Skip to main content

Water-induced hydrogenation of graphene/metal interfaces at room temperature: Insights on water intercalation and identification of sites for water splitting


Though it is well recognized that the space between graphene cover and the metal substrate can act as a two-dimensional (2D) nanoreactor, several issues are still unresolved, including the role of the metal substrate, the mechanisms ruling water intercalation and the identification of sites at which water is decomposed. Here, we solve these issues by means of density functional theory and high-resolution electron energy loss spectroscopy experiments carried out on graphene grown on (111)-oriented Cu foils. Specifically, we observe decomposition of H2O at room temperature with only H atoms forming bonds with graphene and with buried OH groups underneath the graphene cover. Our theoretical model discloses physicochemical mechanisms ruling the migration and decomposition of water on graphene/Cu. We discover that the edge of graphene can be easily saturated by H through decomposition of H2O, which allows H2O to migrate in the subsurface region from the decoupled edge, where H2O decomposes at room temperature. Hydrogen atoms produced by the decomposition of H2O initially form a chemical bond with graphene for the lower energy barrier compared with other routes. These findings are essential to exploit graphene/Cu interfaces in catalysis and in energy-related applications.

This is a preview of subscription content, access via your institution.


  1. [1]

    Son, G. C.; Hwang, D. K.; Jang, J.; Chee, S. S.; Cho, K.; Myoung, J. M.; Ham, M. H. Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals. Nano Res.2019, 12, 19–23.

    CAS  Google Scholar 

  2. [2]

    Nilsson, L.; Andersen, M.; Balog, R.; Lægsgaard, E.; Hofmann, P.; Besenbacher, F.; Hammer, B.; Stensgaard, I.; Hornekær, L. Graphene coatings: Probing the limits of the one atom thick protection layer. ACS Nano2012, 6, 10258–10266.

    CAS  Google Scholar 

  3. [3]

    Ran, J.; Chu, C. Q.; Pan, T.; Ding, L.; Cui, P.; Fu, C. F.; Zhang, C. L.; Xu, T. W. Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes. J. Mater. Chem. A2019, 7, 8085–8091.

    CAS  Google Scholar 

  4. [4]

    Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small2011, 7, 1876–1902.

    CAS  Google Scholar 

  5. [5]

    Martinez Gutierrez, D.; Di Pierro, A.; Pecchia, A.; Sandonas, L. M.; Gutierrez, R.; Bernal, M.; Mortazavi, B.; Cuniberti, G.; Saracco, G.; Fina, A. Thermal bridging of graphene nanosheets via covalent molecular junctions: A non-equilibrium Green’s functions-density functional tight-binding study. Nano Res.2019, 12, 791–799.

    CAS  Google Scholar 

  6. [6]

    Xia, K. L.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Zhang Y. Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res.2018, 11, 1124–1134.

    CAS  Google Scholar 

  7. [7]

    Politano, A.; Chiarello, G. Probing the Young’s modulus and Poisson’s ratio in graphene/metal interfaces and graphite: A comparative study. Nano Res.2015, 8, 1847–1856.

    CAS  Google Scholar 

  8. [8]

    Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science2012, 335, 442–444.

    CAS  Google Scholar 

  9. [9]

    Feng, X. F.; Maier, S.; Salmeron, M. Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc.2012, 134, 5662–5668.

    CAS  Google Scholar 

  10. [10]

    Fu, Q.; Bao, X. H. Catalysis on a metal surface with a graphitic cover. Chin. J. Catal.2015, 36, 517–519.

    CAS  Google Scholar 

  11. [11]

    Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem., Int. Ed.2012, 51, 4856–4859.

    CAS  Google Scholar 

  12. [12]

    Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol.2016, 11, 218–230.

    CAS  Google Scholar 

  13. [13]

    Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc.2010, 132, 8175–8179.

    CAS  Google Scholar 

  14. [14]

    Gao, L. J.; Fu, Q.; Li, J. M.; Qu, Z. P.; Bao, X. H. Enhanced CO oxidation reaction over Pt nanoparticles covered with ultrathin graphitic layers. Carbon2016, 101, 324–330.

    CAS  Google Scholar 

  15. [15]

    Ferrighi, L.; Di Valentin, C. Oxygen reactivity on pure and B-doped graphene over crystalline Cu(111). Effects of the dopant and of the metal support. Surf. Sci.2015, 634, 68–75.

    CAS  Google Scholar 

  16. [16]

    Zhang, Y. H.; Fu, Q.; Cui, Y.; Mu, R. T.; Jin, L.; Bao, X. H. Enhanced reactivity of graphene wrinkles and their function as nanosized gas inlets for reactions under graphene. Phys. Chem. Chem. Phys.2013, 15, 19042–19048.

    CAS  Google Scholar 

  17. [17]

    Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol.2013, 8, 594–601.

    CAS  Google Scholar 

  18. [18]

    Politano, A.; Cattelan, M.; Boukhvalov, D. W.; Campi, D.; Cupolillo, A.; Agnoli, S.; Apostol, N. G.; Lacovig, P.; Lizzit, S.; Farías, D. et al. Unveiling the mechanisms leading to H2 production promoted by water decomposition on epitaxial graphene at room temperature. ACS Nano2016, 10, 4543–4549.

    CAS  Google Scholar 

  19. [19]

    Politano, A.; Marino, A. R.; Formoso, V.; Chiarello, G. Water adsorption on graphene/Pt(111) at room temperature: A vibrational investigation. AIP Adv.2010, 1, 042130.

    Google Scholar 

  20. [20]

    Politano, A.; Chiarello, G. Periodically rippled graphene on Ru(0001): A template for site-selective adsorption of hydrogen dimers via water splitting and hydrogen-spillover at room temperature. Carbon2013, 61, 412–417.

    CAS  Google Scholar 

  21. [21]

    Zhao, W.; Carey, S. J.; Mao, Z. T.; Campbell, C. T. Adsorbed hydroxyl and water on Ni(111): Heats of formation by calorimetry. ACS Catal.2018, 8, 1485–1489.

    CAS  Google Scholar 

  22. [22]

    Lew, W.; Crowe, M. C.; Karp, E.; Lytken, O.; Farmer, J. A.; Árnadóttir, L.; Schoenbaum, C.; Campbell, C. T. The energy of adsorbed hydroxyl on Pt(111) by microcalorimetry. J. Phys. Chem. C2011, 115, 11586–11594.

    CAS  Google Scholar 

  23. [23]

    Fisher, G. B.; Sexton, B. A. Identification of an adsorbed hydroxyl species on the Pt(111) surface. Phys. Rev. Lett.1980, 44, 683–686.

    CAS  Google Scholar 

  24. [24]

    Revilla-López, G.; Blonski, P.; López, N. Free energy assessment of water structures and their dissociation on Ru(0001). J. Phys. Chem. C2015, 119, 5478–5483.

    Google Scholar 

  25. [25]

    Jiang, B.; Ren, X. F.; Xie, D. Q.; Guo, H. Enhancing dissociative chemisorption of H2O on Cu(111) via vibrational excitation. Proc. Natl. Acad. Sci. USA2012, 109, 10224–10227.

    CAS  Google Scholar 

  26. [26]

    Nie, S.; Wofford, J. M.; Bartelt, N. C.; Dubon, O. D.; McCarty, K. F. Origin of the mosaicity in graphene grown on Cu(111). Phys. Rev. B2011, 84, 155425.

    Google Scholar 

  27. [27]

    Yu, H. K.; Balasubramanian, K.; Kim, K.; Lee, J. L.; Maiti, M.; Ropers, C.; Krieg, J.; Kern, K.; Wodtke, A. M. Chemical vapor deposition of graphene on a “peeled-off” epitaxial Cu(111) foil: A simple approach to improved properties. ACS Nano2014, 8, 8636–8643.

    CAS  Google Scholar 

  28. [28]

    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter.2009, 21, 395502.

    Google Scholar 

  29. [29]

    Zhang, X. Y.; Wang, L.; Xin, J.; Yakobson, B. I.; Ding, F. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J. Am. Chem. Soc.2014, 136, 3040–3047.

    CAS  Google Scholar 

  30. [30]

    Chen, W.; Cui, P.; Zhu, W. G.; Kaxiras, E.; Gao. Y. F.; Zhang, Z. Y. Atomistic mechanisms for bilayer growth of graphene on metal substrates. Phys. Rev. B2015, 91, 045408.

    Google Scholar 

  31. [31]

    Wu, P.; Zhai, X. F.; Li, Z. Y.; Yang, J. L. Bilayer graphene growth via a penetration mechanism. J. Phys. Chem. C2014, 118, 6201–6206.

    CAS  Google Scholar 

  32. [32]

    Wong, K.; Kang, S. J.; Bielawski, C. W.; Ruoff, R. S.; Kwak, S. K. First-principles study of the role of O2 and H2O in the decoupling of graphene on Cu(111). J. Am. Chem. Soc.2016, 138, 10986–10994.

    CAS  Google Scholar 

  33. [33]

    Shu, H. B.; Chen, X. S.; Tao, X. M.; Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano2012, 6, 3243–3250.

    CAS  Google Scholar 

  34. [34]

    Politano, A.; Yu, H. K.; Farías, D.; Chiarello, G. Multiple acoustic surface plasmons in graphene/Cu(111) contacts. Phys. Rev. B2018, 97, 035414.

    CAS  Google Scholar 

  35. [35]

    Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 2002, 46, 1–308.

    CAS  Google Scholar 

  36. [36]

    Ibach, H.; Mills, D. L. Electron Energy Loss Spectroscopy and Surface Vibrations; Academic Press: New York, 1982.

    Google Scholar 

  37. [37]

    Yamamoto, S.; Andersson, K.; Bluhm, H.; Ketteler, G.; Starr, D. E.; Schiros, T.; Ogasawara, H.; Pettersson, L. G. M.; Salmeron, M.; Nilsson, A. Hydroxyl-induced wetting of metals by water at near-ambient conditions. J. Phys. Chem. C2007, 111, 7848–7850.

    CAS  Google Scholar 

  38. [38]

    Tian, J. F.; Cao, H. L.; Wu, W.; Yu, Q. K.; Chen, Y. P. Direct imaging of graphene edges: Atomic structure and electronic scattering. Nano Lett.2011, 11, 3663–3668.

    CAS  Google Scholar 

  39. [39]

    Phark, S. H.; Borme, J.; Vanegas, A. L.; Corbetta, M.; Sander, D.; Kirschner, J. Atomic structure and spectroscopy of graphene edges on Ir(111). Phys. Rev. B2012, 86, 045442.

    Google Scholar 

  40. [40]

    Nilsson, L.; Andersen, M.; Hammer, B.; Stensgaard, I.; Hornekær, L. Breakdown of the graphene coating effect under sequential exposure to O2 and H2S. J. Phys. Chem. Lett.2013, 4, 3774–3774.

    Google Scholar 

  41. [41]

    Tang, Q. L.; Chen, Z. X. Density functional slab model studies of water adsorption on flat and stepped Cu surfaces. Surf. Sci.2007, 601, 954–964.

    CAS  Google Scholar 

  42. [42]

    Yang, L.; Li, X. Y.; Zhang, G. Z.; Cui, P.; Wang, X. J.; Jiang, X.; Zhao, J.; Luo, Yi.; Jiang, J. Combining photocatalytic hydrogen generation and capsule storage in graphene based sandwich structures. Nat. Commun.2017, 8, 16049.

    CAS  Google Scholar 

  43. [43]

    Young, D. C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems; Wiley-Interscience: New York, 2001.

    Google Scholar 

  44. [44]

    Wang, X. J.; Zhang, G. Z.; Wang, Z. W.; Yang, L.; Li, X. Y.; Jiang, J.; Luo, Y. Metal-enhanced hydrogenation of graphene with atomic pattern. Carbon2019, 143, 700–705.

    CAS  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Nos. 21676232 and 21673206). A. P. thanks Danil W. Boukhvalov for scientific discussions and Vito Fabio for technical support for the HREELS experiments. D. F. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the Maria de Maeztu Programme for Units of Excellence in R&D (No. MDM-2014-0377) and MINECO project MAT2015-65356-C3-3-R.

Author information



Corresponding authors

Correspondence to Yingchun Liu or Antonio Politano.

Electronic Supplementary Material


Water-induced hydrogenation of graphene/metal interfaces at room temperature: Insights on water intercalation and identification of sites for water splitting

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, G., Wang, Q., Yu, H.K. et al. Water-induced hydrogenation of graphene/metal interfaces at room temperature: Insights on water intercalation and identification of sites for water splitting. Nano Res. 12, 3101–3108 (2019).

Download citation


  • graphene/metal interfaces
  • intercalation
  • water splitting
  • room temperature