A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts

  • Guanyu Chen
  • Jiwei Liu
  • Qingqing Li
  • Pengfei Guan
  • Xuefeng Yu
  • Linshen Xing
  • Jie Zhang
  • Renchao CheEmail author
Research Article


Carbon-sulfur composites have drawn increasing interest in various fields including electrocatalysis because of their unique structures. However, carbon-sulfur composite with tiny sulfur nanocrystals has still received little attention. Herein, hollow porous carbon sphere-sulfur composite (HPCS-S) which possesses excellent electrochemical performance towards H2O2 has been prepared for the first time via a simple silica template method. The 2–5 nm sulfur nanocrystals being restricted in the channel of the hollow porous carbon spheres are under a strong compressive stress, which was further confirmed by HRTEM and GPA. The HPCS-S nanocrystals show better conductivity than amorphous sulfur clusters because of the reduction of the steric hindrance which efficiently promotes the electron transportation. Consequently, the higher activity and selectivity towards the 2e- oxygen reduction reaction (ORR) to H2O2 in alkaline solution was obtained. The H2O2 selectivity rises from 20% to over 70% after the sulfur addition and the H2O2 production rate achieves 183.99 mmol·gcatalyst-1 with the Faradaic efficiency of 70%. Furthermore, performance enhancement mechanism was also investigated using the density functional theory (DFT) calculations. After the introducing of sulfur nanocrystals, the appearance of S-S bond greatly decreases the overpotential compared with S-doping, which results in significant enhancement of the electrocatalytic property. Consequently, the HPCS-S can be an efficient H2O2 production electrocatalyst in alkaline solution.


sulfur nanocrystal hydrogen peroxide production carbon sphere oxygen reduction reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Ministry of Science and Technology of China (No. 2018YFA0209102), the National Natural Science Foundation of China (Nos. 11727807, 51725101, 51672050 and 61790581), and the Science and Technology Commission of Shanghai Municipality (No.16DZ2260600).

Supplementary material

12274_2019_2496_MOESM1_ESM.pdf (2.6 mb)
A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts


  1. [1]
    Jones, C. W. Applications of Hydrogen Peroxide and Derivatives; Royal Society of Chemistry: Cambridge, 1999.Google Scholar
  2. [2]
    Berl, E. A new cathodic process for the production of H2O2. J. Electrochem. Soc. 1939, 76, 359–369CrossRefGoogle Scholar
  3. [3]
    Sheng, Y. P.; Song, S. L.; Wang, X. L.; Song, L. Z.; Wang, C. J.; Sun, H. H.; Niu, X. Q. Electrogeneration of hydrogen peroxide on a novel highly effective acetylene black-PTFE cathode with PTFE film. Electrochim. Acta 2011, 56, 8651–8656CrossRefGoogle Scholar
  4. [4]
    Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.CrossRefGoogle Scholar
  5. [5]
    Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y. Z.; Yan, X. Z.; Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.CrossRefGoogle Scholar
  6. [6]
    Fellinger, T. P.; Hasché, F.; Strasser, P.; Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2012, 134, 4072–4075.CrossRefGoogle Scholar
  7. [7]
    Kuang, M.; Zheng, G. Nanostructured bifunctional redox electrocatalysts. Small 2016, 12, 5656–5675.CrossRefGoogle Scholar
  8. [8]
    Zheng, Z. K.; Ng, Y. H.; Wang, D. W.; Amal, R. Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production. Adv. Mater. 2016, 28, 9949–9955.CrossRefGoogle Scholar
  9. [9]
    Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923.CrossRefGoogle Scholar
  10. [10]
    Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.CrossRefGoogle Scholar
  11. [11]
    Arrigo, R.; Schuster, M. E.; Abate, S.; Giorgianni, G.; Centi, G.; Perathoner, S.; Wrabetz, S.; Pfeifer, V.; Antonietti, M.; Schlögl, R. Pd supported on carbon nitride boosts the direct hydrogen peroxide synthesis. ACS Catal. 2016, 6, 6959–6966.CrossRefGoogle Scholar
  12. [12]
    Zheng, X. J.; Wu, J.; Cao, X. C.; Abbott, J.; Jin, C.; Wang, H. B.; Strasser, P.; Yang, R. Z.; Chen, X.; Wu, G. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B: Environ. 2019, 241, 442–451.CrossRefGoogle Scholar
  13. [13]
    Hao, Y. J.; Zhang, X.; Yang, Q. F.; Chen, K.; Guo, J.; Zhou, D. Y.; Feng, L.; Slanina, Z. Highly porous defective carbons derived from seaweed biomass as efficient electrocatalysts for oxygen reduction in both alkaline and acidic media. Carbon 2018, 137, 93–103.CrossRefGoogle Scholar
  14. [14]
    Jeon, I. Y.; Choi, H. J.; Jung, S. M.; Seo, J. M.; Kim, M. J.; Dai, L. M.; Baek, J. B. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 1386–1393.CrossRefGoogle Scholar
  15. [15]
    Khalid, M.; Honorato, A. M. B.; Varela, H.; Dai, L. M. Multifunctional electrocatalysts derived from conducting polymer and metal organic framework complexes. Nano Energy 2018, 45, 127–135.CrossRefGoogle Scholar
  16. [16]
    Li, Z. H.; Cui, J. Y.; Liu, Y. K.; Li, J. B.; Liu, K.; Shao, M. F. Electrosynthesis of well-defined metal-organic framework films and the carbon nanotube network derived from them toward electrocatalytic applications. ACS Appl. Mater. Interfaces 2018, 10, 34494–34501.CrossRefGoogle Scholar
  17. [17]
    Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650–2676.CrossRefGoogle Scholar
  18. [18]
    Nie, Y.; Li, L.; Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201.CrossRefGoogle Scholar
  19. [19]
    Higgins, D.; Zamani, P.; Yu, A. P.; Chen, Z. W. The application of graphene and its composites in oxygen reduction electrocatalysis: A perspective and review of recent progress. Energy Environ. Sci. 2016, 9, 357–390.CrossRefGoogle Scholar
  20. [20]
    Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. A.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260–6269.CrossRefGoogle Scholar
  21. [21]
    Wang, J. L.; Liu, H.; Liu, Y.; Wang, W. H.; Sun, Q.; Wang, X. B.; Zhao, X. Y.; Hu, H.; Wu, M. B. Sulfur bridges between Co9S8 nanoparticles and carbon nanotubes enabling robust oxygen electrocatalysis. Carbon 2019, 144, 259–268.CrossRefGoogle Scholar
  22. [22]
    Zhu, C. Z.; Li, H.; Fu, S. F.; Du, D.; Lin, Y. H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531.CrossRefGoogle Scholar
  23. [23]
    Peng, H. J.; Huang, J. Q.; Zhao, M. Q.; Zhang, Q.; Cheng, X. B.; Liu, X. Y.; Qian, W. Z.; Wei, F. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 2772.2781.CrossRefGoogle Scholar
  24. [24]
    He, W. H.; Wang, Y.; Jiang, C. H.; Lu, L. H. Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts. Chem. Soc. Rev. 2016, 45, 2396.2409.CrossRefGoogle Scholar
  25. [25]
    Liu, G.; Niu, P.; Yin, L. C.; Cheng, H. M. α-sulfur crystals as a visiblelight-active photocatalyst. J. Am. Chem. Soc. 2012, 134, 9070.9073.CrossRefGoogle Scholar
  26. [26]
    Ma, G. Q.; Huang, F. F.; Wen, Z. Y.; Wang, Q. S.; Hong, X. H.; Jin, J.; Wu, X. W. Enhanced performance of lithium sulfur batteries with conductive polymer modified separators. J. Mater. Chem. A 2016, 4, 16968.16974.CrossRefGoogle Scholar
  27. [27]
    Song, J. X.; Xu, T.; Gordin, M. L.; Zhu, P. Y.; Lv, D. P.; Jiang, Y. B.; Chen, Y. S.; Duan, Y. H.; Wang, D. H. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-arealcapacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243–1250.CrossRefGoogle Scholar
  28. [28]
    Huang, X. X.; Zhou, L. J.; Voiry, D.; Chhowalla, M.; Zou, X. X.; Asefa, T. Monodisperse mesoporous carbon nanoparticles from polymer/silica selfaggregates and their electrocatalytic activities. ACS Appl. Mater. Interfaces 2016, 8, 18891.18903.CrossRefGoogle Scholar
  29. [29]
    Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.CrossRefGoogle Scholar
  30. [30]
    Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.CrossRefGoogle Scholar
  31. [31]
    Chen, Y.; Lu, S.; Zhou, J.; Qin, W.; Wu, X. Synergistically assembled Li2S/FWNTs@reduced graphene oxide nanobundle forest for free-standing high-performance Li2S cathodes. Adv. Funct. Mater. 2017, 27, 1700987.CrossRefGoogle Scholar
  32. [32]
    Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–5.CrossRefGoogle Scholar
  33. [33]
    Beinert, H.; Holm, R. H.; Munck, E. Iron-sulfur clusters: nature’s modular, multipurpose structures. Nature, 1997, 277, 653–659.Google Scholar
  34. [34]
    Zeng, S. Z.; Zeng, X. R.; Tu, W. X.; Huang, H. T.; Yu, L.; Yao, Y. C.; Jin, N. Z.; Zhang, Q.; Zou, J. Z. A universal strategy to prepare sulfur-containing polymer composites with desired morphologies for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 22002–22012.CrossRefGoogle Scholar
  35. [35]
    Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.CrossRefGoogle Scholar
  36. [36]
    Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.CrossRefGoogle Scholar
  37. [37]
    Liu, R. L.; Shi, Y. F.; Wan, Y.; Meng, Y.; Zhang, F. Q.; Gu, D.; Chen, Z. X.; Tu, B.; Zhao, D. Y. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. J. Am. Chem. Soc. 2006, 128, 11652–11662.CrossRefGoogle Scholar
  38. [38]
    Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium.sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.CrossRefGoogle Scholar
  39. [39]
    Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408.CrossRefGoogle Scholar
  40. [40]
    Fu, K.; Wang, Y.; Mao, L. C.; Yang, X. X.; Peng, W.; Jin, J. H.; Yang, S. L.; Li, G. Rational assembly of hybrid carbon nanotubes grafted on the carbon nanofibers as reliable and robust bifunctional catalyst for rechargeable zinc-air battery. J. Power Sources 2019, 421, 68–75.CrossRefGoogle Scholar
  41. [41]
    Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv. Mater. 2019, 1808173.Google Scholar
  42. [42]
    Xie, J.; Li, B. Q.; Peng, H. J.; Song, Y. W.; Li, J. X.; Zhang, Z. W.; Zhang, Q. From supramolecular species to self-templated porous carbon and metal-doped carbon for oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2019, 58, 4963–4967.CrossRefGoogle Scholar
  43. [43]
    Li, B. Q.; Zhao, C. X.; Chen, S. M.; Liu, J. N.; Chen, X.; Song, L.; Zhang, Q. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries. Adv. Mater. 2019, 31, 1900592.CrossRefGoogle Scholar
  44. [44]
    Evers, S.; Nazar, L. F. New approaches for high energy density lithium-sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135–1143.CrossRefGoogle Scholar
  45. [45]
    Krishnaveni, K.; Subadevi, R.; Raja, M.; PremKumar, T.; Sivakumar, M. Sulfur/PAN/acetylene black composite prepared by a solution processing technique for lithium-sulfur batteries. J. Appl. Polym. Sci. 2018, 135, 46598.CrossRefGoogle Scholar
  46. [46]
    Zhao, S. Y.; Wang, K.; Zou, X. L.; Gan, L.; Du, H. D.; Xu, C. J.; Kang, F. Y.; Duan, W. H.; Li, J. Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Res. 2019, 12, 925–930.CrossRefGoogle Scholar
  47. [47]
    Jia, Q. Y.; Liang, W. T.; Bates, M. K.; Mani, P.; Lee, W.; Mukerjee, S. Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: In situ observation of the linear compositionstrain-activity relationship. ACS Nano 2015, 9, 387–400.CrossRefGoogle Scholar
  48. [48]
    Li, H.; Du, M. S.; Mleczko, M. J.; Koh, A. L.; Nishi, Y.; Pop, E.; Bard, A. J.; Zheng, X. L. Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J. Am. Chem. Soc. 2016, 138, 5123–5129.CrossRefGoogle Scholar
  49. [49]
    Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.CrossRefGoogle Scholar
  50. [50]
    Chase, M. W. Jr. NIST-JANAF Thermochemical Tables; 4th ed. American Chemical Society: Washington, DC, 1998.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Guanyu Chen
    • 1
  • Jiwei Liu
    • 3
  • Qingqing Li
    • 1
  • Pengfei Guan
    • 2
  • Xuefeng Yu
    • 1
  • Linshen Xing
    • 1
  • Jie Zhang
    • 1
  • Renchao Che
    • 1
    Email author
  1. 1.Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem)Fudan UniversityShanghaiChina
  2. 2.Beijing Computational Science Research CenterBeijingChina
  3. 3.Innovative Center for Advanced Materials (ICAM)Hangzhou Dianzi UniversityHangzhouChina

Personalised recommendations