Skip to main content

The role of phase impurities and lattice defects on the electron dynamics and photochemistry of CuFeO2 solar photocathodes

Abstract

CuFeO2 is a promising photocathode for H2 evolution and CO2 reduction reactions. To better understand the complex defect chemistry and role of impurity phases in this material and their effect on the photochemical performance, we employ visible light transient absorption spectroscopy and density functional theory (DFT) calculations to investigate the electron dynamics in electrochemically deposited Cu-Fe oxide thin films. Kinetic analysis of carrier lifetime shows a fast, sub-ps contribution to relaxation followed by persistence of a long-lived state to time delays greater than 2 ns. Increasing amplitude of the long-lived state is shown to correlate with the rate of fast initial relaxation, and this is explained in terms of a competition between charge carrier trapping and charge separation. Charge separation in CuFeO2 occurs via hole thermalization from O 2p to Cu 3d valence band states leading to segregation of electrons and holes across layers in the CuFeO2 lattice. Correlation between transient absorption measurements and DFT calculations suggest that Cu vacancies enhance photochemical performance by facilitating charge separation kinetics. In contrast, O interstitials are predicted to switch the relative positions of O 2p and Cu 3d valence band states, which would inhibit charge separation by inter-band hole thermalization. Finally, we find no evidence for electron injection from CuFeO2 to CuO suggesting that charge separation at this heterostructure interface does not play a role in the carrier lifetime or photochemical performance of the catalysts studied here.

This is a preview of subscription content, access via your institution.

References

  1. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  Google Scholar 

  2. Sivula, K. Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J. Phys. Chem. Lett. 2013, 4, 1624–1633.

    Article  Google Scholar 

  3. Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 7, 15010.

    Article  Google Scholar 

  4. Dotan, H.; Sivula, K.; Grätzel, M.; Rothschild, A.; Warren, S. C. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 2011, 4, 958–964.

    Article  Google Scholar 

  5. Abdi, F. F.; Berglund, S. P. Recent developments in complex metal oxide photoelectrodes. J. Phys. D: Appl. Phys. 2017, 50, 193002.

    Article  Google Scholar 

  6. Jiang, T. F.; Zhao, Y.; Liu, M. Y.; Chen, Y.; Xia, Z. Q.; Xue, H. G. Enhancing the lifetime of photoinduced charge carriers in CuFeO2 nanoplates by hydrothermal doping of Mg for photoelectrochemical water reduction. Phys. Status Solidi A 2018, 215, 1800056.

    Article  Google Scholar 

  7. Sorenson, S.; Driscoll, E.; Haghighat, S.; Dawlaty, J. M. Ultrafast carrier dynamics in hematite films: The role of photoexcited electrons in the transient optical response. J. Phys. Chem. C 2014, 118, 23621–23626.

    Article  Google Scholar 

  8. Prévot, M. S.; Jeanbourquin, X. A.; Bourée, W. S.; Abdi, F.; Friedrich, D.; van de Krol, R.; Guijarro, N.; Le Formal, F.; Sivula, K. Evaluating charge carrier transport and surface states in CuFeO2 photocathodes. Chem. Mater. 2017, 29, 4952–4962.

    Article  Google Scholar 

  9. Kang, U.; Choi, S. K.; Ham, D. J.; Ji, S. M.; Choi, W.; Han, D. S.; Abdel-Wahab, A.; Park, H. Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis. Energy Environ. Sci. 2015, 8, 2638–2643.

    Article  Google Scholar 

  10. Gu, J.; Wuttig, A.; Krizan, J. W.; Hu, Y.; Detweiler, Z. M.; Cava, R. J.; Bocarsly, A. B. Mg-doped CuFeO2 photocathodes for photoelectrochemical reduction of carbon dioxide. J. Phys. Chem. C 2013, 117, 12415–12422.

    Article  Google Scholar 

  11. Prévot, M. S.; Guijarro, N.; Sivula, K. Enhancing the performance of a robust sol-gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction. ChemSusChem 2015, 8, 1359–1367.

    Article  Google Scholar 

  12. Wuttig, A.; Krizan, J. W.; Gu, J.; Frick, J. J.; Cava, R. J.; Bocarsly, A. B. The effect of Mg-doping and Cu nonstoichiometry on the photoelectrochemical response of CuFeO2. J. Mater. Chem. A 2017, 5, 165–171.

    Article  Google Scholar 

  13. Read, C. G.; Park, Y.; Choi, K. S. Electrochemical synthesis of p-type CuFeO2 electrodes for use in a photoelectrochemical cell. J. Phys. Chem. Lett. 2012, 3, 1872–1876.

    Article  Google Scholar 

  14. Oh, Y.; Yang, W.; Kim, J.; Jeong, S.; Moon, J. Enhanced photocurrent of transparent CuFeO2 photocathodes by self-light-harvesting architecture. ACS Appl. Mater. Interfaces 2017, 9, 14078–14087.

    Article  Google Scholar 

  15. Yoon, S. H.; Han, D. S.; Kang, U.; Choi, S. Y.; Yiming, W.; Abdel-Wahab, A.; Park, H. Effects of electrochemical synthetic conditions on surface property and photocatalytic performance of copper and iron-mixed p-type oxide electrodes. J. Mater. Sci. Technol. 2018, 34, 1503–1510.

    Article  Google Scholar 

  16. Barnabé, A.; Mugnier, E.; Presmanes, L.; Tailhades, P. Preparation of delafossite CuFeO2 thin films by Rf-sputtering on conventional glass substrate. Mater. Lett. 2006, 60, 3468–3470.

    Article  Google Scholar 

  17. Lee, S.; Kang, U.; Piao, G.; Kim, S.; Han, D. S.; Park, H. Homogeneous photoconversion of seawater uranium using copper and iron mixed-oxide semiconductor electrodes. Appl. Catal. B: Environ. 2017, 207, 35–41.

    Article  Google Scholar 

  18. Benko, F. A.; Koffyberg, F. P. Opto-electronic properties of p- and n-type delafossite, CuFeO2. J. Phys. Chem. Solids 1987, 48, 431–434.

    Article  Google Scholar 

  19. Ingram, B. J.; Harder, B. J.; Hrabe, N. W.; Mason, T. O.; Poeppelmeier, K. R. Transport and defect mechanisms in cuprous delafossites. 2. CuScO2 and CuYO2. Chem. Mater. 2004, 16, 5623–5629.

    Article  Google Scholar 

  20. Bredar, A. R. C.; Blanchet, M. D.; Comes, R. B.; Farnum, B. H. Evidence and influence of copper vacancies in p-type CuGaO2 mesoporous films. ACS Appl. Energy Mater. 2019, 2, 19–28.

    Article  Google Scholar 

  21. Jang, Y. J.; Park, Y. B.; Kim, H. E.; Choi, Y. H.; Choi, S. H.; Lee, J. S. Oxygen-intercalated CuFeO2 photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production. Chem. Mater. 2016, 28, 6054–6061.

    Article  Google Scholar 

  22. Chen, H. Y.; Fu, G. W. Influences of post-annealing conditions on the formation of delafossite-CuFeO2 thin films. Appl. Surf. Sci. 2014, 288, 258–264.

    Article  Google Scholar 

  23. Amrute, A. P.; Łodziana, Z.; Mondelli, C.; Krumeich, F.; Pérez-Ramírez, J. Solid-state chemistry of cuprous delafossites: Synthesis and stability aspects. Chem. Mater. 2013, 25, 4423–4435.

    Article  Google Scholar 

  24. Kalinin, S. V.; Spaldin, N. A. Functional ion defects in transition metal oxides. Science 2013, 341, 858–859.

    Article  Google Scholar 

  25. Rettie, A. J. E.; Sturza, M.; Malliakas, C. D.; Botana, A. S.; Chung, D. Y.; Kanatzidis, M. G. Copper vacancies and heavy holes in the two-dimensional semiconductor KCu3−xSe2. Chem. Mater. 2017, 29, 6114–6121.

    Article  Google Scholar 

  26. Rudradawong, C.; Ruttanapun, C. Effect of excess oxygen for CuFeO2.06 delafossite on thermoelectric and optical properties. Phys. B: Condens. Matter 2017, 526, 21–27.

    Article  Google Scholar 

  27. Stöcker, T.; Exner, J.; Schubert, M.; Streibl, M.; Moos, R. Influence of oxygen partial pressure during processing on the thermoelectric properties of aerosol-deposited CuFeO2. Materials 2016, 9, 227.

    Article  Google Scholar 

  28. Kang, U.; Park, H. A facile synthesis of CuFeO2 and CuO composite photocatalyst films for the production of liquid formate from CO2 and water over a month. J. Mater. Chem. A 2017, 5, 2123–2131.

    Article  Google Scholar 

  29. Bera, A.; Deb, K.; Chattopadhyay, K. K.; Thapa, R.; Saha, B. Mixed phase delafossite structured p type CuFeO2/CuO thin film on FTO coated glass and its Schottky diode characteristics. Microelectron. Eng. 2016, 162, 23–26.

    Article  Google Scholar 

  30. Bera, A.; Deb, K.; Sinthika, S.; Thapa, R.; Saha, B. Chemical modulation of valance band in delafossite structured CuFeO2 thin film and its photoresponse. Mater. Res. Express 2018, 5, 015909.

    Article  Google Scholar 

  31. Jiang, C. M.; Reyes-Lillo, S. E.; Liang, Y. F.; Liu, Y. S.; Liu, G. J.; Toma, F. M.; Prendergast, D.; Sharp, I. D.; Cooper, J. K. Electronic structure and performance bottlenecks of CuFeO2 photocathodes. Chem. Mater. 2019, 31, 2524–2534.

    Article  Google Scholar 

  32. Husek, J.; Cirri, A.; Biswas, S.; Asthagiri, A.; Baker, L. R. Hole thermalization dynamics facilitate ultrafast spatial charge separation in CuFeO2 solar photocathodes. J. Phys. Chem. C 2018, 122, 11300–11304.

    Article  Google Scholar 

  33. Yang, X.; Fugate, E. A.; Mueanngern, Y.; Baker, L. R. Photoelectrochemical CO2 reduction to acetate on iron-copper oxide catalysts. ACS Catal. 2017, 7, 177–180.

    Article  Google Scholar 

  34. Riveros, G.; Garín, C.; Ramírez, D.; Dalchiele, E. A.; Marotti, R. E.; Pereyra, C. J.; Spera, E.; Gómez, H.; Grez, P.; Martín, F. et al. Delafossite CuFeO2 thin films electrochemically grown from a DMSO based solution. Electrochim. Acta 2015, 164, 297–306.

    Article  Google Scholar 

  35. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

    Article  Google Scholar 

  36. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  37. Kresse, G. Ab initio molecular dynamics for liquid metals. J. Non. Cryst. Solids 1995, 192–193, 222–229.

    Article  Google Scholar 

  38. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  39. Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106.

    Article  Google Scholar 

  40. Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982.

    Article  Google Scholar 

  41. Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 194101.

    Article  Google Scholar 

  42. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

    Article  Google Scholar 

  43. Heyd, J.; Scuseria, G. E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 2004, 121, 1187–1192.

    Article  Google Scholar 

  44. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.

    Article  Google Scholar 

  45. Ye, F.; Ren, Y.; Huang, Q.; Fernandez-Baca, J. A.; Dai, P. C.; Lynn, J. W.; Kimura, T. Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. Phys. Rev. B 2006, 73, 220404.

    Article  Google Scholar 

  46. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, New York, 1994.

    Google Scholar 

  47. Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.

    Article  Google Scholar 

  48. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908.

    Article  Google Scholar 

  49. Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204.

    Article  Google Scholar 

  50. Xiong, D. H.; Qi, Y. K.; Li, X. W.; Liu, X. X.; Tao, H. Z.; Chen, W.; Zhao, X. J. Hydrothermal synthesis of delafossite CuFeO2 crystals at 100 °C. RSC Adv. 2015, 5, 49280–49286.

    Article  Google Scholar 

  51. Stöcker, T.; Moos, R. Effect of oxygen partial pressure on the phase stability of copper-iron delafossites at elevated temperatures. Materials 2018, 11, 1888.

    Article  Google Scholar 

  52. Amini, M.; Kafshdouzsani, M. H.; Akbari, A.; Gautam, S.; Shim, C. H.; Chae, K. H. Spinel copper ferrite nanoparticles: Preparation, characterization and catalytic activity. Appl. Organomet. Chem. 2018, 32, e4470.

    Article  Google Scholar 

  53. Joshi, T.; Senty, T. R.; Trappen, R.; Zhou, J. L.; Chen, S.; Ferrari, P.; Borisov, P.; Song, X. Y.; Holcomb, M. B.; Bristow, A. D. et al. Structural and magnetic properties of epitaxial delafossite CuFeO2 thin films grown by pulsed laser deposition. J. Appl. Phys. 2015, 117, 013908.

    Article  Google Scholar 

  54. Mugnier, E.; Barnabé, A.; Tailhades, P. Synthesis and characterization of CuFeO2+δ delafossite powders. Solid State Ionics 2006, 177, 607–612.

    Article  Google Scholar 

  55. Zhu, C. Q.; Osherov, A.; Panzer, M. J. Surface chemistry of electrodeposited Cu2O films studied by XPS. Electrochim. Acta 2013, 111, 771–778.

    Article  Google Scholar 

  56. Carneiro, L. M.; Cushing, S. K.; Liu, C.; Su, Y. D.; Yang, P. D.; Alivisatos, A. P.; Leone, S. R. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nat. Mater. 2017, 16, 819–825.

    Article  Google Scholar 

  57. Sturman, B.; Podivilov, E.; Gorkunov, M. Origin of stretched exponential relaxation for hopping-transport models. Phys. Rev. Lett. 2003, 91, 176602.

    Article  Google Scholar 

  58. Pendlebury, S. R.; Barroso, M.; Cowan, A. J.; Sivula, K.; Tang, J. W.; Grätzel, M.; Klug, D.; Durrant, J. R. Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chem Commun. 2011, 47, 716–718.

    Article  Google Scholar 

  59. Pesci, F. M.; Wang, G. M.; Klug, D. R.; Li, Y.; Cowan, A. J. Efficient Suppression of electron-hole recombination in oxygen-deficient hydrogentreated TiO2 nanowires for photoelectrochemical water splitting. J. Phys. Chem. C 2013, 117, 25837–25844.

    Article  Google Scholar 

  60. Moss, B.; Lim, K. K.; Beltram, A.; Moniz, S.; Tang, J. W.; Fornasiero, P.; Barnes, P.; Durrant, J.; Kafizas, A. Comparing photoelectrochemical water oxidation, recombination kinetics and charge trapping in the three polymorphs of TiO2. Sci. Rep. 2017, 7, 2938.

    Article  Google Scholar 

  61. Sturman, B.; Podivilov, E.; Gorkunov, M. Origin of stretched exponential relaxation for hopping-transport models. Phys. Rev. Lett. 2003, 91, 176602.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under NSF award number 1665280. We thank Barbara Dunlap for assistance with TA measurements, which were conducted in the Center for Chemical and Biophysical Dynamics at Ohio State University. We thank Yutichai Mueanngern for assistance with TEM measurements, which were performed in the Center for Electron Microscopy and Analysis at Ohio State University. We thank Professor Anne Co for her assistance with the Mott-Schottky analysis. We acknowledge the Ohio Supercomputing Center for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aravind Asthagiri or L. Robert Baker.

Electronic Supplementary Material

12274_2019_2493_MOESM1_ESM.pdf

The role of phase impurities and lattice defects on the electron dynamics and photochemistry of CuFeO2 solar photocathodes

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fugate, E.A., Biswas, S., Clement, M.C. et al. The role of phase impurities and lattice defects on the electron dynamics and photochemistry of CuFeO2 solar photocathodes. Nano Res. 12, 2390–2399 (2019). https://doi.org/10.1007/s12274-019-2493-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2493-6

Keywords

  • delafossite CuFeO2
  • charge-carrier dynamics
  • transient absorption spectroscopy
  • Cu vacancy
  • O interstitial