A facile method to synthesize water-soluble Pd8 nanoclusters unraveling the catalytic mechanism of p-nitrophenol to p-aminophenol

  • Pan An
  • Rajini Anumula
  • Chaonan Cui
  • Yang Liu
  • Fei Zhan
  • Ye Tao
  • Zhixun LuoEmail author
Research Article


Hydrogenation of p-nitrophenol (PNP) towards the conversion to p-aminophenol (PAP) by metal catalysis is known as a simple and eco-friendly technique for the production of corresponding industrial and pharmaceutical intermediates. While continuous efforts are paid for more sustainable and greener procedures by using transition metal catalysts, atomic-precise reaction mechanism for the PNP-to-PAP is still illusive to be fully understood. Utilizing a dry-wet combined strategy, here we have synthesized water-soluble Pd8 nanoclusters (NCs) with mercaptosuccinic acid (H2SMA) as the ligand, and the Pd8 NCs found high catalytic performance for the conversion of PNP-to-PAP, as identified by the electrospray ionization mass spectrometer (ESI-MS) measurement. The gradual changes over time of ultraviolet–visible (UV–vis) spectra of PNP really display the catalytic reduction by NaBH4 in presence of Pd8 NCs. Further, in-depth charge transfer interactions between PNP and the Pd8 clusters at the proton-rich conditions are investigated by natural bond orbital (NBO) analysis and electron density difference (EDD) analysis. The exothermic and kinetic-favorable reaction pathways are addressed, based on successive PNP hydrogenation and H2O removal processes, clarifying the reaction mechanism of Pd catalysts. It is worth noting that this solid-state synthetic route for such Pd8 clusters enables gram-scale quantity of production in likely practical use.


water-soluble Pd nanoclusters catalysis p-nitrophenol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Prof. Jiannian Yao and Dr. Xi Wang for his friendly help in the XAS experiments. This work was financially supported by the National Natural Science Foundation of China (Nos. 21722308 and 21802146), Beijing Natural Science Foundation (No. 2192064), CAS Key Research Project of Frontier Science (No. QYZDB-SSWSLH024), and Frontier Cross Project of National Laboratory for Molecular Sciences (No. 051Z011BZ3). Z. Luo acknowledges the National Thousand Youth Talents Program.

Supplementary material

12274_2019_2491_MOESM1_ESM.pdf (2.3 mb)
A facile method to synthesize water-soluble Pd8 nanoclusters unraveling the catalytic mechanism of p-nitrophenol to p-aminophenol


  1. [1]
    Komatsu, T.; Hirose, T. Gas phase synthesis of para-aminophenol from nitrobenzene on Pt/zeolite catalysts. Appl. Catal. A Gen. 2004, 276, 95–102.CrossRefGoogle Scholar
  2. [2]
    Rode, C. V.; Vaidya, M. J.; Jaganathan, R.; Chaudhari, R. V. Hydrogenation of nitrobenzene to p-aminophenol in a four-phase reactor: Reaction kinetics and mass transfer effects. Chem. Eng. Sci. 2001, 56, 1299–1304.CrossRefGoogle Scholar
  3. [3]
    Jagadeesh, R. V.; Banerjee, D.; Arockiam, P. B.; Junge, H.; Junge, K.; Pohl, M. M.; Radnik, J.; Brückner, A.; Beller, M. Highly selective transfer hydrogenation of functionalised nitroarenes using cobalt-based nanocatalysts. Green Chem. 2015, 17, 898–902.CrossRefGoogle Scholar
  4. [4]
    McCormick, N. G.; Feeherry, F. E.; Levinson, H. S. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 1976, 31, 949–958.Google Scholar
  5. [5]
    Oturan, M. A.; Peiroten, J.; Chartrin, P.; Acher, A. J. Complete destruction of p-nitrophenol in aqueous medium by electro-fenton method. Environ. Sci. Technol. 2000, 34, 3474–3479.CrossRefGoogle Scholar
  6. [6]
    Chua, C. K.; Pumera, M.; Rulíšek, L. Reduction pathways of 2,4,6- trinitrotoluene: An electrochemical and theoretical study. J. Phys. Chem. C 2012, 116, 4243–4251.CrossRefGoogle Scholar
  7. [7]
    Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20, 1523–1528.CrossRefGoogle Scholar
  8. [8]
    Li, Y. Z.; Cao, Y. L.; Xie, J.; Jia, D. Z.; Qin, H. Y.; Liang, Z. T. Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol. Catal. Commun. 2015, 58, 21–25.CrossRefGoogle Scholar
  9. [9]
    [9] Polášek, M.; Turecek, F. Hydrogen atom adducts to nitrobenzene: Formation of the phenylnitronic radical in the gas phase and energetics of wheland intermediates. J. Am. Chem. Soc. 2000, 122, 9511–9524.CrossRefGoogle Scholar
  10. [10]
    Vaidya, M. J.; Kulkarni, S. M.; Chaudhari, R. V. Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol. Org. Process Res. Dev. 2003, 7, 202–208.CrossRefGoogle Scholar
  11. [11]
    Wang, M. L.; Jiang, T. T.; Lu, Y.; Liu, H. J.; Chen, Y. Gold nanoparticles immobilized in hyperbranched polyethylenimine modified polyacrylonitrile fiber as highly efficient and recyclable heterogeneous catalysts for the reduction of 4-nitrophenol. J. Mater. Chem. A 2013, 1, 5923–5933.CrossRefGoogle Scholar
  12. [12]
    Zhang, D. H.; Chen, L.; Ge, G. L. A green approach for efficient p-nitrophenol hydrogenation catalyzed by a Pd-based nanocatalyst. Catal. Commun. 2015, 66, 95–99.CrossRefGoogle Scholar
  13. [13]
    Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: A trusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51, 9410–9431.CrossRefGoogle Scholar
  14. [14]
    Boronat, M.; Concepción, P.; Corma, A.; González, S.; Illas, F.; Serna, P. A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: A cooperative effect between gold and the support. J. Am. Chem. Soc. 2007, 129, 16230–16237.CrossRefGoogle Scholar
  15. [15]
    Chappa, S.; Bharath, R. S.; Oommen, C.; Pandey, A. K. Dual-functional grafted electrospun polymer microfiber scaffold hosted palladium nanoparticles for catalyzing redox reactions. Macromol. Chem. Phys. 2017, 218, 1600555.CrossRefGoogle Scholar
  16. [16]
    Corma, A.; Concepción, P.; Serna, P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem., Int. Ed. 2007, 46, 7266–7269.CrossRefGoogle Scholar
  17. [17]
    Gangula, A.; Podila, R.; Ramakrishna, M.; Karanam, L.; Janardhana, C.; Rao, A. M. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 2011, 27, 15268–15274.CrossRefGoogle Scholar
  18. [18]
    Imura, Y.; Tsujimoto, K.; Morita, C.; Kawai, T. Preparation and catalytic activity of Pd and bimetallic Pd-Ni nanowires. Langmuir 2014, 30, 5026–5030.CrossRefGoogle Scholar
  19. [19]
    Li, J.; Liu, C. Y.; Liu, Y. Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 2012, 22, 8426–8430.CrossRefGoogle Scholar
  20. [20]
    Lin, F. H.; Doong, R. A. Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J. Phys. Chem. C 2011, 115, 6591–6598.CrossRefGoogle Scholar
  21. [21]
    Lin, F. H.; Doong, R. A. Highly efficient reduction of 4-nitrophenol by heterostructured gold-magnetite nanocatalysts. Appl. Catal. A Gen. 2014, 486, 32–41.CrossRefGoogle Scholar
  22. [22]
    Lu, X. F.; Bian, X. J.; Nie, G. D.; Zhang, C. C.; Wang, C.; Wei, Y. Encapsulating conducting polypyrrole into electrospun TiO2 nanofibers: A new kind of nanoreactor for in situ loading Pd nanocatalysts towards p-nitrophenol hydrogenation. J. Mater. Chem. 2012, 22, 12723–12730.CrossRefGoogle Scholar
  23. [23]
    Nie, R. F.; Wang, J. H.; Wang, L. N.; Qin, Y.; Chen, P.; Hou, Z. Y. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 2012, 50, 586–596.CrossRefGoogle Scholar
  24. [24]
    Pozun, Z. D.; Rodenbusch, S. E.; Keller, E.; Tran, K.; Tang, W. J.; Stevenson, K. J.; Henkelman, G. A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J. Phys. Chem. C 2013, 117, 7598–7604.CrossRefGoogle Scholar
  25. [25]
    Wang, D.; Sun, Y. M.; Sun, Y. H.; Huang, J.; Liang, Z. Q.; Li, S. Z.; Jiang, L. Morphological effects on the selectivity of intramolecular versus intermolecular catalytic reaction on Au nanoparticles. Nanoscale 2017, 9, 7727–7733.CrossRefGoogle Scholar
  26. [26]
    Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 2010, 114, 8814–8820.CrossRefGoogle Scholar
  27. [27]
    Zhang, L. Y.; Jiang, J. H.; Shi, W.; Xia, S. J.; Ni, Z. M.; Xiao, X. C. Insights into the hydrogenation mechanism of nitrobenzene to aniline on Pd3/Pt(111): A density functional theory study. RSC Adv. 2015, 5, 34319–34326.CrossRefGoogle Scholar
  28. [28]
    Qi, H. T.; Yu, P.; Wang, Y. X.; Han, G. C.; Liu, H. B.; Yi, Y. P.; Li, Y. L.; Mao, L. Q. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J. Am. Chem. Soc. 2015, 137, 5260–5263.CrossRefGoogle Scholar
  29. [29]
    Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.CrossRefGoogle Scholar
  30. [30]
    Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981–983.CrossRefGoogle Scholar
  31. [31]
    Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 2009, 8, 213–216.CrossRefGoogle Scholar
  32. [32]
    Wang, Y.; Wan, X. K.; Ren, L. T.; Su, H. F.; Li, G.; Malola, S.; Lin, S. C.; Tang, Z. C.; Häkkinen, H.; Teo, B. K. et al. Atomically precise alkynylprotected metal nanoclusters as a model catalyst: Observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 2016, 138, 3278–3281.CrossRefGoogle Scholar
  33. [33]
    Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.CrossRefGoogle Scholar
  34. [34]
    Gross, E.; Somorjai, G. A. Mesoscale nanostructures as a bridge between homogeneous and heterogeneous catalysis. Top. Catal. 2014, 57, 812–821.CrossRefGoogle Scholar
  35. [35]
    Rao, T. U. B.; Nataraju, B.; Pradeep, T. Ag9 quantum cluster through a solid-state route. J. Am. Chem. Soc. 2010, 132, 16304–16307.CrossRefGoogle Scholar
  36. [36]
    Chen, J. S.; Liu, L. R.; Weng, L. H.; Lin, Y. J.; Liao, L. W.; Wang, C. M.; Yang, J. L.; Wu, Z. K. Synthesis and properties evolution of a family of tiara-like phenylethanethiolated palladium nanoclusters. Sci. Rep. 2015, 5, 16628.CrossRefGoogle Scholar
  37. [37]
    An, P.; Anumula, R.; Wu, H. M.; Han, J. J.; Luo, Z. X. Charge transfer interactions of pyrazine with Ag12 clusters towards precise SERS chemical mechanism. Nanoscale 2018, 10, 16787–16794.CrossRefGoogle Scholar
  38. [38]
    Liu, X. H.; Ding, W. H.; Wu, Y. S.; Zeng, C. H.; Luo, Z. X.; Fu, H. B. Penicillamine-protected Ag20 nanoclusters and fluorescence chemosensing for trace detection of copper ions. Nanoscale 2017, 9, 3986–3994.CrossRefGoogle Scholar
  39. [39]
    Kalita, B.; Deka, R. C. Stability of small Pdn (n = 1-7) clusters on the basis of structural and electronic properties: A density functional approach. J. Chem. Phys. 2007, 127, 244306.CrossRefGoogle Scholar
  40. [40]
    Wen, J. Q.; Jiang, Z. Y.; Li, J. Q.; Cao, L. K.; Chu, S. Y. Geometrical structures, electronic states, and stability of NinAl clusters. Int. J. Quantum Chem. 2010, 110, 1368–1375.Google Scholar
  41. [41]
    Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.CrossRefGoogle Scholar
  42. [42]
    Xiao, M.; Lu, T. Generalized charge decomposition analysis (GCDA) method. J. Adv. Phys. Chem. 2015, 4, 111–124.CrossRefGoogle Scholar
  43. [43]
    Rehr, J. J.; Kas, J. J.; Vila, F. D.; Prange, M. P.; Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 2010, 12, 5503–5513.CrossRefGoogle Scholar
  44. [44]
    Udayabhaskararao, T.; Bootharaju, M. S.; Pradeep, T. Thiolate-protected Ag32 clusters: Mass spectral studies of composition and insights into the Ag-thiolate structure from NMR. Nanoscale 2013, 5, 9404–9411.CrossRefGoogle Scholar
  45. [45]
    Wu, Z. K.; Lanni, E.; Chen, W. Q.; Bier, M. E.; Ly, D.; Jin, R. C. High yield, large scale synthesis of thiolate-protected Ag7 clusters. J. Am. Chem. Soc. 2009, 131, 16672–16674.CrossRefGoogle Scholar
  46. [46]
    Rao, T. U. B.; Pradeep, T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem., Int. Ed. 2010, 49, 3925–3929.CrossRefGoogle Scholar
  47. [47]
    Wang, C.; Zhou, Y.; Ge, M. Y.; Xu, X. B.; Zhang, Z. L.; Jiang, J. Z. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J. Am. Chem. Soc. 2010, 132, 46–47.CrossRefGoogle Scholar
  48. [48]
    Ramasamy, P.; Guha, S.; Shibu, E. S.; Sreeprasad, T. S.; Bag, S.; Banerjee, A.; Pradeep, T. Size tuning of Au nanoparticles formed by electron beam irradiation of Au25 quantum clusters anchored within and outside of dipeptide nanotubes. J. Mater. Chem. 2009, 19, 8456–8462.CrossRefGoogle Scholar
  49. [49]
    Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2010, 6, 28–32.CrossRefGoogle Scholar
  50. [50]
    Ding, W. H.; Huang, S. P.; Guan, L. M.; Liu, X. H.; Luo, Z. X. Furthering the chemosensing of silver nanoclusters for ion detection. RSC Adv. 2015, 5, 64138–64145.CrossRefGoogle Scholar
  51. [51]
    Max, J. J.; Chapados, C. Infrared spectroscopy of aqueous carboxylic acids: Comparison between different acids and their salts. J. Phys. Chem. A 2004, 108, 3324–3337.CrossRefGoogle Scholar
  52. [52]
    Bootharaju, M. S.; Pradeep, T. Facile and rapid synthesis of a dithiol-protected Ag7 quantum cluster for selective adsorption of cationic dyes. Langmuir 2013, 29, 8125–8132.CrossRefGoogle Scholar
  53. [53]
    Mouat, A. R.; Whitford, C. L.; Chen, B. R.; Liu, S. S.; Perras, F. A.; Pruski, M.; Bedzyk, M. J.; Delferro, M.; Stair, P. C.; Marks, T. J. Synthesis of supported Pd0 nanoparticles from a single-site Pd2+ surface complex by alkene reduction. Chem. Mater. 2018, 30, 1032–1044.CrossRefGoogle Scholar
  54. [54]
    Mao, B. H.; Chang, R.; Lee, S.; Axnanda, S.; Crumlin, E.; Grass, M. E.; Wang, S. D.; Vajda, S.; Liu, Z. Oxidation and reduction of size-selected subnanometer Pd clusters on Al2O3 surface. J. Chem. Phys. 2013, 138, 214304.CrossRefGoogle Scholar
  55. [55]
    Mao, B. H.; Liu, C. H.; Gao, X.; Chang, R.; Liu, Z.; Wang, S. D. In situ characterization of catalytic activity of graphene stabilized small-sized Pd nanoparticles for CO oxidation. Appl. Surf. Sci. 2013, 283, 1076–1079.CrossRefGoogle Scholar
  56. [56]
    Kaden, W. E.; Kunkel, W. A.; Roberts, F. S.; Kane, M.; Anderson, S. L. CO adsorption and desorption on size-selected Pdn/TiO2 (110) model catalysts: Size dependence of binding sites and energies, and support-mediated adsorption. J. Chem. Phys. 2012, 136, 204705.CrossRefGoogle Scholar
  57. [57]
    Kaden, W. E.; Wu, T. P.; Kunkel, W. A.; Anderson, S. L. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 2009, 326, 826–829.CrossRefGoogle Scholar
  58. [58]
    Wu, T. P.; Kaden, W. E.; Kunkel, W. A.; Anderson, S. L. Size-dependent oxidation of Pdn (n ≦13) on alumina/NiAl(110): Correlation with Pd core level binding energies. Surf. Sci. 2009, 603, 2764–2770.CrossRefGoogle Scholar
  59. [59]
    Chen, X. M.; Cai, Z. X.; Chen, X.; Oyama, M. AuPd bimetallic nanoparticles decorated on graphene nanosheets: Their green synthesis, growth mechanism and high catalytic ability in 4-nitrophenol reduction. J. Mater. Chem. A 2014, 2, 5668–5674.CrossRefGoogle Scholar
  60. [60]
    Chen, L.; Gao, Y.; Cheng, Y. K.; Li, H. C.; Wang, Z. G.; Li, Z. Q.; Zhang, R. Q. Nonresonant chemical mechanism in surface-enhanced Raman scattering of pyridine on M@Au12 clusters. Nanoscale 2016, 8, 4086–4093.CrossRefGoogle Scholar
  61. [61]
    Zhao, L. L.; Jensen, L.; Schatz, G. C. Pyridine-Ag20 cluster: A model system for studying surface-enhanced Raman scattering. J. Am. Chem. Soc. 2006, 128, 2911–2919.CrossRefGoogle Scholar
  62. [62]
    Chen, J.; Luo, Z. X.; Yao, J. N. How active sites facilitate charge-transfer interactions of silver and gold clusters with TCNQ? Phys. Chem. Chem. Phys. 2017, 19, 21777–21782.CrossRefGoogle Scholar
  63. [63]
    Glendening, E. D.; Landis, C. R.; Weinhold, F. Natural bond orbital methods. WIREs Comput. Mol. Sci. 2012, 2, 1–42.CrossRefGoogle Scholar
  64. [64]
    Bae, S.; Gim, S.; Kim, H.; Dorcet, V.; Pasturel, M.; Grenèche, J. M.; Darbha, G. K.; Hanna, K. New features and uncovered benefits of polycrystalline magnetite as reusable catalyst in reductive chemical conversion. J. Phys. Chem. C 2017, 121, 25195–25205.CrossRefGoogle Scholar
  65. [65]
    Bae, S.; Gim, S.; Kim, H.; Hanna, K. Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol. Appl. Catal. B Environ. 2016, 182, 541–549.CrossRefGoogle Scholar
  66. [66]
    Wang, S. W.; Weinberg, W. H. Hydrogen chemisorption on metal surfaces. Surf. Sci. 1978, 77, 14–28.CrossRefGoogle Scholar
  67. [67]
    Lyu, J. H.; Wang, J. G.; Lu, C. S.; Ma, L.; Zhang, Q. F.; He, X. B.; Li, X. N. Size-dependent halogenated nitrobenzene hydrogenation selectivity of Pd nanoparticles. J. Phys. Chem. C 2014, 118, 2594–2601.CrossRefGoogle Scholar
  68. [68]
    Mortensen, J. J.; Ganduglia-Pirovano, M. V.; Hansen, L. B.; Hammer, B.; Stoltze, P.; Nørskov, J. K. Nitrogen adsorption on Fe(111), (100), and (110) surfaces. Surf. Sci. 1999, 422, 8–16.CrossRefGoogle Scholar
  69. [69]
    Zhou, S. Q.; Li, D. H.; Zhao, F. Q.; Ju, X. H. A DFT study of adsorption and decomposition of nitroamine molecule on Mg(001) surface. Struct. Chem. 2014, 25, 409–417.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pan An
    • 1
    • 2
  • Rajini Anumula
    • 1
  • Chaonan Cui
    • 1
  • Yang Liu
    • 1
  • Fei Zhan
    • 3
  • Ye Tao
    • 3
  • Zhixun Luo
    • 1
    • 2
    Email author
  1. 1.Beijing National Laboratory for Molecular Sciences (BNLMS) and State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of Sciences (UCAS)BeijingChina
  3. 3.Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations