Skip to main content
Log in

Real time imaging of two-dimensional iron oxide spherulite nanostructure formation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The formation of complex hierarchical nanostructures has attracted a lot of attention from both the fundamental science and potential applications point of view. Spherulite structures with radial fibrillar branches have been found in various solids; however, their growth mechanisms remain poorly understood. Here, we report real time imaging of the formation of two-dimensional (2D) iron oxide spherulite nanostructures in a liquid cell using transmission electron microscopy (TEM). By tracking the growth trajectories, we show the characteristics of the reaction front and growth kinetics. Our observations reveal that the tip of a growing branch splits as the width exceeds certain sizes (5.5–8.5 nm). The radius of a spherulite nanostructure increases linearly with time at the early stage, transitioning to nonlinear growth at the later stage. Furthermore, a thin layer of solid is accumulated at the tip and nanoparticles from secondary nucleation also appear at the growing front which later develop into fibrillar branches. The spherulite nanostructure is polycrystalline with the co-existence of ferrihydrite and Fe3O4 through-out the growth. A growth model is further established, which provides rational explanations on the linear growth at the early stage and the nonlinearity at the later stage of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geveling, N. N.; Maslenkov, S. B. Solidification of eutectic Ni-Ni3Ti alloys. Met. Sci. Heat Treat.1976, 18, 755–760.

    Google Scholar 

  2. Crist, B.; Schultz, J. M. Polymer spherulites: A critical review. Prog. Polym. Sci.2016, 56, 1–63.

    CAS  Google Scholar 

  3. Kolosov, V. Y.; Shvamm, K. L.; Gainutdinov, R. V.; Tolstikhina, A. L. Combined TEM-AFM study of “transrotational” spherulites growing in thin amorphous films. Bull. Russ. Acad. Sci.: Phys.2007, 71, 1442–1446.

    Google Scholar 

  4. Sasaki, N.; Murakami, Y.; Shindo, D.; Sugimoto, T. Computer simulations for the growth process of peanut-type hematite particles. J. Colloid Interface Sci.1999, 213, 121–125.

    CAS  Google Scholar 

  5. Fowler, A. D.; Berger, B.; Shore, M.; Jones, M. I.; Ropchan, J. Supercooled rocks: Development and significance of varioles, spherulites, dendrites and spinifex in Archaean volcanic rocks, Abitibi Greenstone belt, Canada. Precambrian Res.2002, 115, 311–328.

    CAS  Google Scholar 

  6. Davis, B. K.; McPhie, J. Spherulites, quench fractures and relict perlite in a late Devonian rhyolite dyke, Queensland, Australia. J. Volcanol. Geotherm. Res.1996, 71, 1–11.

    CAS  Google Scholar 

  7. Hutter, J. L.; Bechhoefer, J. Three classes of morphology transitions in the solidification of a liquid crystal. Phys. Rev. Lett.1997, 79, 4022–4025.

    CAS  Google Scholar 

  8. Hutter, J. L.; Bechhoefer, J. Morphology transitions in diffusion-and kinetics-limited solidification of a liquid crystal. Phys. Rev. E1999, 59, 4342–4352.

    CAS  Google Scholar 

  9. Hutter, J. L.; Bechhoefer, J. Banded spherulitic growth in a liquid crystal. J. Cryst. Growth2000, 217, 332–343.

    CAS  Google Scholar 

  10. Kim, Y. Y.; Ribeiro, L.; Maillot, F.; Ward, O.; Eichhorn, S. J.; Meldrum, F. C. Bio-inspired synthesis and mechanical properties of calcite-polymer particle composites. Adv. Mater.2010, 22, 2082–2086.

    CAS  Google Scholar 

  11. Toda, A.; Okamura, M.; Taguchi, K.; Hikosaka, M.; Kajioka, H. Branching and higher order structure in banded polyethylene spherulites. Macromolecules2008, 41, 2484–2493.

    CAS  Google Scholar 

  12. Maxfield, J.; Mandelkern, L. Crystallinity, supermolecular structure, and thermodynamic properties of linear polyethylene fractions. Macromolecules1977, 10, 1141–1153.

    CAS  Google Scholar 

  13. Voigt-Martin, I. G.; Mandelkern, L. A quantitative electron microscopic study of the crystallite structure of molecular weight fractions of linear polyethylene. J. Polym. Sci. Ploym. Phys. Ed.1984, 22, 1901–1917.

    CAS  Google Scholar 

  14. Magill, J. H. Review spherulites: A personal perspective. J. Mater. Sci.2001, 36, 3143–3164.

    CAS  Google Scholar 

  15. Keith, H. D.; Padden, F. J. Jr. Spherulitic crystallization from the melt. II. Influence of fractionation and impurity segregation on the kinetics of crystallization. J. Appl. Phys.1964, 35, 1286–1296.

    CAS  Google Scholar 

  16. Asta, M.; Hoyt, J. J.; Karma, A. Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations. Phys. Rev. B2002, 66, 100101(R).

    Google Scholar 

  17. Karma, A.; Rappel, W. J. Numerical simulation of three-dimensional dendritic growth. Phys. Rev. Lett.1996, 77, 4050–4053.

    CAS  Google Scholar 

  18. Karma, A.; Rappel, W. J. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E1998, 57, 4323–4349.

    CAS  Google Scholar 

  19. Langer, J. S. Instabilities and pattern formation in crystal growth. Rev. Mod. Phys.1980, 52, 1–28.

    CAS  Google Scholar 

  20. Morris, J. R. Complete mapping of the anisotropic free energy of the crystal-melt interface in Al. Phys. Rev. B2002, 66, 144104.

    Google Scholar 

  21. Mullins, W. W.; Sekerka, R. F. Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys.1964, 35, 444–451.

    Google Scholar 

  22. Mullins, W. W.; Sekerka, R. F. Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys.1963, 34, 323–329.

    CAS  Google Scholar 

  23. Plapp, M.; Karma, A. Multiscale random-walk algorithm for simulating interfacial pattern formation. Phys. Rev. Lett.2000, 84, 1740–1743.

    CAS  Google Scholar 

  24. Plapp, M.; Karma, A. Multiscale finite-difference-diffusion-monte-carlo method for simulating dendritic solidification. J. Comput. Phys.2000, 165, 592–619.

    CAS  Google Scholar 

  25. Provatas, N.; Goldenfeld, N.; Dantzig, J. Efficient computation of dendritic microstructures using adaptive mesh refinement. Phys. Rev. Lett.1998, 80, 3308–3311.

    CAS  Google Scholar 

  26. Sun, D. Y.; Asta, M.; Hoyt, J. J. Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations. Phys. Rev. B2004, 69, 024108.

    Google Scholar 

  27. Sun, D. Y.; Mendelev, M. I.; Becker, C. A.; Kudin, K.; Haxhimali, T.; Asta, M.; Hoyt, J. J.; Karma, A.; Srolovitz, D. J. Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg. Phys. Rev. B2006, 73, 024116.

    Google Scholar 

  28. Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. B: Biol. Sci.1952, 237, 37–72.

    Google Scholar 

  29. Sperling, L. H. Introduction to physical polymer science, 4th ed.; John Wiley & Sons: Hoboken, New Jersey, USA, 2006.

    Google Scholar 

  30. Magill, J. H.; Plazek, D. J. Physical properties of aromatic hydrocarbons. II. Solidification behavior of 1,3,5-tri-α-naphthylbenzene. J. Chem. Phys.1967, 46, 3757–3769.

    CAS  Google Scholar 

  31. Muthukumar, M. Commentary on theories of polymer crystallization. Eur. Phys. J. E2000, 3, 199–202.

    CAS  Google Scholar 

  32. Gránásy, L.; Pusztai, T.; Tegze, G.; Warren, J. A.; Douglas, J. F. Growth and form of spherulites. Phys. Rev. E2005, 72, 011605.

    Google Scholar 

  33. Aaronson, H. I.; Spanos, G.; Masamura, R. A.; Vardiman, R. G.; Moon, D. W.; Menon, E. S. K.; Hall, M. G. Sympathetic nucleation: An overview. Mater. Sci. Eng. B1995, 32, 107–123.

    Google Scholar 

  34. Ferrone, F. A.; Hofrichter, J.; Sunshine, H. R.; Eaton, W. A. Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism. Biophys. J.1980, 32, 361–380.

    CAS  Google Scholar 

  35. Ferrone, F. A.; Hofrichter, J.; Eaton, W. A. Kinetics of sickle hemoglobin polymerization: II. A double nucleation mechanism. J. Mol. Biol.1985, 183, 611–631.

    CAS  Google Scholar 

  36. Samuel, R. E.; Salmon, E. D.; Briehl, R. W. Nucleation and growth of fibres and gel formation in sickle cell haemoglobin. Nature1990, 345, 833–835.

    CAS  Google Scholar 

  37. Galkin, O.; Vekilov, P. G. Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemoglobin in deoxy state. J. Mol. Biol.2004, 336, 43–59.

    CAS  Google Scholar 

  38. Liao, H. G.; Zheng, H. M. Liquid cell transmission electron microscopy. Annu. Rev. Phys. Chem.2016, 67, 719–747.

    CAS  Google Scholar 

  39. Kim, B. J.; Tersoff, J.; Kodambaka, S.; Reuter, M. C.; Stach, E. A.; Ross, F. M. Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science2008, 322, 1070–1073.

    CAS  Google Scholar 

  40. Harutyunyan, A. R.; Chen, G. G.; Paronyan, T. M.; Pigos, E. M.; Kuznetsov, O. A.; Hewaparakrama, K.; Kim, S. M.; Zakharov, D.; Stach, E. A.; Sumanasekera, G. U. Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science2009, 326, 116–120.

    CAS  Google Scholar 

  41. Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science2015, 350, aaa9886.

    Google Scholar 

  42. Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science2009, 324, 1309–1312.

    CAS  Google Scholar 

  43. Liao, H. G.; Cui, L. K.; Whitelam, S.; Zheng, H. M. Real-time imaging of Pt3Fe nanorod growth in solution. Science2012, 336, 1011–1014.

    CAS  Google Scholar 

  44. Liao, H. G.; Zherebetskyy, D.; Xin, H. L.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L. W.; Zheng, H. M. Facet development during platinum nanocube growth. Science2014, 345, 916–919.

    CAS  Google Scholar 

  45. Wang, Y.; Peng, X. X.; Abelson, A.; Xiao, P. H.; Qian, C.; Yu, L.; Ophus, C.; Ercius, P.; Wang, L. W.; Law, M. et al. Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions. Sci. Adv.2019, 5, eaaw5623.

    Google Scholar 

  46. Hauwiller, M. R.; Zhang, X. W.; Liang, W. I.; Chiu, C. H.; Zhang, Q.; Zheng, W. J.; Ophus, C.; Chan, E. M.; Czarnik, C.; Pan, M. et al. Dynamics of nanoscale dendrite formation in solution growth revealed through in situ liquid cell electron microscopy. Nano Lett.2018, 18, 6427–6433.

    CAS  Google Scholar 

  47. Yang, J.; Zeng, Z. Y.; Kang, J.; Betzler, S.; Czarnik, C.; Zhang, X. W.; Ophus, C.; Yu, C.; Bustillo, K.; Pan, M.; et al. Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nat. Mater.2019, 18, 970–976.

    CAS  Google Scholar 

  48. Baumgartner, J.; Dey, A.; Bomans, P. H. H.; Le Coadou, C.; Fratzl, P.; Sommerdijk, N. A. J. M.; Faivre, D. Nucleation and growth of magnetite from solution. Nat. Mater.2013, 12, 310–314.

    CAS  Google Scholar 

  49. Tronc, E.; Belleville, P.; Jolivet, J. P.; Livage, J. Transformation of ferric hydroxide into spinel by iron(II) adsorption. Langmuir1992, 8, 313–319.

    CAS  Google Scholar 

  50. Benner, S. G.; Hansel, C. M.; Wielinga, B. W.; Barber, T. M.; Fendorf, S. Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. Environ. Sci. Technol.2002, 36, 1705–1711.

    CAS  Google Scholar 

  51. Hansel, C. M.; Benner, S. G.; Neiss, J.; Dohnalkova, A.; Kukkadapu, R. K.; Fendorf, S. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim. Cosmochim. Acta2003, 67, 2977–2992.

    CAS  Google Scholar 

  52. Müller, C.; Aghamohammadi, M.; Himmelberger, S.; Sonar, P.; Garriga, M.; Salleo, A.; Campoy-Quiles, M. One-step macroscopic alignment of conjugated polymer systems by epitaxial crystallization during spin-coating. Adv. Funct. Mater.2013, 23, 2368–2377.

    Google Scholar 

Download references

Acknowledgements

This project was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Contract No. DE-AC02-05-CH11231 within the in-situ TEM (KC22ZH) program. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge Gatan Inc. for the advanced K2 IS camera and Dr. Ming Pan and Dr. Cory Czarnik for their help with part of experimental set up in this work. W. J. Z. acknowledges the support from Tianjin University Graduate School International Academic Exchange Fund. M. R. H. was funded by KAUST project under H. M. Z. at UC Berkeley.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiwen Du or Haimei Zheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Hauwiller, M.R., Liang, WI. et al. Real time imaging of two-dimensional iron oxide spherulite nanostructure formation. Nano Res. 12, 2889–2893 (2019). https://doi.org/10.1007/s12274-019-2531-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2531-4

Keywords

Navigation