. W. K.; Chu, P. K.; Wu, S. L. Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Adv. Funct. Mater.2018, 28, 1800299.

    Google Scholar 

  173. [173]

    Fan, Y. D.; Zhou, J.; Zhang, J.; Lou, Y. Q.; Huang, Z. W.; Ye, Y.; Jia, L.; Tang, B. Photocatalysis and self-cleaning from g-C3N4 coated cotton fabrics under sunlight irradiation. Chem. Phys. Lett.2018, 699, 146–154.

    CAS  Google Scholar 

  174. [174]

    Tian, J. Q.; Liu, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem.2013, 85, 5595–5599.

    CAS  Google Scholar 

  175. [175]

    Shiravand, G.; Badiei, A.; Ziarani, G. M. Carboxyl-rich g-C3N4 nanoparticles: Synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sens. Actuator B: Chem.2017, 242, 244–252.

    CAS  Google Scholar 

  176. [176]

    Wang, K.; Li, Q.; Liu, B. S.; Cheng, B.; Ho, W.; Yu, J. G. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B: Environ.2015, 176–177, 44–52.

    Google Scholar 

  177. [177]

    Li, M.; Zhang, S. B.; Liu, X.; Han, J. Y.; Zhu, X. L.; Ge, Q. F.; Wang, H. Polydopamine and barbituric acid co-modified carbon nitride nanospheres for highly active and selective photocatalytic CO2 reduction. Eur. J. Inorg. Chem.2019, 15, 2058–2064.

    Google Scholar 

  178. [178]

    Zhang, Y. H.; Pan, Q. W.; Chai, G. Q.; Liang, M. R.; Dong, G. P.; Zhang, Q. Y.; Qiu, J. R. Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep.2013, 3, 1943.

    Google Scholar 

  179. [179]

    Das, D.; Shinde, S. L.; Nanda, K. K. Temperature-dependent photoluminescence of g-C3N4: Implication for temperature sensing. ACS Appl. Mater. Interfaces2016, 8, 2181–2186.

    CAS  Google Scholar 

  180. [180]

    Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultra-sensitive nonisotopic detection. Science1998, 281, 2016–2018.

    CAS  Google Scholar 

  181. [181]

    Peng, M. S.; Wang, Y.; Fu, Q.; Sun, F. F.; Na, N.; Ouyang, J. Melanosome-targeting near-infrared fluorescent probe with large stokes shift for in situ quantification of tyrosinase activity and assessing drug effects on differently invasive melanoma cells. Anal. Chem.2018, 90, 6206–6213.

    CAS  Google Scholar 

  182. [182]

    Cui, Q. L.; Xu, J. S.; Wang, X. Y.; Li, L. D.; Antonietti, M.; Shalom, M. Phenyl-modified carbon nitride quantum dots with distinct photoluminescence behavior. Angew. Chem., Int. Ed.2016, 55, 3672–3676.

    CAS  Google Scholar 

  183. [183]

    Su, J. Y.; Zhu, L.; Geng, P.; Chen, G. H. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light. J. Hazard. Mater.2016, 316, 159–168.

    CAS  Google Scholar 

  184. [184]

    Sun, S. M.; An, Q.; Wang, W. Z.; Zhang, L.; Liu, J. J.; Goddard III, W. A. Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. J. Mater. Chem. A2017, 5, 201–209.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by an Australian Research Council (ARC) Future Fellowship (No. FT160100195). G. H. J. acknowledges the support from the Australian Research Council (ARC) Discovery Early Career Researcher Award (ARC DECRA) (Project ID: DE160100589). Q. H. acknowledges the technical support of Beijing NBET Technology Co., Ltd.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bing-Jie Ni.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, Q., Jia, G., Wei, W. et al. Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 13, 18–37 (2020). https://doi.org/10.1007/s12274-019-2589-z

Download citation

Keywords

  • graphitic carbon nitride
  • micro-nano structure
  • energy functional materials
  • environmental functional materials
  • photocatalyst