Abstract
Though it is well recognized that the space between graphene cover and the metal substrate can act as a two-dimensional (2D) nanoreactor, several issues are still unresolved, including the role of the metal substrate, the mechanisms ruling water intercalation and the identification of sites at which water is decomposed. Here, we solve these issues by means of density functional theory and high-resolution electron energy loss spectroscopy experiments carried out on graphene grown on (111)-oriented Cu foils. Specifically, we observe decomposition of H2O at room temperature with only H atoms forming bonds with graphene and with buried OH groups underneath the graphene cover. Our theoretical model discloses physicochemical mechanisms ruling the migration and decomposition of water on graphene/Cu. We discover that the edge of graphene can be easily saturated by H through decomposition of H2O, which allows H2O to migrate in the subsurface region from the decoupled edge, where H2O decomposes at room temperature. Hydrogen atoms produced by the decomposition of H2O initially form a chemical bond with graphene for the lower energy barrier compared with other routes. These findings are essential to exploit graphene/Cu interfaces in catalysis and in energy-related applications.
Similar content being viewed by others
References
Son, G. C.; Hwang, D. K.; Jang, J.; Chee, S. S.; Cho, K.; Myoung, J. M.; Ham, M. H. Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals. Nano Res.2019, 12, 19–23.
Nilsson, L.; Andersen, M.; Balog, R.; Lægsgaard, E.; Hofmann, P.; Besenbacher, F.; Hammer, B.; Stensgaard, I.; Hornekær, L. Graphene coatings: Probing the limits of the one atom thick protection layer. ACS Nano2012, 6, 10258–10266.
Ran, J.; Chu, C. Q.; Pan, T.; Ding, L.; Cui, P.; Fu, C. F.; Zhang, C. L.; Xu, T. W. Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes. J. Mater. Chem. A2019, 7, 8085–8091.
Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small2011, 7, 1876–1902.
Martinez Gutierrez, D.; Di Pierro, A.; Pecchia, A.; Sandonas, L. M.; Gutierrez, R.; Bernal, M.; Mortazavi, B.; Cuniberti, G.; Saracco, G.; Fina, A. Thermal bridging of graphene nanosheets via covalent molecular junctions: A non-equilibrium Green’s functions-density functional tight-binding study. Nano Res.2019, 12, 791–799.
Xia, K. L.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Zhang Y. Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res.2018, 11, 1124–1134.
Politano, A.; Chiarello, G. Probing the Young’s modulus and Poisson’s ratio in graphene/metal interfaces and graphite: A comparative study. Nano Res.2015, 8, 1847–1856.
Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science2012, 335, 442–444.
Feng, X. F.; Maier, S.; Salmeron, M. Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc.2012, 134, 5662–5668.
Fu, Q.; Bao, X. H. Catalysis on a metal surface with a graphitic cover. Chin. J. Catal.2015, 36, 517–519.
Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem., Int. Ed.2012, 51, 4856–4859.
Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol.2016, 11, 218–230.
Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc.2010, 132, 8175–8179.
Gao, L. J.; Fu, Q.; Li, J. M.; Qu, Z. P.; Bao, X. H. Enhanced CO oxidation reaction over Pt nanoparticles covered with ultrathin graphitic layers. Carbon2016, 101, 324–330.
Ferrighi, L.; Di Valentin, C. Oxygen reactivity on pure and B-doped graphene over crystalline Cu(111). Effects of the dopant and of the metal support. Surf. Sci.2015, 634, 68–75.
Zhang, Y. H.; Fu, Q.; Cui, Y.; Mu, R. T.; Jin, L.; Bao, X. H. Enhanced reactivity of graphene wrinkles and their function as nanosized gas inlets for reactions under graphene. Phys. Chem. Chem. Phys.2013, 15, 19042–19048.
Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol.2013, 8, 594–601.
Politano, A.; Cattelan, M.; Boukhvalov, D. W.; Campi, D.; Cupolillo, A.; Agnoli, S.; Apostol, N. G.; Lacovig, P.; Lizzit, S.; Farías, D. et al. Unveiling the mechanisms leading to H2 production promoted by water decomposition on epitaxial graphene at room temperature. ACS Nano2016, 10, 4543–4549.
Politano, A.; Marino, A. R.; Formoso, V.; Chiarello, G. Water adsorption on graphene/Pt(111) at room temperature: A vibrational investigation. AIP Adv.2010, 1, 042130.
Politano, A.; Chiarello, G. Periodically rippled graphene on Ru(0001): A template for site-selective adsorption of hydrogen dimers via water splitting and hydrogen-spillover at room temperature. Carbon2013, 61, 412–417.
Zhao, W.; Carey, S. J.; Mao, Z. T.; Campbell, C. T. Adsorbed hydroxyl and water on Ni(111): Heats of formation by calorimetry. ACS Catal.2018, 8, 1485–1489.
Lew, W.; Crowe, M. C.; Karp, E.; Lytken, O.; Farmer, J. A.; Árnadóttir, L.; Schoenbaum, C.; Campbell, C. T. The energy of adsorbed hydroxyl on Pt(111) by microcalorimetry. J. Phys. Chem. C2011, 115, 11586–11594.
Fisher, G. B.; Sexton, B. A. Identification of an adsorbed hydroxyl species on the Pt(111) surface. Phys. Rev. Lett.1980, 44, 683–686.
Revilla-López, G.; Blonski, P.; López, N. Free energy assessment of water structures and their dissociation on Ru(0001). J. Phys. Chem. C2015, 119, 5478–5483.
Jiang, B.; Ren, X. F.; Xie, D. Q.; Guo, H. Enhancing dissociative chemisorption of H2O on Cu(111) via vibrational excitation. Proc. Natl. Acad. Sci. USA2012, 109, 10224–10227.
Nie, S.; Wofford, J. M.; Bartelt, N. C.; Dubon, O. D.; McCarty, K. F. Origin of the mosaicity in graphene grown on Cu(111). Phys. Rev. B2011, 84, 155425.
Yu, H. K.; Balasubramanian, K.; Kim, K.; Lee, J. L.; Maiti, M.; Ropers, C.; Krieg, J.; Kern, K.; Wodtke, A. M. Chemical vapor deposition of graphene on a “peeled-off” epitaxial Cu(111) foil: A simple approach to improved properties. ACS Nano2014, 8, 8636–8643.
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter.2009, 21, 395502.
Zhang, X. Y.; Wang, L.; Xin, J.; Yakobson, B. I.; Ding, F. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J. Am. Chem. Soc.2014, 136, 3040–3047.
Chen, W.; Cui, P.; Zhu, W. G.; Kaxiras, E.; Gao. Y. F.; Zhang, Z. Y. Atomistic mechanisms for bilayer growth of graphene on metal substrates. Phys. Rev. B2015, 91, 045408.
Wu, P.; Zhai, X. F.; Li, Z. Y.; Yang, J. L. Bilayer graphene growth via a penetration mechanism. J. Phys. Chem. C2014, 118, 6201–6206.
Wong, K.; Kang, S. J.; Bielawski, C. W.; Ruoff, R. S.; Kwak, S. K. First-principles study of the role of O2 and H2O in the decoupling of graphene on Cu(111). J. Am. Chem. Soc.2016, 138, 10986–10994.
Shu, H. B.; Chen, X. S.; Tao, X. M.; Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano2012, 6, 3243–3250.
Politano, A.; Yu, H. K.; Farías, D.; Chiarello, G. Multiple acoustic surface plasmons in graphene/Cu(111) contacts. Phys. Rev. B2018, 97, 035414.
Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 2002, 46, 1–308.
Ibach, H.; Mills, D. L. Electron Energy Loss Spectroscopy and Surface Vibrations; Academic Press: New York, 1982.
Yamamoto, S.; Andersson, K.; Bluhm, H.; Ketteler, G.; Starr, D. E.; Schiros, T.; Ogasawara, H.; Pettersson, L. G. M.; Salmeron, M.; Nilsson, A. Hydroxyl-induced wetting of metals by water at near-ambient conditions. J. Phys. Chem. C2007, 111, 7848–7850.
Tian, J. F.; Cao, H. L.; Wu, W.; Yu, Q. K.; Chen, Y. P. Direct imaging of graphene edges: Atomic structure and electronic scattering. Nano Lett.2011, 11, 3663–3668.
Phark, S. H.; Borme, J.; Vanegas, A. L.; Corbetta, M.; Sander, D.; Kirschner, J. Atomic structure and spectroscopy of graphene edges on Ir(111). Phys. Rev. B2012, 86, 045442.
Nilsson, L.; Andersen, M.; Hammer, B.; Stensgaard, I.; Hornekær, L. Breakdown of the graphene coating effect under sequential exposure to O2 and H2S. J. Phys. Chem. Lett.2013, 4, 3774–3774.
Tang, Q. L.; Chen, Z. X. Density functional slab model studies of water adsorption on flat and stepped Cu surfaces. Surf. Sci.2007, 601, 954–964.
Yang, L.; Li, X. Y.; Zhang, G. Z.; Cui, P.; Wang, X. J.; Jiang, X.; Zhao, J.; Luo, Yi.; Jiang, J. Combining photocatalytic hydrogen generation and capsule storage in graphene based sandwich structures. Nat. Commun.2017, 8, 16049.
Young, D. C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems; Wiley-Interscience: New York, 2001.
Wang, X. J.; Zhang, G. Z.; Wang, Z. W.; Yang, L.; Li, X. Y.; Jiang, J.; Luo, Y. Metal-enhanced hydrogenation of graphene with atomic pattern. Carbon2019, 143, 700–705.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Nos. 21676232 and 21673206). A. P. thanks Danil W. Boukhvalov for scientific discussions and Vito Fabio for technical support for the HREELS experiments. D. F. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the Maria de Maeztu Programme for Units of Excellence in R&D (No. MDM-2014-0377) and MINECO project MAT2015-65356-C3-3-R.
Author information
Authors and Affiliations
Corresponding authors
Electronic Supplementary Material
12274_2019_2561_MOESM1_ESM.pdf
Water-induced hydrogenation of graphene/metal interfaces at room temperature: Insights on water intercalation and identification of sites for water splitting
Rights and permissions
About this article
Cite this article
He, G., Wang, Q., Yu, H.K. et al. Water-induced hydrogenation of graphene/metal interfaces at room temperature: Insights on water intercalation and identification of sites for water splitting. Nano Res. 12, 3101–3108 (2019). https://doi.org/10.1007/s12274-019-2561-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-019-2561-y