Skip to main content

Drain-engineered carbon-nanotube-film field-effect transistors with high performance and ultra-low current leakage


A small bandgap and light carrier effective mass (m0) lead to obvious ambipolar transport behavior in carbon nanotube (CNT) field-effect transistors (FETs), including a high off-state current and severe degradation of the subthreshold swing (SS) with increasing drain bias voltage. We demonstrate a drain-engineered method to cope with this common problem in CNT-film FETs with a sub-µm channel length, i.e., suppressing the ambipolar behavior while maintaining high on-state performance by adopting a feedback gate (FBG) structure to extend the drain region from the CNT/metal contact to the proximate CNT channels to suppress the tunneling current. Sub-400-nm-channel-length FETs with a FBG structure statistically present a high on/off ratio of up to 104 and a sub-200 mV/dec SS under a high drain bias of up to −2 V while maintaining a high on-state current of 0.2 mA/µm or a peak transconductance of 0.2 mS/µm. By lowering the supply voltage to 1.5 V, FBG CNT-film FETs can meet the requirement of standard-performance ultra large scale integrated circuits (ULSICs). Therefore, the introduction of the drain engineering structure enables applications of CNT-film-based FETs in ULSICs and could also be widely extended to other small-bandgap semiconductor-based FETs for an improvement in their off-state property.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. [1]

    Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Jin, B.; Kavalieros, J.; Majumdar, A.; Metz, M.; Radosavljevic, M. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol.2005, 4, 153–158.

    Article  Google Scholar 

  2. [2]

    Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science2015, 349, aab2750.

    Article  Google Scholar 

  3. [3]

    Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol.2007, 2, 605–615.

    CAS  Article  Google Scholar 

  4. [4]

    Cavin, R. K.; Lugli, P.; Zhirnov, V. V. Science and engineering beyond Moore’s law. Proc. IEEE2012, 100, 1720–1749.

    Article  Google Scholar 

  5. [5]

    Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano2014, 8, 8730–8745.

    CAS  Article  Google Scholar 

  6. [6]

    Choi, S. J.; Bennett, P.; Takei, K.; Wang, C.; Lo, C. C.; Javey, A.; Bokor, J. Short-channel transistors constructed with solution-processed carbon nanotubes. ACS Nano2012, 7, 798–803.

    Article  Google Scholar 

  7. [7]

    Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv.2016, 2, e1601240.

    Article  Google Scholar 

  8. [8]

    Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science2017, 355, 271–276.

    CAS  Article  Google Scholar 

  9. [9]

    Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science2017, 356, 1369–1372.

    CAS  Article  Google Scholar 

  10. [10]

    Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett.2012, 12, 758–762.

    CAS  Article  Google Scholar 

  11. [11]

    Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol.2010, 5, 858–862.

    CAS  Article  Google Scholar 

  12. [12]

    Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol.2006, 1, 60–65.

    CAS  Article  Google Scholar 

  13. [13]

    Asada, Y.; Miyata, Y.; Ohno, Y.; Kitaura, R.; Sugai, T.; Mizutani, T.; Shinohara, H. High-performance thin-film transistors with DNA-assisted solution processing of isolated single-walled carbon nanotubes. Adv. Mater.2010, 22, 2698–2701.

    CAS  Article  Google Scholar 

  14. [14]

    Zhong, D. L.; Zhang, Z. Y.; Ding, L.; Han, J.; Xiao, M. M.; Si, J.; Xu, L.; Qiu, C. G.; Peng, L. M. Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron.2018, 1, 40–45.

    CAS  Article  Google Scholar 

  15. [15]

    Liu, L. J.; Ding, L.; Zhong, D. L.; Han, J.; Wang, S.; Meng, Q. H.; Qiu, C. G.; Zhang, X. Y.; Peng, L. M.; Zhang, Z. Y. Carbon nanotube complementary gigahertz integrated circuits and their applications on wireless sensor interface systems. ACS Nano2019, 13, 2526–2535.

    CAS  Google Scholar 

  16. [16]

    Lind, E.; Persson, A. I.; Samuelson, L.; Wernersson, L. E. Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. Nano Lett.2006, 6, 1842–1846.

    CAS  Article  Google Scholar 

  17. [17]

    Usuda, K.; Kamata, Y.; Kamimuta, Y.; Mori, T.; Koike, M.; Tezuka, T. High-performance poly-Ge short-channel metal-oxide-semiconductor field-effect transistors formed on SiO2 layer by flash lamp annealing. Appl. Phys. Express2014, 7, 056501.

    Article  Google Scholar 

  18. [18]

    Zhang, Z. Y.; Wang, S.; Ding, L.; Liang, X. L.; Pei, T.; Shen, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y. et al. Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett.2008, 8, 3696–3701.

    CAS  Article  Google Scholar 

  19. [19]

    Ding, L.; Wang, S.; Zhang, Z. Y.; Zeng, Q. S.; Wang, Z. X.; Pei, T.; Yang, L. J.; Liang, X. L.; Shen, J.; Chen, Q. et al. Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: Scaling and comparison with Sc-contacted devices. Nano Lett.2009, 9, 4209–4214.

    CAS  Article  Google Scholar 

  20. [20]

    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature2003, 424, 654–657.

    CAS  Article  Google Scholar 

  21. [21]

    Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K. K.; Tersoff, J.; Avouris. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett.2001, 87, 256805.

    CAS  Article  Google Scholar 

  22. [22]

    Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett.2002, 89, 106801.

    CAS  Article  Google Scholar 

  23. [23]

    Appenzeller, J.; Knoch, J.; Derycke, V.; Martel, R.; Wind, S.; Avouris. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett.2002, 89, 126801.

    CAS  Article  Google Scholar 

  24. [24]

    Ogura, S.; Tsang, P. J.; Walker, W. W.; Critchlow, D. L.; Shepard, J. F. Design and characteristics of the lightly doped drain-source (LDD) insulated gate field-effect transistor. IEEE J. Solid-State Circuits1980, 15, 424–432.

    Article  Google Scholar 

  25. [25]

    Wu, Y. C.; Chang, T. C.; Chang, C. Y.; Chen, C. S.; Tu, C. H.; Liu, P. T.; Zan, H. W.; Tai, Y. H. High-performance polycrystalline silicon thin-film transistor with multiple nanowire channels and lightly doped drain structure. Appl. Phys. Lett.2004, 84, 3822–3824.

    CAS  Article  Google Scholar 

  26. [26]

    Hsu, F. C.; Grinolds, H. Structure-enhanced MOSFET degradation due to hot-electron injection. IEEE Electron Device Lett.1984, 5, 71–74.

    CAS  Article  Google Scholar 

  27. [27]

    Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D. W.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics. Nano Lett.2004, 4, 447–450.

    CAS  Article  Google Scholar 

  28. [28]

    Peng, L. M.; Zhang, Z.; Wang, S. Carbon nanotube electronics: recent advances. Mater. Today2014, 17, 433–442.

    CAS  Article  Google Scholar 

  29. [29]

    Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett.2007, 7, 3603–3607.

    CAS  Article  Google Scholar 

  30. [30]

    Zhang, Z. Y.; Wang, S.; Wang, Z. X.; Ding, L.; Pei, T.; Hu, Z. D.; Liang, X. L.; Chen, Q.; Li, Y.; Peng, L. M. Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano2009, 3, 3781–3787.

    CAS  Article  Google Scholar 

  31. [31]

    Liu, L. J.; Qiu, C. G.; Zhong, D. L.; Si, J.; Zhang, Z. Y.; Peng, L. M. Scaling down contact length in complementary carbon nanotube field-effect transistors. Nanoscale2017, 9, 9615–9621.

    CAS  Article  Google Scholar 

  32. [32]

    Suriyasena Liyanage, L.; Xu, X. Q.; Pitner, G.; Bao, Z. N.; Wong, H. S. P. VLSI-compatible carbon nanotube doping technique with low work-function metal oxides. Nano Lett.2014, 14, 1884–1890.

    CAS  Article  Google Scholar 

  33. [33]

    Qiu, C. G.; Zhang, Z. Y.; Zhong, D. L.; Si, J.; Yang, Y. J.; Peng, L. M. Carbon nanotube feedback-gate field-effect transistor: Suppressing current leakage and increasing on/off ratio. ACS Nano2015, 9, 969–977.

    CAS  Article  Google Scholar 

  34. [34]

    Zhao, C. Y.; Zhong, D. L.; Han, J.; Liu, L. J.; Zhang, Z. Y.; Peng, L. M. Exploring the performance limit of carbon nanotube network film field — effect transistors for digital integrated circuit applications. Adv. Funct. Mater.2019, 29, 1808574.

    Article  Google Scholar 

  35. [35]

    Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature2017, 543, 234–238.

    CAS  Article  Google Scholar 

  36. [36]

    Mueller, T.; Kinoshita, M.; Steiner, M.; Perebeinos, V.; Bol, A. A.; Farmer, D. B.; Avouris, P. Efficient narrow-band light emission from a single carbon nanotube p-n diode. Nat. Nanotechnol.2010, 5, 27–31.

    CAS  Article  Google Scholar 

  37. [37]

    Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol.2014, 9, 268–272.

    CAS  Article  Google Scholar 

  38. [38]

    Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res.2010, 3, 147–169.

    CAS  Article  Google Scholar 

  39. [39]

    Jan, C. H.; Agostinelli, M.; Buehler, M.; Chen, Z. P.; Choi, S. J.; Curello, G.; Deshpande, H.; Gannavaram, S.; Hafez, W.; Jalan, U. et al. A 32nm SoC platform technology with 2nd generation high-k/metal gate transistors optimized for ultra low power, high performance, and high density product applications. In Proceedings of 2009 IEEE International Electron Devices Meeting, Baltimore, MD, USA, 2009, pp 1–4.

Download references


This work was supported by the National Key Research and Development Program (No. 2016YFA0201901), the National Natural Science Foundation of China (Nos. 61888102, 61621061, and 61427901), and the Beijing Municipal Science and Technology Commission (No. D171100006617002 1-2).

Author information



Corresponding authors

Correspondence to Lianmao Peng or Zhiyong Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhao, C., Ding, L. et al. Drain-engineered carbon-nanotube-film field-effect transistors with high performance and ultra-low current leakage. Nano Res. 13, 1875–1881 (2020).

Download citation


  • carbon nanotube
  • field-effect transistor
  • current leakage
  • subthreshold swing
  • small bandgap semiconductor