Skip to main content

Superior wide-temperature lithium storage in a porous cobalt vanadate

Abstract

Lithium ion batteries (LIBs) that can be operated under extended temperature range hold significant application potentials. Here in this work, we successfully synthesized Co2V2O7 electrode with rich porosity from a facile hydrothermal and combustion process. When applied as anode for LIBs, the electrode displayed excellent stability and rate performance in a wide range of temperatures. Remarkably, a stable capacity of 206 mAh·g−1 was retained after cycling at a high current density of 10 A·g−1 for 6,000 cycles at room temperature (25 °C). And even when tested under extreme conditions, i.e., −20 and 60 °C, the battery still maintained its remarkable stability and rate capability. For example, at −20 °C, a capacity of 633 mAh·g−1 was retained after 50 cycles at 0.1 Ag−1; and even after cycling at 60 °C at 10 A·g−1 for 1,000 cycles, a reversible capacity of 885 mAh·g−1 can be achieved. We believe the development of such electrode material will facilitate progress of the next-generation LIBs with wide operating windows.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Wang, Z. L.; Xu, D.; Wang, L. M.; Zhang, X. B. Facile and low-cost synthesis of large-area pure V2O5 nanosheets for high-capacity and high-rate lithium storage over a wide temperature range. ChemPlusChem2012, 77, 124–128.

    CAS  Google Scholar 

  2. [2]

    Xu, G. J.; Huang, S. Q.; Cui, Z. L.; Du, X. F.; Wang, X.; Lu, D.; Shangguan, X. H.; Ma, J.; Han, P. X.; Zhou, X. H. et al. Functional additives assisted ester-carbonate electrolyte enables wide temperature operation of a high-voltage (5 V-Class) Li-ion battery. J. Power Sources2019, 416, 29–36.

    CAS  Google Scholar 

  3. [3]

    Kafle, J.; Harris, J.; Chang, J.; Koshina, J.; Boone, D.; Qu, D. Y. Development of wide temperature electrolyte for graphite/LiNiMnCoO2 Li-ion cells: High throughput screening. J. Power Sources2018, 392, 60–68.

    CAS  Google Scholar 

  4. [4]

    Wang, J.; Nie, P.; Xu, G. Y.; Jiang, J. M.; Wu, Y. T.; Fu, R. R.; Dou, H.; Zhang, X. G. High-voltage LiNi0.45Cr0.1Mn1.45O4 cathode with superlong cycle performance for wide temperature lithium-ion batteries. Adv. Funct. Mater.2018, 28, 1704808.

    Google Scholar 

  5. [5]

    Rodrigues, M. T. F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F. N.; Kato, K.; Joyner, J.; Ajayan, P. M. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy2017, 2, 17108.

    CAS  Google Scholar 

  6. [6]

    Lian, Q. W.; Zhou, G; Liu, J. T.; Wu, C.; Wei, W. F.; Chen, L. B.; Li, C. C. Extrinsic pseudocapacitve Li-ion storage of SnS anode via lithiation-induced structural optimization on cycling. J. Power Sources2017, 366, 1–8.

    CAS  Google Scholar 

  7. [7]

    Chen, D.; Tan, H. T.; Rui, X. H.; Zhang, Q.; Feng, Y. Z.; Geng, H. B.; Li, C. C.; Huang, S. M.; Yu, Y. Oxyvanite V3O5: A new intercalation-type anode for lithium-ion battery. InfoMat2019, 1, 251–259.

    CAS  Google Scholar 

  8. [8]

    Li, H.; Peng, L.; Wu, D. B.; Wu, J.; Zhu, Y. J.; Hu, X. L. Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries. Adv. Energy Mater.2019, 9, 1802930.

    Google Scholar 

  9. [9]

    Tarascon, J. M.; Gozdz, A.; Schmutz, C.; Shokoohi, F.; Warren, P. Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ionics1996, 86, 49–54.

    Google Scholar 

  10. [10]

    Aurbach, D.; Talyosef, Y.; Markovsky, B.; Markevich, E.; Zinigrad, E.; Asraf, L.; Gnanaraj, J. S.; Kim, H. J. Design of electrolyte solutions for Li and Li-ion batteries: A review. Electrochim. Acta2004, 50, 247–254.

    CAS  Google Scholar 

  11. [11]

    Jiang, Y.; Liu, Z. Y.; Matsuhisa, N.; Qi, D. P.; Leow, W. R.; Yang, H.; Yu, J. C.; Chen, G; Liu, Y. Q.; Wan, C. J. et al. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv. Mater.2018, 30, 1706589.

    Google Scholar 

  12. [12]

    Liu, F.; Chen, Z. X.; Fang, G. Z.; Wang, Z. Q.; Cai, Y. S.; Tang, B. Y.; Zhou, J.; Liang, S. Q. V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett.2019, 11, 25.

    CAS  Google Scholar 

  13. [13]

    Ji, W. X.; Wang, F.; Liu, D. T.; Qian, J. F.; Cao, Y. L.; Chen, Z. X.; Yang, H. X.; Ai, X. P. Building thermally stable Li-ion batteries using a temperature-responsive cathode. J. Mater. Chem. A2016, 4, 11239–11246.

    CAS  Google Scholar 

  14. [14]

    Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci.2019, in press, DOI: https://doi.org/10.1039/C9EE02526J.

  15. [15]

    Yang, Y. Q.; Tang, Y.; Fang, G. Z.; Shan, L. T.; Guo, J. S.; Zhang, W. Y.; Wang, C.; Wang, L. B.; Zhou, J.; Liang, S. Q. Li+ intercalated V2O5nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci.2018, 11, 3157–3162.

    CAS  Google Scholar 

  16. [16]

    Zhang, S. S.; Xu, K.; Jow, T. R. A new approach toward improved low temperature performance of Li-ion battery. Electrochem. Commun.2002, 4, 928–932.

    CAS  Google Scholar 

  17. [17]

    Qin, R. H.; Wei, Y. Q.; Zhai, T. Y.; Li, H. Q. LISICON structured Li3V2(PO4)3 with high rate and ultralong life for low-temperature lithium-ion batteries. J. Mater. Chem. A2018, 6, 9737–9746.

    CAS  Google Scholar 

  18. [18]

    Liu, Y.; Yang, B. C.; Dong, X. L.; Wang, Y. G.; Xia, Y. Y. A simple prelithiation strategy to build a high-rate and long-life lithium-ion battery with improved low-temperature performance. Angew. Chem., Int. Ed.2017, 56, 16606–16610.

    CAS  Google Scholar 

  19. [19]

    Chen, X. Z.; He, W. J.; Ding, L. X.; Wang, S. Q.; Wang, H. H. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci.2019, 12, 938–944.

    CAS  Google Scholar 

  20. [20]

    Jiang, Z. Y.; Xie, H. Q.; Wang, S. Q.; Song, X.; Yao, X.; Wang, H. H. Perovskite membranes with vertically aligned microchannels for all-solidstate lithium batteries. Adv. Energy Mater.2018, 8, 1801433.

    Google Scholar 

  21. [21]

    Xiang, H. F.; Chen, J. J.; Li, Z.; Wang, H. H. An inorganic membrane as a separator for lithium-ion battery. J. Power Sources2011, 196, 8651–8655.

    CAS  Google Scholar 

  22. [22]

    Yin, Z. G.; Qin, J. W.; Wang, W.; Cao, M. H. Rationally designed hollow precursor-derived Zn3V2O8 nanocages as a high-performance anode material for lithium-ion batteries. Nano Energy2017, 31, 367–376.

    CAS  Google Scholar 

  23. [23]

    Zhou, C. S.; Lu, J. M.; Hu, M. X.; Huang, Z. H.; Kang, F. Y.; Lv, R. T. High areal capacity Li-ion storage of binder-free metal vanadate/carbon hybrid anode by ion-exchange reaction. Small2018, 14, 1801832.

    Google Scholar 

  24. [24]

    Lu, S. Y.; Zhu, T. X.; Li, Z. Y.; Pang, Y. C.; Shi, L.; Ding, S. J.; Gao, G. X. Ordered mesoporous carbon supported Ni3V2O8 composites for lithium-ion batteries with long-term and high-rate performance. J. Mater. Chem. A2018, 6, 7005–7013.

    CAS  Google Scholar 

  25. [25]

    Liu, P. C.; Zhu, K. J.; Gao, Y. F.; Luo, H. J.; Lu, L. Recent progress in the applications of vanadium-based oxides on energy storage: From low-dimensional nanomaterials synthesis to 3D micro/nano-structures and free-standing electrodes fabrication. Adv. Energy Mater.2017, 7, 1700547.

    Google Scholar 

  26. [26]

    Li, M. L.; Gao, Y.; Chen, N.; Meng, X.; Wang, C. Z.; Zhang, Y. Q.; Zhang, D.; Wei, Y. J.; Du, F.; Chen, G. Cu3V2O8 nanoparticles as intercalation-type anode material for lithium-ion batteries. Chem. Eur. J.2016, 22, 11405–11412.

    CAS  Google Scholar 

  27. [27]

    Zhang, X.; Yang, W. W.; Liu, J. G.; Zhou, Y.; Feng, S. C.; Yan, S. C.; Yao, Y. F.; Wang, G.; Wan, L.; Fang, C. et al. Ultralong metahewettite CaV6O16·3H2O nanoribbons as novel host materials for lithium storage: Towards high-rate and excellent long-term cyclability. Nano Energy2016, 22, 38–47.

    CAS  Google Scholar 

  28. [28]

    Wang, J. L.; Pei, J.; Hua, K.; Chen, D. H.; Jiao, Y.; Hu, Y. Y.; Chen, G. Synthesis of Co2V2O7 hollow cylinders with enhanced lithium storage properties using H2O2 as an etching agent. ChemElectroChem2018, 5, 737–742.

    CAS  Google Scholar 

  29. [29]

    Chu, X. F.; Wang, H.; Chi, Y. D.; Wang, C.; Lei, L.; Zhang, W. T.; Yang, X. T. Hard-template-engaged formation of Co2V2O7 hollow prisms for lithium ion batteries. RSC Adv.2018, 8, 2072–2076.

    CAS  Google Scholar 

  30. [30]

    Wu, F. F.; Yu, C. H.; Liu, W. X.; Wang, T.; Feng, J. K.; Xiong, S. L. Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage. J. Mater. Chem. A2015, 3, 16728–16736.

    CAS  Google Scholar 

  31. [31]

    Zhang, Q.; Pei, J.; Chen, G.; Bie, C. F.; Sun, J. X.; Liu, J. Porous Co3V2O8 nanosheets with ultrahigh performance as anode materials for lithium ion batteries. Adv. Mater. Interfaces2017, 4, 1700054.

    Google Scholar 

  32. [32]

    Wu, F. F.; Xiong, S. L.; Qian, Y. T.; Yu, S. H. Hydrothermal synthesis of unique hollow hexagonal prismatic pencils of Co3V2O8·nH2O: A new anode material for lithium-ion batteries. Angew. Chem., Int. Ed.2015, 54, 10787–10791.

    CAS  Google Scholar 

  33. [33]

    Luo, Y. Z.; Xu, X.; Zhang, Y. X.; Chen, C. Y.; Zhou, L.; Yan, M. Y.; Wei, Q. L.; Tian, X. C.; Mai, L. Q. Graphene oxide templated growth and superior lithium storage performance of novel hierarchical Co2V2O7 nanosheets. ACS Appl. Mater. Interfaces2016, 8, 2812–2818.

    CAS  Google Scholar 

  34. [34]

    Wang, Y. C.; Chai, H.; Dong, H.; Xu, J. Y.; Jia, D. Z.; Zhou, W. Y. Superior cycle stability performance of quasi-cuboidal CoV2O6 microstructures as electrode material for supercapacitors. ACS Appl. Mater. Interfaces2016, 8, 27291–27297.

    CAS  Google Scholar 

  35. [35]

    Zhang, W. Y.; Fu, Y. S.; Liu, W. W.; Lim, L.; Wang, X.; Yu, A. P. A general approach for fabricating 3D MFe2O4 (M = Mn, Ni, Cu, Co)/graphitic carbon nitride covalently functionalized nitrogen-doped graphene nanocomposites as advanced anodes for lithium-ion batteries. Nano Energy2019, 57, 48–56.

    CAS  Google Scholar 

  36. [36]

    Sambandam, B.; Soundharrajan, V.; Mathew, V.; Song, J. J.; Kim, S.; Jo, J.; Tung, D. P.; Kim, S.; Kim, J. Metal-organic framework-combustion: A new, cost-effective and one-pot technique to produce a porous Co3V2O8 microsphere anode for high energy lithium ion batteries. J. Mater. Chem. A2016, 4, 14605–14613.

    CAS  Google Scholar 

  37. [37]

    Soundharrajan, V.; Sambandam, B.; Song, J. J.; Kim, S.; Jo, J.; Kim, S.; Lee, S.; Mathew, V.; Kim, J. Co3V2O8 sponge network morphology derived from metal-organic framework as an excellent lithium storage anode material. ACS Appl. Mater. Interfaces2016, 8, 8546–8553.

    CAS  Google Scholar 

  38. [38]

    Jiang, T. C.; Bu, F. X.; Feng, X. X.; Shakir, I.; Hao, G. L.; Xu, Y. X. Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano2017, 11, 5140–5147.

    CAS  Google Scholar 

  39. [39]

    Yao, X.; Zhao, Y. L. Three-dimensional porous graphene networks and hybrids for lithium-ion batteries and supercapacitors. Chem2017, 2, 171–200.

    CAS  Google Scholar 

  40. [40]

    Jung, H. G.; Jang, M. W.; Hassoun, J.; Sun, Y. K.; Scrosati, B. A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat. Commun.2011, 2, 516.

    Google Scholar 

  41. [41]

    Chen, D.; Rui, X. H.; Zhang, Q.; Geng, H. B.; Gan, L. Y.; Zhang, W.; Li, C. C.; Huang, S. M.; Yu, Y. Persistent zinc-ion storage in mass-produced V2O5 architectures. Nano Energy2019, 60, 171–178.

    CAS  Google Scholar 

  42. [42]

    Chao, D. L.; Xia, X. H.; Liu, J. L.; Fan, Z. X.; Ng, C. F.; Lin, J. Y.; Zhang, H.; Shen, Z. X.; Fan, H. J. A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater.2014, 26, 5794–5800.

    CAS  Google Scholar 

  43. [43]

    Yang, G. Z.; Cui, H.; Yang, G. W.; Wang, C. X. Self-Assembly of Co3V2O8 multilayered nanosheets: Controllable synthesis, excellent Li-storage properties, and investigation of electrochemical mechanism. ACS Nano2014, 8, 4474–4487.

    CAS  Google Scholar 

  44. [44]

    Lv, C. D.; Sun, J. X.; Chen, G.; Yan, C. S.; Chen, D. H. Achieving Ni3V2O8 amorphous wire encapsulated in crystalline tube nanostructure as anode materials for lithium ion batteries. Nano Energy2017, 33, 138–145.

    CAS  Google Scholar 

  45. [45]

    Zhu, C.; Liu, Z. Q.; Wang, J.; Pu, J.; Wu, W. L.; Zhou, Q. W.; Zhang, H. G. Novel Co2VO4 anodes using ultralight 3D metallic current collector and carbon sandwiched structures for high-performance Li-ion batteries. Small2017, 13, 1701260.

    Google Scholar 

  46. [46]

    Zhang, L.; Zhao, K. N.; Luo, Y. Z.; Dong, Y. F.; Xu, W. W.; Yan, M. Y.; Ren, W. H.; Zhou, L.; Qu, L. B.; Mai, L. Q. Acetylene black induced heterogeneous growth of macroporous CoV2O6 nanosheet for high-rate pseudocapacitive lithium-ion battery anode. ACS Appl. Mater. Interfaces2016, 8, 7139–7146.

    CAS  Google Scholar 

  47. [47]

    Ma, F. X.; Wu, H. B.; Xu, C. Y.; Zhen, L.; Lou, X. W. D. Self-organized sheaf-like Fe3O4/C hierarchical microrods with superior lithium storage properties. Nanoscale2015, 7, 4411–4414.

    CAS  Google Scholar 

  48. [48]

    Zhang, D.; Li, G. S.; Li, B. Y.; Fan, J. M.; Liu, X. Q.; Chen, D. D.; Li, L. P. A facile strategy to fabricate V2O3/porous N-doped carbon nanosheet framework as high-performance anode for lithium-ion batteries. J. Alloys Compd.2019, 789, 288–294.

    CAS  Google Scholar 

  49. [49]

    Feng, Y. H.; Chen, S. H.; Wang, J.; Lu, B. G. Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor. J. Energy Chem.2020, 43, 129–138.

    Google Scholar 

  50. [50]

    Wang, T.; Zhu, J.; Wei, Z. X.; Yang, H. G.; Ma, Z. L.; Ma, R. F.; Zhou, J.; Yang, Y. H.; Peng, L. L.; Fei, H. L. et al. Bacteria derived biological carbon building robust Li-S batteries. Nano lett.2019, 19, 4384–4390.

    CAS  Google Scholar 

  51. [51]

    Wen, W.; Wu, J. M.; Jiang, Y. Z.; Lai, L. L.; Song, J. Pseudocapacitance-enhanced Li-ion microbatteries derived by a TiN@TiO2 nanowire anode. Chem2017, 2, 404–416.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. 21606003, 51802044, 51972067, 51672193, 51420105002, and 51920105004), and State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization. The authors also acknowledge Singapore MOE AcRF Tier 2 under Grant Nos. 2018-T2-1-010 and MOE2017-T2-2-069, and National Research Foundation of Singapore (NRF) Investigatorship, award Number NRF2016NRF-NRFI001-22.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xianhong Rui, Qingyu Yan or Shaoming Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Yang, D., Zhuang, X. et al. Superior wide-temperature lithium storage in a porous cobalt vanadate. Nano Res. 13, 1867–1874 (2020). https://doi.org/10.1007/s12274-019-2547-9

Download citation

Keywords

  • lithium-ion battery
  • anode material
  • cobalt vanadate
  • porous structure
  • wide-temperature performance