Advertisement

Replacing PVP by macrocycle cucurbit[6]uril to cap sub-5 nm Pd nanocubes as highly active and durable catalyst for ethanol electrooxidation

  • Dongshuang Wu
  • Minna CaoEmail author
  • Rong CaoEmail author
Research Article
  • 33 Downloads

Abstract

Pd nanocubes (NCs) enclosed by six {100} facets are fascinating model materials for both fundamental studies and practical applications. However, the only available method to prepare well-defined sub-10 nm Pd NCs was developed by Xia et al. more than 10 years ago, unavoidably using polyvinylpyrrolidone (PVP) polymer to prevent particle aggregation. The strongly adsorbed PVP extremely deteriorates the catalysts’ efficiency because of the high coverage of accessible surface-active sites. Numerous efforts have been devoted to replacing PVP with weaker capping agents but with limited progress predominately due to the difficulties in tuning the growth kinetics of Pd NCs. For the first time, we report that macrocycle cucurbit[6]uril (CB[6]) can replace PVP in the synthesis of Pd NCs by dedicatedly controlling the growth parameters. CB[6] capped Pd NCs showed 1.1–1.5 times increased specific surface area compared to the surfactant-free commercial Pd catalysts. Moreover, X-ray photoelectron spectroscopy demonstrated the modified electronic structure of Pd NCs through the carbonyl group of CB[6]. Consequently, compared to the commercial catalysts, the obtained Pd NCs exhibited 7 times higher current density towards ethanol oxidation reaction. Remarkably, after 17 h of continuous work, it reduced deactivation by up to 1–4 orders of magnitude.

Keywords

palladium cucurbit[6]uril nanocubes ethanol oxidation fuel cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the financial support from the National Key R & D Program of China (Nos. 2017YFA0206800 and 2017YFA0700100), the National Natural Science Foundation of China (Nos. 21573238, 21571177, and 21520102001), Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SLH045) and “Strategic Priority Research Program” of the Chinese Academy of Sciences (No.XDB20000000).

Supplementary material

12274_2019_2499_MOESM1_ESM.pdf (4.5 mb)
Supplementary material, approximately 228 KB.

References

  1. [1]
    Deraedt, C.; Astruc, D. “Homeopathic” palladium nanoparticle catalysis of cross carbon-carbon coupling reactions. Acc. Chem. Res. 2014, 47, 494–503.CrossRefGoogle Scholar
  2. [2]
    Zhang, H.; Jin, M. S.; Xiong, Y. J.; Lim, B.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 2013, 46, 1783–1794.CrossRefGoogle Scholar
  3. [3]
    Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.CrossRefGoogle Scholar
  4. [4]
    Wang, J. Y.; Cui, Y.; Wang, D. Design of hollow nanostructures for energy storage, conversion and production. Adv. Mater. 2018, 20, e1801993.CrossRefGoogle Scholar
  5. [5]
    Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.CrossRefGoogle Scholar
  6. [6]
    Lim, B.; Jiang, M. J.; Tao, J.; Camargo, P. H. C.; Zhu, Y. M.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv. Funct. Mater. 2009, 19, 189–200.CrossRefGoogle Scholar
  7. [7]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2008, 48, 60–103.CrossRefGoogle Scholar
  8. [8]
    Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.CrossRefGoogle Scholar
  9. [9]
    Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.CrossRefGoogle Scholar
  10. [10]
    Yang, N. L.; Zhang, Z. C.; Chen, B.; Huang, Y.; Chen, J. Z.; Lai, Z. C.; Chen, Y.; Sindoro, M.; Wang, A. L.; Cheng, H. F. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 2017, 29, 1700769.CrossRefGoogle Scholar
  11. [11]
    Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline heterophase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, e1803234.CrossRefGoogle Scholar
  12. [12]
    Niu, W. X.; Zhang, L.; Xu, G. B. Shape-controlled synthesis of singlecrystalline palladium nanocrystals. ACS Nano 2010, 4, 1987–1996.CrossRefGoogle Scholar
  13. [13]
    Berhault, G.; Bausach, M.; Bisson, L.; Becerra, L.; Thomazeau, C.; Uzio, D. Seed-mediated synthesis of Pd nanocrystals: Factors influencing a kinetic- or thermodynamic-controlled growth regime. J. Phys. Chem. C. 2007, 111, 5915–5925.CrossRefGoogle Scholar
  14. [14]
    Zhao, X.; Liu, H. J.; Li, A. Z.; Shen, Y. L.; Qu, J. H. Bromate removal by electrochemical reduction at boron-doped diamond electrode. Electrochim. Acta 2012, 62, 181–184.CrossRefGoogle Scholar
  15. [15]
    Naresh, N.; Wasim, F. G. S.; Ladewig, B. P.; Neergat, M. Removal of surfactant and capping agent from Pd nanocubes (Pd-NCs) using tert-butylamine: Its effect on electrochemical characteristics. J. Mater. Chem. A 2013, 1, 8553–8559.CrossRefGoogle Scholar
  16. [16]
    Rioux, R. M.; Song, H.; Grass, M.; Habas, S.; Niesz, K.; Hoefelmeyer, J. D.; Yang, P.; Somorjai, G. A. Monodisperse platinum nanoparticles of well-defined shape: Synthesis, characterization, catalytic properties and future prospects. Top. Catal. 2006, 39, 167–174.CrossRefGoogle Scholar
  17. [17]
    Borodko, Y.; Lee, H. S.; Joo, S. H.; Zhang, Y. W.; Somorjai, G. Spectroscopic study of the thermal degradation of PVP-capped Rh and Pt nanoparticles in H2 and O2 environments. J. Phys. Chem. C 2010, 114, 1117.1126.CrossRefGoogle Scholar
  18. [18]
    Shen, J.; Ziaei-azad, H.; Semagina, N. Is it always necessary to remove a metal nanoparticle stabilizer before catalysis? J. Mol. Catal. A: Chem. 2014, 391, 36–40.CrossRefGoogle Scholar
  19. [19]
    Aliaga, C.; Park, J. Y.; Yamada, Y.; Lee, H. S.; Tsung, C. K.; Yang, P. D.; Somorjai, G. A. Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV-ozone treatment. J. Phys. Chem. C 2009, 113, 6150–6155.CrossRefGoogle Scholar
  20. [20]
    Zhao, Y. S.; Tang, H. J.; Yang, N. L.; Wang, D. Graphdiyne: Recent achievements in photo- and electrochemical conversion. Adv. Sci. 2018, 5, 1800959.CrossRefGoogle Scholar
  21. [21]
    Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.CrossRefGoogle Scholar
  22. [22]
    Zhao, Y. S.; Yang, N. L.; Yao, H. Y.; Liu, D. B.; Song, L.; Zhu, J.; Li, S. Z.; Gu, L.; Lin, K. F.; Wang, D. Stereo-defined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 7240–7244.CrossRefGoogle Scholar
  23. [23]
    Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Strong interactions in supported-metal catalysts. Science 1981, 211, 1121–1125.CrossRefGoogle Scholar
  24. [24]
    Xi, Z.; Erdosy, D. P.; Mendoza-Garcia, A.; Duchesne, P. N.; Li, J. R.; Muzzio, M.; Li, Q.; Zhang, P.; Sun, S. H. Pd nanoparticles coupled to WO2.72 nanorods for enhanced electrochemical oxidation of formic acid. Nano Lett. 2017, 17, 2727–2731.CrossRefGoogle Scholar
  25. [25]
    Yao, S. Y.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W. Q.; Ye, Y. F.; Lin, L. L.; Wen, X. D.; Liu, P.; Chen, B. B. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 2017, 357, 389–393.CrossRefGoogle Scholar
  26. [26]
    Raza, F.; Yim, D.; Park, J. H.; Kim, H. I.; Jeon, S. J.; Kim, J. H. Structuring Pd nanoparticles on 2H-WS2 nanosheets induces excellent photocatalytic activity for cross-coupling reactions under visible light. J. Am. Chem. Soc. 2017, 139, 14767–14774.CrossRefGoogle Scholar
  27. [27]
    Jackson, C.; Smith, G. T.; Inwood, D. W.; Leach, A. S.; Whalley, P. S.; Callisti, M.; Polcar, T.; Russell, A. E.; Levecque, P.; Kramer, D. Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum. Nat. Commun. 2017, 8, 15802.CrossRefGoogle Scholar
  28. [28]
    Gao, F.; Zhang, Y. P.; Song, P. P.; Wang, J.; Wang, C. Q.; Guo, J.; Du, Y. K. Self-template construction of sub-24 nm Pd-Ag hollow nanodendrites as highly efficient electrocatalysts for ethylene glycol oxidation. J. Power Sources 2019, 418, 186–192.CrossRefGoogle Scholar
  29. [29]
    Zhang, Y. P.; Gao, F.; Song, P. P.; Wang, J.; Guo, J.; Shiraish, Y.; Du, Y. K. Glycine-assisted fabrication of N-doped graphene-supported uniform multipetal PtAg nanoflowers for enhanced ethanol and ethylene glycol oxidation. ACS Sustainable Chem. Eng. 2019, 7, 3176–3184.CrossRefGoogle Scholar
  30. [30]
    Zhang, X. F.; Chang, L.; Yang, Z. J.; Shi, Y. N.; Long, C.; Han, J. Y.; Zhang, B. H.; Qiu, X. Y.; Li, G. D.; Tang, Z. Y. Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis. Nano Res. 2019, 12, 437–440.CrossRefGoogle Scholar
  31. [31]
    Long, C.; Li, X.; Guo, J.; Shi, Y. N.; Liu, S. Q.; Tang, Z. Y. Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: Recent progress and perspectives. Small Methods 2019, 3, 1800369.Google Scholar
  32. [32]
    Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352–6357.CrossRefGoogle Scholar
  33. [33]
    Wang, E. D.; Xu, J. B.; Zhao, T. S. Density functional theory studies of the structure sensitivity of ethanol oxidation on palladium surfaces. J. Phys. Chem. C 2010, 114, 10489–10497.CrossRefGoogle Scholar
  34. [34]
    Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res. 2010, 4, 83–91.CrossRefGoogle Scholar
  35. [35]
    Bardelang, D.; Udachin, K. A.; Leek, D. M.; Ripmeester, J. A. Highly symmetric columnar channels in metal-free cucurbit[n]uril hydrate crystals (n = 6,8). CrystEngComm 2007, 9, 973–975.CrossRefGoogle Scholar
  36. [36]
    Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K. Cucurbituril homologues and derivatives: New opportunities in supramolecular chemistry. Acc. Chem. Res. 2003, 36, 621–630.CrossRefGoogle Scholar
  37. [37]
    Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. The cucurbit[n]uril family. Angew. Chem., Int. Ed. 2005, 44, 4844–4870.CrossRefGoogle Scholar
  38. [38]
    Lü, J.; Lin, J. X.; Cao, M. N.; Cao, R. Cucurbituril: A promising organic building block for the design of coordination compounds and beyond. Coordin. Chem. Rev. 2013, 257, 1334–1356.CrossRefGoogle Scholar
  39. [39]
    Barrow, S. J.; Kasera, S.; Rowland, M. J.; del Barrio, J.; Scherman, O. A. Cucurbituril-based molecular recognition. Chem. Rev. 2015, 115, 12320–12406.CrossRefGoogle Scholar
  40. [40]
    Lee, T. C.; Scherman, O. A. Formation of dynamic aggregates in water by cucurbit[5]uril capped with gold nanoparticles. Chem. Commun. 2010, 46, 2438–2440.CrossRefGoogle Scholar
  41. [41]
    de la Rica, R.; Velders, A. H. Biomimetic crystallization of Ag2S nanoclusters in nanopore assemblies. J. Am. Chem. Soc. 2011, 133, 2875–2877.CrossRefGoogle Scholar
  42. [42]
    Yun, G.; Hassan, Z.; Lee, J.; Kim, J.; Lee, N. S.; Kim, N. H.; Baek, K.; Hwang, I.; Park, C. G.; Kim, K. Highly stable, water-dispersible metal-nanoparticle-decorated polymer nanocapsules and their catalytic applications. Angew. Chem., Int. Ed. 2014, 53, 6414–6418.CrossRefGoogle Scholar
  43. [43]
    Kim, D.; Choi, J. K.; Kim, S. M.; Hwang, I.; Koo, J.; Choi, S.; Cho, S. H.; Kim, K.; Lee, I. S. Confined nucleation and growth of PdO nanocrystals in a seed-free solution inside hollow nanoreactor. ACS Appl. Mater. Interfaces 2017, 9, 29992–30001.CrossRefGoogle Scholar
  44. [44]
    Cao, M. N.; Wu, D. S.; Gao, S. Y.; Cao, R. Platinum nanoparticles stabilized by cucurbit[6]uril with enhanced catalytic activity and excellent poisoning tolerance for methanol electrooxidation. Chem. -Eur. J. 2012, 18, 12978–12985.CrossRefGoogle Scholar
  45. [45]
    You, H. H.; Wu, D. S.; Chen, Z. N.; Sun, F. F.; Zhang, H.; Chen, Z. H.; Cao, M. N.; Zhuang, W.; Cao, R. Highly active and stable water splitting in acidic media using a bifunctional iridium/cucurbit[6]uril catalyst. ACS Energy Lett. 2019, 4, 1301–1307.CrossRefGoogle Scholar
  46. [46]
    Cao, M. N.; Wei, Y.; Gao, S. Y.; Cao, R. Synthesis of palladium nanocatalysts with cucurbit[n]uril as both a protecting agent and a support for Suzuki and Heck reactions. Catal. Sci. Technol. 2012, 2, 156–163.CrossRefGoogle Scholar
  47. [47]
    Cao, M. N.; Lin, J. X.; Yang, H. X.; Cao, R. Facile synthesis of palladium nanoparticles with high chemical activity using cucurbit[6]uril as protecting agent. Chem. Commun. 2010, 46, 5088–5090.CrossRefGoogle Scholar
  48. [48]
    Shen, C.; Ma, D.; Meany, B.; Isaacs, L.; Wang, Y. H. Acyclic cucurbit[n]uril molecular containers selectively solubilize single-walled carbon nanotubes in water. J. Am. Chem. Soc. 2012, 134, 7254–7257.CrossRefGoogle Scholar
  49. [49]
    Ren, H.; Shao, H.; Zhang, L. J.; Guo, D.; Jin, Q.; Yu, R. B.; Wang, L.; Li, Y. L.; Wang, Y.; Zhao, H. J. et al. A new graphdiyne nanosheet/Pt nanoparticle-based counter electrode material with enhanced catalytic activity for dye-sensitized solar cells. Adv. Energy Mater. 2015, 5, 1500296.CrossRefGoogle Scholar
  50. [50]
    Liu, M. C.; Zheng, Y. Q.; Zhang, L.; Guo, L. J.; Xia, Y. N. Transformation of Pd nanocubes into octahedra with controlled sizes by maneuvering the rates of etching and regrowth. J. Am. Chem. Soc. 2013, 135, 11752–11755.CrossRefGoogle Scholar
  51. [51]
    Wang, X. X.; Yang, J. D.; Yin, H. J.; Song, R.; Tang, Z. Y. “Raisin bun”-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation. Adv. Mater. 2013, 25, 2728–2732.CrossRefGoogle Scholar
  52. [52]
    Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, 1992.Google Scholar
  53. [53]
    Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Norskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A Chem. 1997, 115, 421–429.CrossRefGoogle Scholar
  54. [54]
    Hammer, B.; Morikawa, Y.; Norskov, J. K. Co chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 1996, 76, 2141–2144.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina

Personalised recommendations