Skip to main content

Nano-enabled cellular engineering for bioelectric studies

Abstract

Engineered cells have opened up a new avenue for scientists and engineers to achieve specialized biological functions. Nanomaterials, such as silicon nanowires and quantum dots, can establish tight interfaces with cells either extra- or intracellularly, and they have already been widely used to control cellular functions. The future exploration of nanomaterials in cellular engineering may reveal numerous opportunities in both fundamental bioelectric studies and clinic applications. In this review, we highlight several nanomaterials-enabled non-genetic approaches to fabricating engineered cells. First, we briefly review the latest progress in engineered or synthetic cells, such as protocells that create cell-like behaviors from nonliving building blocks, and cells made by genetic or chemical modifications. Next, we illustrate the need for non-genetic cellular engineering with semiconductors and present some examples where chemical synthesis yields complex morphology or functions needed for biointerfaces. We then provide discussions in detail about the semiconductor nanostructure-enabled neural, cardiac, and microbial modulations. We also suggest the need to integrate tissue engineering with semiconductor devices to carry out more complex functions. We end this review by providing our perspectives for future development in non-genetic cellular engineering.

This is a preview of subscription content, access via your institution.

References

  1. Kim, S.; Shah, S. B.; Graney, P. L.; Singh, A. Multiscale engineering of immune cells and lymphoid organs. Nat. Rev. Mater.2019, 4, 355–378.

    Article  Google Scholar 

  2. Xie, M. Q.; Fussenegger, M. Designing cell function: Assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol.2018, 19, 507–525.

    CAS  Article  Google Scholar 

  3. Tian, B. Z. Nongenetic neural control with light. Science2019, 365, 457.

    CAS  Article  Google Scholar 

  4. Wu, M. R.; Jusiak, B.; Lu, T. K. Engineering advanced cancer therapies with synthetic biology. Nat. Rev. Cancer2019, 19, 187–195.

    Google Scholar 

  5. Smanski, M. J.; Zhou, H.; Claesen, J.; Shen, B.; Fischbach, M. A.; Voigt, C. A. Synthetic biology to access and expand nature’s chemical diversity. Nat. Rev. Microbiol.2016, 14, 135–149.

    CAS  Article  Google Scholar 

  6. Fadel, T. R.; Steenblock, E. R.; Stern, E.; Li, N.; Wang, X. M.; Haller, G. L.; Pfefferle, L. D.; Fahmy, T. M. Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett.2008, 8, 2070–2076.

    CAS  Article  Google Scholar 

  7. Fadel, T. R.; Sharp, F. A.; Vudattu, N.; Ragheb, R.; Garyu, J.; Kim, D.; Hong, E. P.; Li, N.; Haller, G. L.; Pfefferle, L. D. et al. A carbon nanotube-polymer composite for T-cell therapy. Nat. Nanotechnol.2014, 9, 639–647.

    CAS  Article  Google Scholar 

  8. Perica, K.; Bieler, J. G.; Schütz, C.; Varela, J. C.; Douglass, J.; Skora, A.; Chiu, Y. L.; Oelke, M.; Kinzler, K.; Zhou, S. B. et al. Enrichment and expansion with nanoscale artificial antigen presenting cells for adoptive immunotherapy. Acs Nano2015, 9, 6861–6871.

    CAS  Article  Google Scholar 

  9. Cheung, A. S.; Zhang, D. K. Y.; Koshy, S. T.; Mooney, D. J. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat. Biotechnol.2018, 36, 160–169.

    CAS  Article  Google Scholar 

  10. Stephan, S. B.; Taber, A. M.; Jileaeva, I.; Pegues, E. P.; Sentman, C. L.; Stephan, M. T. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat. Biotechnol.2015, 33, 97–101.

    CAS  Article  Google Scholar 

  11. Jiang, Y. W.; Tian, B. Z. Inorganic semiconductor biointerfaces. Nat. Rev. Mater.2018, 3, 473–490.

    Article  Google Scholar 

  12. Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today2006, 9, 18–27.

    CAS  Article  Google Scholar 

  13. Ek, M.; Filler, M. A. Atomic-scale choreography of vapor-liquid-solid nanowire growth. Acc. Chem. Res.2018, 51, 118–126.

    CAS  Article  Google Scholar 

  14. Tian, B. Z.; Lieber, C. M. Nanowired bioelectric interfaces. Chem. Rev.2019, 119, 9136–9152.

    CAS  Article  Google Scholar 

  15. Tian, B. Z.; Cohen-Karni, T.; Qing, Q.; Duan, X. J.; Xie, P.; Lieber, C. M. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science2010, 329, 830–834.

    CAS  Article  Google Scholar 

  16. Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater.2012, 11, 986–994.

    CAS  Article  Google Scholar 

  17. Qing, Q.; Pal, S. K.; Tian, B. Z.; Duan, X. J.; Timko, B. P.; Cohen-Karni, T.; Murthy, V. N.; Lieber, C. M. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc Natl Acad Sci USA2010, 107, 1882–1887.

    CAS  Article  Google Scholar 

  18. Liu, J.; Fu, T. M.; Cheng, Z. G.; Hong, G. S.; Zhou, T.; Jin, L. H.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C. et al. Syringe-injectable electronics. Nat. Nanotechnol.2015, 10, 629–636.

    CAS  Article  Google Scholar 

  19. Chen, R.; Canales, A.; Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater.2017, 2, 16093.

    CAS  Article  Google Scholar 

  20. Rao, S. Y.; Chen, R.; LaRocca, A. A.; Christiansen, M. G.; Senko, A. W.; Shi, C. H.; Chiang, P. H.; Varnavides, G.; Xue, J.; Zhou, Y. et al. Remotely controlled chemomagnetic modulation of targeted neural circuits. Nat. Nanotechnol.2019, 14, 967–973.

    CAS  Article  Google Scholar 

  21. Jiang, Y. W.; Carvalho-de-Souza, J. L.; Wong, R. C. S.; Luo, Z. Q.; Isheim, D.; Zuo, X. B.; Nicholls, A. W.; Jung, I. W.; Yue, J. P.; Liu, D. J. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater.2016, 15, 1023–1030.

    CAS  Article  Google Scholar 

  22. Jiang, Y. W.; Li, X. J.; Liu, B.; Yi, J.; Fang, Y.; Shi, F. Y.; Gao, X.; Sudzilovsky, E.; Parameswaran, R.; Koehler, K. et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng.2018, 2, 508–521.

    CAS  Article  Google Scholar 

  23. Acarón Ledesma, H.; Li, X. J.; Carvalho-de-Souza, J. L.; Wei, W.; Bezanilla, F.; Tian, B. Z. An atlas of nano-enabled neural interfaces. Nat. Nanotechnol.2019, 14, 645–657.

    Article  CAS  Google Scholar 

  24. Parameswaran, R.; Koehler, K.; Rotenberg, M. Y.; Burke, M. J.; Kim, J.; Jeong, K. Y.; Hissa, B.; Paul, M. D.; Moreno, K.; Sarma, N. et al. Optical stimulation of cardiac cells with a polymer-supported silicon nanowire matrix. Proc Natl Acad Sci USA2019, 116, 413–421.

    CAS  Article  Google Scholar 

  25. Rotenberg, M. Y.; Yamamoto, N.; Schaumann, E. N.; Matino, L.; Santoro, F.; Tian, B. Z. Living myofibroblast-silicon composites for probing electrical coupling in cardiac systems. Proc Natl Acad Sci USA2019, 116, 22531–22539.

    CAS  Article  Google Scholar 

  26. Feiner, R.; Dvir, T. Tissue-electronics interfaces: From implantable devices to engineered tissues. Nat. Rev. Mater.2018, 3, 17076.

    CAS  Article  Google Scholar 

  27. Patel, S. R.; Lieber, C. M. Precision electronic medicine in the brain. Nat. Biotechnol.2019, 37, 1007–1012.

    CAS  Article  Google Scholar 

  28. Hong, G. S.; Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci.2019, 20, 376.

    CAS  Article  Google Scholar 

  29. Xu, C.; Hu, S.; Chen, X. Y. Artificial cells: From basic science to applications. Mater. Today2016, 19, 516–532.

    CAS  Article  Google Scholar 

  30. Kitada, T.; DiAndreth, B.; Teague, B.; Weiss, R. Programming gene and engineered-cell therapies with synthetic biology. Science2018, 359, eaad1067.

    Article  CAS  Google Scholar 

  31. Dzieciol, A. J.; Mann, S. Designs for life: Protocell models in the laboratory. Chem. Soc. Rev.2012, 41, 79–85.

    CAS  Article  Google Scholar 

  32. Li, M.; Huang, X.; Tang, T. Y. D.; Mann, S. Synthetic cellularity based on non-lipid micro-compartments and protocell models. Curr. Opin. Chem. Biol.2014, 22, 1–11.

    Article  CAS  Google Scholar 

  33. Rasmussen, S.; Bedau, M. A.; Chen, L.; Deamer, D.; Krakauer, D. C.; Packard, N. H.; Stadler, P.F. Protocells: Bridging Nonliving and Living Matter; MIT Press, Cambridge, 2009.

    Google Scholar 

  34. Li, M.; Harbron, R. L.; Weaver, J. V. M.; Binks, B. P.; Mann, S. Electrostatically gated membrane permeability in inorganic protocells. Nat. Chem.2013, 5, 529–536.

    CAS  Article  Google Scholar 

  35. Kumar, B. V. V. S. P.; Patil, A. J.; Mann, S. Enzyme-powered motility in buoyant organoclay/DNA protocells. Nat. Chem.2018, 10, 1154–1163.

    CAS  Article  Google Scholar 

  36. Gobbo, P.; Patil, A. J.; Li, M.; Harniman, R.; Briscoe, W. H.; Mann, S. Programmed assembly of synthetic protocells into thermoresponsive prototissues. Nat. Mater.2018, 17, 1145–1153.

    CAS  Article  Google Scholar 

  37. Noireaux, V.; Libchaber, A. A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci USA2004, 101, 17669–17674.

    CAS  Article  Google Scholar 

  38. Taylor, J. W.; Eghtesadi, S. A.; Points, L. J.; Liu, T.; Cronin, L. Autonomous model protocell division driven by molecular replication. Nat. Commun.2017, 8, 237.

    CAS  Article  Google Scholar 

  39. Chen, Z. W.; Wang, J. Q.; Sun, W. J.; Archibong, E.; Kahkoska, A. R.; Zhang, X. D.; Lu, Y.; Ligler, F. S.; Buse, J. B.; Gu, Z. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol.2018, 14, 86–93.

    CAS  Article  Google Scholar 

  40. Lim, W. A.; June, C. H. The principles of engineering immune cells to treat cancer. Cell2017, 168, 724–740.

    CAS  Article  Google Scholar 

  41. Salatin, S.; Dizaj, S. M.; Khosroushahi, A. Y. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol. Int.2015, 39, 881–890.

    CAS  Article  Google Scholar 

  42. Niu, J.; Lunn, D. J.; Pusuluri, A.; Yoo, J. I.; O’Malley, M. A.; Mitragotri, S.; Soh, H. T.; Hawker, C. J. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem.2017, 9, 537–545.

    CAS  Article  Google Scholar 

  43. Komor, A. C.; Kim, Y. B.; Packer, M. S.; Zuris, J. A.; Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature2016, 533, 420–424.

    CAS  Article  Google Scholar 

  44. Gaudelli, N. M.; Komor, A. C.; Rees, H. A.; Packer, M. S.; Badran, A. H.; Bryson, D. I.; Liu, D. R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature2017, 551, 464–471.

    CAS  Article  Google Scholar 

  45. Xu, X. X.; Tao, Y. H.; Gao, X. B.; Zhang, L.; Li, X. F.; Zou, W. G.; Ruan, K. C.; Wang, F.; Xu, G L.; Hu, R. G A CRISPR-based approach for targeted DNA demethylation. Cell Discov.2016, 2, 16009.

    CAS  Article  Google Scholar 

  46. Morita, S.; Noguchi, H.; Horii, T.; Nakabayashi, K.; Kimura, M.; Okamura, K.; Sakai, A.; Nakashima, H.; Hata, K.; Nakashima K. et al. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat. Biotechnol.2016, 34, 1060–1065.

    CAS  Article  Google Scholar 

  47. Tabebordbar, M.; Zhu, K. X.; Cheng, J. K. W.; Chew, W. L.; Widrick, J. J.; Yan, W. X.; Maesner, C.; Wu, E. Y.; Xiao, R.; Ran, F. A. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science2016, 351, 407–411.

    CAS  Article  Google Scholar 

  48. Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci.2005, 8, 1263–1268.

    CAS  Article  Google Scholar 

  49. Nagel, G.; Szellas, T.; Huhn, W.; Kateriya, S.; Adeishvili, N.; Berthold, P.; Ollig, D.; Hegemann, P.; Bamberg, E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA2003, 100, 13940–13945.

    CAS  Article  Google Scholar 

  50. Zhang, F.; Vierock, J.; Yizhar, O.; Fenno, L. E.; Tsunoda, S.; Kianianmomeni, A.; Prigge, M.; Berndt, A.; Cushman, J.; Polle, J. et al. The microbial opsin family of optogenetic tools. Cell2011, 147, 1446–1457.

    CAS  Article  Google Scholar 

  51. Zhang, F.; Wang, L. P.; Brauner, M.; Liewald, J. F.; Kay, K.; Watzke, N.; Wood, P. G.; Bamberg, E.; Nagel, G et al. Multimodal fast optical interrogation of neural circuitry. Nature2007, 446, 633–639.

    CAS  Article  Google Scholar 

  52. Kato, H. E.; Kim, Y. S.; Paggi, J. M.; Evans, K. E.; Allen, W. E.; Richardson, C.; Inoue, K.; Ito, S.; Ramakrishnan, C.; Fenno, L. E. et al. Structural mechanisms of selectivity and gating in anion channelrhodopsins. Nature2018, 561, 349–354.

    CAS  Article  Google Scholar 

  53. Allen, W. E.; Chen, M. Z.; Pichamoorthy, N.; Tien, R. H.; Pachitariu, M.; Luo, L. Q.; Deisseroth, K. Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science2019, 364, eaav3932.

    CAS  Article  Google Scholar 

  54. Kaplan, L.; Ierokomos, A.; Chowdary, P.; Bryant, Z.; Cui, B. X. Rotation of endosomes demonstrates coordination of molecular motors during axonal transport. Sci. Adv.2018, 4, e1602170.

    Article  CAS  Google Scholar 

  55. van Bergeijk, P.; Adrian, M.; Hoogenraad, C. C.; Kapitein, L. C. Optogenetic control of organelle transport and positioning. Nature2015, 518, 111–114.

    CAS  Article  Google Scholar 

  56. Mimee, M.; Nadeau, P.; Hayward, A.; Carim, S.; Flanagan, S.; Jerger, L.; Collins, J.; McDonnell, S.; Swartwout, R.; Citorik, R. J. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science2018, 360, 915–918.

    CAS  Article  Google Scholar 

  57. Zhang, A. Q.; Lieber, C. M. Nano-bioelectronics. Chem. Rev.2016, 116, 215–257.

    CAS  Article  Google Scholar 

  58. Christesen, J. D.; Pinion, C. W.; Grumstrup, E. M.; Papanikolas, J. M.; Cahoon, J. F. Synthetically encoding 10 nm morphology in silicon nanowires. Nano Lett.2013, 13, 6281–6286.

    CAS  Article  Google Scholar 

  59. Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol.2009, 4, 824–829.

    CAS  Article  Google Scholar 

  60. Gabriel, M. M.; Kirschbrown, J. R.; Christesen, J. D.; Pinion, C. W.; Zigler, D. F.; Grumstrup, E. M.; Mehl, B. P.; Cating, E. E.; Cahoon, J. F.; Papanikolas, J. M. Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump-probe microscopy. Nano Lett.2013, 13, 1336–1340.

    CAS  Article  Google Scholar 

  61. Pinion, C. W.; Nenon, D. P.; Christesen, J. D.; Cahoon, J. F. Identifying crystallization- and incorporation-limited regimes during vapor-liquid-solid growth of Si nanowires. Acs Nano2014, 8, 6081–6088.

    CAS  Article  Google Scholar 

  62. Kim, S.; Hill, D. J.; Pinion, C. W.; Christesen, J. D.; McBride, J. R.; Cahoon, J. F. Designing morphology in epitaxial silicon nanowires: The role of gold, surface chemistry, and phosphorus doping. Acs Nano2017, 11, 4453–4462.

    CAS  Article  Google Scholar 

  63. Luo, Z. Q.; Jiang, Y. W.; Myers, B. D.; Isheim, D.; Wu, J. S.; Zimmerman, J. F.; Wang, Z. G.; Li, Q. Q.; Wang, Y. C.; Chen, X. Q. et al. Atomic gold-enabled three-dimensional lithography for silicon mesostructures. Science2015, 348, 1451–1455.

    CAS  Article  Google Scholar 

  64. Fang, Y.; Jiang, Y. W.; Cherukara, M. J.; Shi, F. Y.; Koehler, K.; Freyermuth, G.; Isheim, D.; Narayanan, B.; Nicholls, A. W.; Seidman, D. N.; Sankaranarayanan, S. K. R. S.; Tian, B. Z. Alloy-assisted deposition of three-dimensional arrays of atomic gold catalyst for crystal growth studies. Nature Communications2017, 8, 2014.

    Article  CAS  Google Scholar 

  65. Fang, Y.; Jiang, Y. W.; Ledesma, H. A.; Yi, J.; Gao, X.; Weiss, D. E.; Shi, F. Y.; Tian, B. Z. Texturing silicon nanowires for highly localized optical modulation of cellular dynamics. Nano Lett.2018, 78, 4487–4492.

    Article  CAS  Google Scholar 

  66. Parameswaran, R.; Carvalho-de-Souza, J. L.; Jiang, Y. W.; Burke, M. J.; Zimmerman, J. F.; Koehler, K.; Phillips, A. W.; Yi, J.; Adams, E. J.; Bezanilla, F. et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat. Nanotechnol.2018, 13, 260–266.

    CAS  Article  Google Scholar 

  67. Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature2007, 449, 885–889.

    CAS  Article  Google Scholar 

  68. Liu, C.; Kong, D. S.; Hsu, P. C.; Yuan, H. T.; Lee, H. W.; Liu, Y. Y.; Wang, H. T.; Wang, S.; Yan, K.; Lin, D. C. et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol.2016, 11, 1098–1104.

    CAS  Article  Google Scholar 

  69. Park, J. H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater.2009, 8, 331–336.

    CAS  Article  Google Scholar 

  70. Nandagopal, N.; Elowitz, M. B. Synthetic biology: Integrated gene circuits. Science2011, 333, 1244–1248.

    CAS  Article  Google Scholar 

  71. Slusarczyk, A. L.; Lin, A.; Weiss, R. Foundations for the design and implementation of synthetic genetic circuits. Nat. Rev. Genet.2012, 13, 406–420.

    CAS  Article  Google Scholar 

  72. Wolpe, P. R.; Rommelfanger, K. S. & the Drafting and Reviewing Delegates of the BEINGS Working Groups. Ethical principles for the use of human cellular biotechnologies. Nat. Biotechnol.2017, 35, 1050–1058.

    CAS  Article  Google Scholar 

  73. Marino, A.; Arai, S.; Hou, Y. Y.; Sinibaldi, E.; Pellegrino, M.; Chang, Y. T.; Mazzolai, B.; Mattoli, V.; Suzuki, M.; Ciofani, G. Piezoelectric nanoparticle-assisted wireless neuronal stimulation. Acs Nano2015, 9, 7678–7689.

    CAS  Article  Google Scholar 

  74. Chen, R.; Romero, G.; Christiansen, M. G.; Mohr, A.; Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science2015, 347, 1477–1480.

    CAS  Article  Google Scholar 

  75. Huang, H.; Delikanli, S.; Zeng, H.; Ferkey, D. M.; Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol.2010, 5, 602–606.

    CAS  Article  Google Scholar 

  76. Kandel, E. R.; Schwartz, J. H.; Jessell, T. M. Principles of Neural Science; 4th ed.; McGraw-hill: New York, 2000.

    Google Scholar 

  77. Fu, T. M.; Hong, G. S.; Zhou, T.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Stable long-term chronic brain mapping at the singleneuron level. Nat. Methods2016, 13, 875–882.

    CAS  Article  Google Scholar 

  78. Canales, A.; Jia, X. T.; Froriep, U. P.; Koppes, R. A.; Tringides, C. M.; Selvidge, J.; Lu, C.; Hou, C.; Wei, L.; Fink, Y. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol.2015, 33, 277–284.

    CAS  Article  Google Scholar 

  79. Zhang, Z.; Yates, J. T. Jr. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev.2012, 112, 5520–5551.

    CAS  Article  Google Scholar 

  80. Carvalho-de-Souza, J. L.; Treger, J. S.; Dang, B.; Kent, S. B. H.; Pepperberg, D. R.; Bezanilla, F. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron2015, 86, 207–217.

    CAS  Article  Google Scholar 

  81. Khodagholy, D.; Gelinas, J. N.; Thesen, T.; Doyle, W.; Devinsky, O.; Malliaras, G G; Buzsáki, G NeuroGrid: Recording action potentials from the surface of the brain. Nat. Neurosci.2015, 78, 310–315.

    Article  CAS  Google Scholar 

  82. Tortiglione, C.; Antognazza, M. R.; Tino, A.; Bossio, C.; Marchesano, V.; Bauduin, A.; Zangoli, M.; Morata, S. V.; Lanzani, G. Semiconducting polymers are light nanotransducers in eyeless animals. Sci. Adv.2017, 3, e1601699.

    Article  CAS  Google Scholar 

  83. Jakešová, M.; Ejneby, M. S.; Đerek, V.; Schmidt, T.; Gryszel, M.; Brask, J.; Schindl, R.; Simon, D. T.; Berggren, M.; Elinder, F. et al. Optoelectronic control of single cells using organic photocapacitors. Sci. Adv.2019, 5, eaav5265.

    Article  CAS  Google Scholar 

  84. Rand, D.; Jakešová, M.; Lubin, G.; Vėbraitė, I.; David-Pur, M.; Đerek, V.; Cramer, T.; Sariciftci, N. S.; Hanein, Y.; Glowacki, E. D. Direct electrical neurostimulation with organic pigment photocapacitors. Adv. Mater. 2018, 30, 1707292.

    Article  CAS  Google Scholar 

  85. Sytnyk, M.; Jakešová, M.; Litviňuková, M.; Mashkov, O.; Kriegner, D.; Stangl, J.; Nebesářová, J.; Fecher, F. W.; Schöfberger, W.; Sariciftci, N. S. et al. Cellular interfaces with hydrogen-bonded organic semiconductor hierarchical nanocrystals. Nat. Commun.2017, 8, 91.

    Article  CAS  Google Scholar 

  86. Nussinovitch, U.; Gepstein, L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat. Biotechnol.2015, 33, 750–754.

    CAS  Article  Google Scholar 

  87. Jenkins, M. W.; Duke, A. R.; Gu, S.; Doughman, Y.; Chiel, H. J.; Fujioka, H.; Watanabe, M.; Jansen, E. D.; Rollins, A. M. Optical pacing of the embryonic heart. Nat. Photonics2010, 4, 623–626.

    CAS  Article  Google Scholar 

  88. Smith, N. I.; Kumamoto, Y.; Iwanaga, S.; Ando, J.; Fujita, K.; Kawata, S. A femtosecond laser pacemaker for heart muscle cells. Opt. Express2008, 16, 8604–8616.

    CAS  Article  Google Scholar 

  89. Jenkins, M. W.; Wang, Y. T.; Doughman, Y. Q.; Watanabe, M.; Cheng, Y.; Rollins, A. M. Optical pacing of the adult rabbit heart. Biomed. Opt. Express2013, 4, 1626–1635.

    Article  Google Scholar 

  90. Savchenko, A.; Cherkas, V.; Liu, C.; Braun, G. B.; Kleschevnikov, A.; Miller, Y. I.; Molokanova, E. Graphene biointerfaces for optical stimulation of cells. Sci. Adv.2018, 4, eaat0351.

    Article  CAS  Google Scholar 

  91. Gentemann, L.; Kalies, S.; Coffee, M.; Meyer, H.; Ripken, T.; Heisterkamp, A.; Zweigerdt, R.; Heinemann, D. Modulation of cardiomyocyte activity using pulsed laser irradiated gold nanoparticles. Biomed. Opt. Express2017, 8, 177–192.

    CAS  Article  Google Scholar 

  92. Zhang, H.; Liu, H.; Tian, Z. Q.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P. D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol.2018, 13, 900–905.

    CAS  Article  Google Scholar 

  93. Ji, Z.; Zhang, H.; Liu, H.; Yaghi, O. M.; Yang, P. D. Cytoprotective metal-organic frameworks for anaerobic bacteria. Proc Natl Acad Sci USA2018, 115, 10582–10587.

    CAS  Article  Google Scholar 

  94. Liu, C.; Gallagher, J. J.; Sakimoto, K. K.; Nichols, E. M.; Chang, C. J.; Chang, M. C.; Yang, P. J. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett.2015, 15, 3634–3639.

    CAS  Article  Google Scholar 

  95. Sakimoto, K. K.; Wong, A. B.; Yang, P. D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science2016, 351, 74–77.

    CAS  Article  Google Scholar 

  96. Guo, J. L.; Sudstegui, M.; Sakimoto, K. K.; Moody, V. M.; Xiao, G.; Nocera, D. G.; Joshi, N. S. Light-driven fine chemical production in yeast biohybrids. Science2018, 362, 813–816.

    CAS  Article  Google Scholar 

  97. Suástegui, M.; Ng, C. Y.; Chowdhury, A.; Sun, W.; Cao, M. F.; House, E.; Maranas, C. D.; Shao, Z. Y. Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metab. Eng.2017, 42, 134–144.

    Article  CAS  Google Scholar 

  98. Dai, X. C.; Hong, G S.; Gao, T.; Lieber, C. M. Mesh nanoelectronics: Seamless integration of electronics with tissues. Acc. Chem. Res.2018, 51, 309–318.

    CAS  Article  Google Scholar 

  99. Hong, G. S.; Yang, X.; Zhou, T.; Lieber, C. M. Mesh electronics: A new paradigm for tissue-like brain probes. Curr. Opin. Neurobiol.2018, 50, 33–41.

    CAS  Article  Google Scholar 

  100. Feiner, R.; Engel, L.; Fleischer, S.; Malki, M.; Gal, I.; Shapira, A.; Shacham-Diamand, Y.; Dvir, T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat. Mater.2016, 15, 679–685.

    CAS  Article  Google Scholar 

  101. Yang, X.; Zhou, T.; Zwang, T. J.; Hong, G. S.; Zhao, Y. L.; Viveros, R. D.; Fu, T. M.; Gao, T.; Lieber, C. M. Bioinspired neuron-like electronics. Nat. Mater.2019, 18, 510–517.

    CAS  Article  Google Scholar 

  102. Xie, C.; Liu, J.; Fu, T. M.; Dai, X. C.; Zhou, W.; Lieber, C. M. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater.2015, 14, 1286–1292.

    CAS  Article  Google Scholar 

  103. Hong, G S.; Fu, T. M.; Qiao, M.; Viveros, R. D.; Yang, X.; Zhou, T.; Lee, J. M.; Park, H. G.; Sanes, J. R.; Lieber, C. M. A method for single-neuron chronic recording from the retina in awake mice. Science2018, 360, 1447–1451.

    CAS  Article  Google Scholar 

  104. Kalmykov, A.; Huang, C. J.; Bliley, J.; Shiwarski, D.; Tashman, J.; Abdullah, A.; Rastogi, S. K.; Shukla, S.; Mataev, E.; Feinberg, A. W. et al. Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci. Adv.2019, 5, eaax0729.

    Article  Google Scholar 

  105. Li, Q.; Nan, K. W.; Le Floch, P.; Lin, Z. W.; Sheng, H.; Blum, T. S.; Liu, J. Cyborg organoids: Implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology. Nano Lett.2019, 19, 5781–5789.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

B. Z. T. acknowledges a primary support from the University of Chicago Materials Research Science and Engineering Center, which is funded by the National Science Foundation under award number DMR-1420709. B. Z. T. also acknowledges support from the National Institutes of Health (No. NIH1DP2NS101488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bozhi Tian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Clayton, C. & Tian, B. Nano-enabled cellular engineering for bioelectric studies. Nano Res. 13, 1214–1227 (2020). https://doi.org/10.1007/s12274-019-2580-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2580-8

Keywords

  • cellular engineering
  • nano-bio interface
  • biological modulation
  • tissue engineering