Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet amyloid polypeptide


The amyloid aggregation of peptides and proteins is a hallmark of neurological disorders and type 2 diabetes. Human islet amyloid polypeptide (IAPP), co-secreted with insulin by pancreatic β-cells, plays dual roles in both glycemic control and the pathology of type 2 diabetes. While IAPP can activate the NLRP3 inflammasome and modulate cellular autophagy, apoptosis and extracellular matrix metabolism, no data is available concerning intracellular protein expression upon exposure to the polypeptide. More surprisingly, how intracellular protein expression is modulated by nanoparticle inhibitors of protein aggregation remains entirely unknown. In this study, we first examined the changing proteomes of βTC6, a pancreatic β-cell line, upon exposure to monomeric, oligomeric and fibrillar IAPP, and detailed cellular protein expression rescued by graphene quantum dots (GQDs), an IAPP inhibitor. We found that 29 proteins were significantly dysregulated by the IAPP species, while majority of these proteins were nucleotide-binding proteins. Collectively, our liquid chromatography tandem-mass spectrometry, fluorescence quenching, helium ion microscopy, cytotoxicity and discreet molecular dynamics simulations data revealed a remarkable capacity of GQDs in regulating aberrant protein expression through H-bonding and hydrophobic interactions, pointing to nanomedicine as a new frontier against human amyloid diseases.

This is a preview of subscription content, log in to check access.


  1. [1]

    Ke, P. C.; Sani, M. A.; Ding, F.; Kakinen, A.; Javed, I.; Separovic, F.; Davis, T. P.; Mezzenga, R. Implications of peptide assemblies in amyloid diseases. Chem. Soc. Rev.2017, 46, 6492–6531.

    CAS  Google Scholar 

  2. [2]

    Zhang, X. X.; St. Clair, J. R.; London, E.; Raleigh, D. P. Islet amyloid polypeptide membrane interactions: Effects of membrane composition. Biochemistry2017, 56, 376–390.

    CAS  Google Scholar 

  3. [3]

    Cao, P.; Abedini, A.; Wang, H.; Tu, L. H.; Zhang, X. X.; Schmidt, A. M.; Raleigh, D. P. Islet amyloid polypeptide toxicity and membrane interactions. Proc. Natl. Acad. Sci. USA2013, 110, 19279–19284.

    CAS  Google Scholar 

  4. [4]

    Knowles, T. P. J.; Vendruscolo, M.; Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol.2014, 15, 384–396.

    CAS  Google Scholar 

  5. [5]

    Sudhakar, S.; Kalipillai, P.; Santhosh, P. B.; Mani, E. Role of surface charge of inhibitors on amyloid beta fibrillation. J. Phys. Chem. C2017, 121, 6339–6348.

    CAS  Google Scholar 

  6. [6]

    Haataja, L.; Gurlo, T.; Huang, C. J.; Butler, P. C. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev.2008, 29, 303–316.

    CAS  Google Scholar 

  7. [7]

    Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev.2007, 107, 2891–2959.

    CAS  Google Scholar 

  8. [8]

    Fusco, G.; Chen, S. W.; Williamson, P. T. F.; Cascella, R.; Perni, M.; Jarvis, J. A.; Cecchi, C.; Vendruscolo, M.; Chiti, F.; Cremades, N. et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science2017, 358, 1440–1443.

    CAS  Google Scholar 

  9. [9]

    Sebollela, A.; Freitas-Correa, L.; Oliveira, F. F.; Paula-Lima, A. C.; Saraiva, L. M.; Martins, S. M.; Mota, L. D.; Torres, C.; Alves-Leon, S.; de Souza, J. M. et al. Amyloid-β oligomers induce differential gene expression in adult human brain slices. J. Biol. Chem.2012, 287, 7436–7445.

    CAS  Google Scholar 

  10. [10]

    Kong, L. N.; Zuo, P. P.; Mu, L.; Liu, Y. Y.; Yang, N. Gene expression profile of amyloid beta protein-injected mouse model for Alzheimer disease. Acta Pharmacol. Sin.2005, 26, 666–672.

    CAS  Google Scholar 

  11. [11]

    Kakinen, A.; Adamcik, J.; Wang, B.; Ge, X. W.; Mezzenga, R.; Davis, T. P.; Ding, F.; Ke, P. C. Nanoscale inhibition of polymorphic and ambidextrous IAPP amyloid aggregation with small molecules. Nano Res.2018, 11, 3636–3647.

    CAS  Google Scholar 

  12. [12]

    Nedumpully-Govindan, P.; Kakinen, A.; Pilkington, E. H.; Davis, T. P.; Ke, P. C.; Ding, F. Stabilizing off-pathway oligomers by polyphenol nanoassemblies for IAPP aggregation inhibition. Sci. Rep.2016, 6, 19463.

    CAS  Google Scholar 

  13. [13]

    Gurzov, E. N.; Wang, B.; Pilkington, E. H.; Chen, P. Y.; Kakinen, A.; Stanley, W. J.; Litwak, S. A.; Hanssen, E. G.; Davis, T. P.; Ding, F. et al. Inhibition of hIAPP amyloid aggregation and pancreatic β-cell toxicity by OH-terminated PAMAM dendrimer. Small2016, 12, 1615–1626.

    CAS  Google Scholar 

  14. [14]

    Pilkington, E. H.; Lai, M.; Ge, X. W.; Stanley, W. J.; Wang, B.; Wang, M. Y.; Kakinen, A.; Sani, M. A.; Whittaker, M. R.; Gurzov, E. N. et al. Star polymers reduce islet amyloid polypeptide toxicity via accelerated amyloid aggregation. Biomacromolecules2017, 18, 4249–4260.

    CAS  Google Scholar 

  15. [15]

    Javed, I.; Yu, T. Y.; Peng, G. T.; Sanchez-Ferrer, A.; Faridi, A.; Kakinen, A.; Zhao, M.; Mezzenga, R.; Davis, T. P.; Lin, S. J. et al. In vivo mitigation of amyloidogenesis through functional-pathogenic double-protein coronae. Nano Lett.2018, 18, 5797–5804.

    CAS  Google Scholar 

  16. [16]

    Wang, M. Y.; Sun, Y. X.; Cao, X. Y.; Peng, G. T.; Javed, I.; Kakinen, A.; Davis, T. P.; Lin, S. J.; Liu, J. Q.; Ding, F. et al. Graphene quantum dots against human IAPP aggregation and toxicity in vivo. Nanoscale2018, 10, 19995–20006.

    CAS  Google Scholar 

  17. [17]

    Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y. K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano2013, 7, 6858–6867.

    CAS  Google Scholar 

  18. [18]

    Kim, D.; Yoo, J. M.; Hwang, H.; Lee, J.; Lee, S. H.; Yun, S. P.; Park, M. J.; Lee, M. J.; Choi, S.; Kwon, S. H. et al. Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nat. Nanotechnol.2018, 13, 812–818.

    CAS  Google Scholar 

  19. [19]

    Wang, M. Y.; Kakinen, A.; Pilkington, E. H.; Davis, T. P.; Ke, P. C. Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomater. Sci.2017, 5, 485–493.

    CAS  Google Scholar 

  20. [20]

    Portelius, E.; Zetterberg, H.; Gobom, J.; Andreasson, U.; Blennow, K. Targeted proteomics in Alzheimer’s disease: Focus on amyloid-β. Expert Rev. Proteomics2008, 5, 225–237.

    CAS  Google Scholar 

  21. [21]

    Savas, J. N.; Wang, Y. Z.; DeNardo, L. A.; Martinez-Bartolome, S.; McClatchy, D. B.; Hark, T. J.; Shanks, N. F.; Cozzolino, K. A.; Lavallee-Adam, M.; Smukowski, S. N. et al. Amyloid accumulation drives proteome-wide alterations in mouse models of Alzheimer’s disease-like pathology. Cell Rep.2017, 21, 2614–2627.

    CAS  Google Scholar 

  22. [22]

    Sun, Y. X.; Kakinen, A.; Xing, Y. T.; Pilkington, E. H.; Davis, T. P.; Ke, P. C.; Ding, F. Nucleation of β-rich oligomers and β-barrels in the early aggregation of human islet amyloid polypeptide. Biochim. Biophys. Acta Mol. Basis Dis.2019, 1865, 434–444.

    CAS  Google Scholar 

  23. [23]

    Usov, I.; Mezzenga, R. FiberApp: An open-source software for tracking and analyzing polymers, filaments, biomacromolecules, and fibrous objects. Macromolecules2015, 48, 1269–1280.

    CAS  Google Scholar 

  24. [24]

    Lin, C. Y.; Gurlo, T.; Kayed, R.; Butler, A. E.; Haataja, L.; Glabe, C. G.; Butler, P. C. Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced β-cell apoptosis in h-IAPP transgenic mice. Diabetes2007, 56, 1324–1332.

    CAS  Google Scholar 

  25. [25]

    Faridi, A.; Sun, Y. X.; Okazaki, Y.; Peng, G. T.; Gao, J.; Kakinen, A.; Faridi, P.; Zhao, M.; Javed, I.; Purcell, A. W. et al. Mitigating human IAPP amyloidogenesis in vivo with chiral silica nanoribbons. Small2018, 14, 1802825.

    Google Scholar 

  26. [26]

    Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science2003, 300, 486–489.

    CAS  Google Scholar 

  27. [27]

    Lopes, D. H. J.; Colin, C.; Degaki, T. L.; de Sousa, A. C. V.; Vieira, M. N. N.; Sebollela, A.; Martinez, A. M. B.; Bloch, C. Jr.; Ferreira, S. T.; Sogayar, M. C. Amyloidogenicity and cytotoxicity of recombinant mature human islet amyloid polypeptide (rhIAPP). J. Biol. Chem.2004, 279, 42803–42810.

    CAS  Google Scholar 

  28. [28]

    Krotee, P.; Rodriguez, J. A.; Sawaya, M. R.; Cascio, D.; Reyes, F. E.; Shi, D.; Hattne, J.; Nannenga, B. L.; Oskarsson, M. E.; Philipp, S. et al. Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity. eLife2017, 6, e19273.

    Google Scholar 

  29. [29]

    Joshi-Tope, G.; Gillespie, M.; Vastrik, I.; D’Eustachio, P.; Schmidt, E.; de Bono, B.; Jassal, B.; Gopinath, G. R.; Wu, G. R.; Matthews, L. et al. Reactome: A knowledgebase of biological pathways. Nucleic Acids Res.2005, 33, D428–D432.

    CAS  Google Scholar 

  30. [30]

    Cremades, N.; Cohen, S. I. A.; Deas, E.; Abramov, A. Y.; Chen, A. Y.; Orte, A.; Sandal, M.; Clarke, R. W.; Dunne, P.; Aprile, F. A. et al. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell2012, 149, 1048–1059.

    CAS  Google Scholar 

  31. [31]

    Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K. P. et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res.2015, 43, D447–D452.

    CAS  Google Scholar 

  32. [32]

    Szklarczyk, D.; Morris, J. H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N. T.; Roth, A.; Bork, P. et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res.2017, 45, D362–D368.

    CAS  Google Scholar 

  33. [33]

    Mi, H. Y.; Huang, X. S.; Muruganujan, A.; Tang, H. M.; Mills, C.; Kang, D.; Thomas, P. D. PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res.2017, 45, D183–D189.

    CAS  Google Scholar 

  34. [34]

    Zhou, X.; Liao, W. J.; Liao, J. M.; Liao, P.; Lu, H. Ribosomal proteins: Functions beyond the ribosome. J. Mol. Cell Biol.2015, 7, 92–104.

    CAS  Google Scholar 

  35. [35]

    Deng, L. T.; Pushpitha, K.; Joseph, C.; Gupta, V.; Rajput, R.; Chitranshi, N.; Dheer, Y.; Amirkhani, A.; Kamath, K.; Pascovici, D. et al. Amyloid β induces early changes in the ribosomal machinery, cytoskeletal organization and oxidative phosphorylation in retinal photoreceptor cells. Front. Mol. Neurosci.2019, 12, 24.

    Google Scholar 

  36. [36]

    Anantharam, V.; Lehrmann, E.; Kanthasamy, A.; Yang, Y. J.; Banerjee, P.; Becker, K. G.; Freed, W. J.; Kanthasamy, A. G. Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells: Relevance to oxidative damage in Parkinson’s disease. Neurochem. Int.2007, 50, 834–847.

    CAS  Google Scholar 

  37. [37]

    Pavel, M.; Imarisio, S.; Menzies, F. M.; Jimenez-Sanchez, M.; Siddiqi, F. H.; Wu, X. T.; Renna, M.; O’Kane, C. J.; Crowther, D. C.; Rubinsztein, D. C. CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat. Commun.2016, 7, 13821.

    CAS  Google Scholar 

  38. [38]

    Garcia-Esparcia, P.; Sideris-Lampretsas, G.; Hernandez-Ortega, K.; Grau-Rivera, O.; Sklaviadis, T.; Gelpi, E.; Ferrer, I. Altered mechanisms of protein synthesis in frontal cortex in Alzheimer disease and a mouse model. Am. J. Neurodegener. Dis.2017, 6, 15–25.

    Google Scholar 

  39. [39]

    Nutter, C. A.; Kuyumcu-Martinez, M. N. Emerging roles of RNA-binding proteins in diabetes and their therapeutic potential in diabetic complications. Wiley Interdiscip. Rev. RNA2018, 9, e1459.

    Google Scholar 

  40. [40]

    Juan-Mateu, J.; Villate, O.; Eizirik, D. L. MECHANISMS IN ENDOCRINOLOGY: Alternative splicing: The new frontier in diabetes research. Eur. J. Endocrinol.2016, 174, R225–R238.

    CAS  Google Scholar 

  41. [41]

    Love, J. E.; Hayden, E. J.; Rohn, T. T. Alternative splicing in Alzheimer’s disease. J. Parkinsons Dis. Alzheimers Dis.2015, 2, 6.

    Google Scholar 

  42. [42]

    Lashuel, H. A.; Aljabari, B.; Sigurdsson, E. M.; Metz, C. N.; Leng, L.; Callaway, D. J. E.; Bucala, R. Amyloid fibril formation by macrophage migration inhibitory factor. Biochem. Biophys. Res. Commun.2005, 338, 973–980.

    CAS  Google Scholar 

  43. [43]

    Gevorkian, G.; Gonzalez-Noriega, A.; Acero, G.; Ordoñez, J.; Michalak, C.; Munguia, M. E.; Govezensky, T.; Cribbs, D. H.; Manoutcharian, K. Amyloid-β peptide binds to microtubule-associated protein 1B (MAP1B). Neurochem. Int.2008, 52, 1030–1036.

    CAS  Google Scholar 

  44. [44]

    Pianu, B.; Lefort, R.; Thuiliere, L.; Tabourier, E.; Bartolini, F. The Aβ1–42 peptide regulates microtubule stability independently of tau. J. Cell Sci.2014, 127, 1117–1127.

    CAS  Google Scholar 

  45. [45]

    Luo, J. H.; Wärmländer, S. K. T. S.; Gräslund, A.; Abrahams, J. P. Cross-interactions between the Alzheimer disease amyloid-β peptide and other amyloid proteins: A further aspect of the Amyloid cascade hypothesis. J. Biol. Chem.2016, 291, 16485–16493.

    CAS  Google Scholar 

  46. [46]

    Lim, Y. A.; Rhein, V.; Baysang, G.; Meier, F.; Poljak, A.; Raftery, M. J.; Guilhaus, M.; Ittner, L. M.; Eckert, A.; Götz, J. Aβ and human amylin share a common toxicity pathway via mitochondrial dysfunction. Proteomics2010, 10, 1621–1633.

    CAS  Google Scholar 

  47. [47]

    Götz, J.; Lim, Y. A.; Eckert, A. Lessons from two prevalent amyloidoseswhat amylin and Aβ have in common. Front. Aging Neurosci.2013, 5, 38.

    Google Scholar 

  48. [48]

    Liu, Y. B.; Xu, L. P.; Dai, W. H.; Dong, H. F.; Wen, Y. Q.; Zhang, X. J. Graphene quantum dots for the inhibition of β amyloid aggregation. Nanoscale2015, 7, 19060–19065.

    CAS  Google Scholar 

  49. [49]

    Wu, C. Y.; Wang, C.; Han, T.; Zhou, X. J.; Guo, S. W.; Zhang, J. Y. Insight into the cellular internalization and cytotoxicity of graphene quantum dots. Adv. Healthc. Mater.2013, 2, 1613–1619.

    CAS  Google Scholar 

  50. [50]

    Chong, Y.; Ma, Y. F.; Shen, H.; Tu, X. L.; Zhou, X.; Xu, J. Y.; Dai, J. W.; Fan, S. J.; Zhang, Z. J. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials2014, 35, 5041–5048.

    CAS  Google Scholar 

  51. [51]

    Matsusaki, M.; Kanemura, S.; Kinoshita, M.; Lee, Y. H.; Inaba, K.; Okumura, M. The protein disulfide isomerase family: From proteostasis to pathogenesis. Biochim. Biophys. Acta Gen. Subj. in press, DOI:

Download references


This work was conceived by PCK, and was by supported by ARC Project No. CE140100036 (Davis), NSF CAREER CBET-1553945 (Ding), NIH MIRA R35GM119691 (Ding), AFTAM Research Collaboration Award (Davis and Ke), the National Natural Science Foundation of China (No. 11904189) (Sun), and the Juvenile Diabetes Research Foundation (Purcell and Faridi). A.W. P. is supported by a Principal Research Fellowship from the Australian NHMRC. TEM imaging was performed at Bio21 Advanced Microscopy Facility, University of Melbourne. HIM imaging was performed at the MCFP platform, University of Melbourne by Dr. Anders Barlow.

Author information



Corresponding authors

Correspondence to Thomas P. Davis or Feng Ding or Pouya Faridi or Pu Chun Ke.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faridi, A., Sun, Y., Mortimer, M. et al. Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet amyloid polypeptide. Nano Res. 12, 2827–2834 (2019).

Download citation


  • islet amyloid polypeptide (IAPP)
  • oligomer
  • amyloid
  • protein expression
  • graphene quantum dot