Skip to main content

A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives

Abstract

The significance of graphene and its two-dimensional (2D) analogous inorganic layered materials especially as hexagonal boron nitride (h-BN) and molybdenum disulphide (MoS2) for “clean energy” applications became apparent over the last few years due to their extraordinary properties. In this review article we study the current progress and selected challenges in the syntheses of graphene, h-BN and MoS2 including energy storage applications as supercapacitors and batteries. Various substrates/catalysts (metals/insulator/semiconducting) have been used to obtain graphene, h-BN and MoS2 using different kinds of precursors. The most widespread methods for synthesis of graphene, h-BN and MoS2 layers are chemical vapor deposition (CVD), plasma-enhanced CVD, hydro/solvothermal methods, liquid phase exfoliation, physical methods etc. Current research has shown that graphene, h-BN and MoS2 layered materials modified with metal oxide can have an insightful influence on the performance of energy storage devices as supercapacitors and batteries. This review article also contains the discussion on the opportunities and perspectives of these materials (graphene, h-BN and MoS2) in the energy storage fields. We expect that this written review article including recent research on energy storage will help in generating new insights for further development and practical applications of graphene, h-BN and MoS2 layers based materials.

References

  1. [1]

    Kumar, R.; Joanni, E.; Singh, R. K.; Singh, D. P.; Moshkalev, S. A. Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Prog. Energy Combust. Sci.2018, 67, 115–157.

    Google Scholar 

  2. [2]

    Kumar, R.; Singh, R. K.; Singh, D. P.; Joanni, E.; Yadav, R. M.; Moshkalev, S. A. Laser-assisted synthesis, reduction and micro-patterning of graphene: Recent progress and applications. Coord. Chem. Rev.2017, 342, 34–79.

    CAS  Google Scholar 

  3. [3]

    Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale2011, 3, 20–30.

    Google Scholar 

  4. [4]

    Singh, R. K.; Kumar, R.; Singh, D. P. Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Adv. 2016, 6, 64993–65011.

    CAS  Google Scholar 

  5. [5]

    Dong, R. H.; Zhang, T.; Feng, X. L. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev.2018, 118, 6189–6235.

    CAS  Google Scholar 

  6. [6]

    Singh, D. P.; Herrera, C. E.; Singh, B.; Singh, S.; Singh, R. K.; Kumar, R. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Mater. Sci. Eng. C2018, 86, 173–197.

    CAS  Google Scholar 

  7. [7]

    Kumar, R.; Singh, R. K.; Singh, D. P. Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: Graphene and CNTs. Renew. Sustain. Energy Rev.2016, 58, 976–1006.

    CAS  Google Scholar 

  8. [8]

    Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang, K. N.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev.2018, 118, 6236–6296.

    CAS  Google Scholar 

  9. [9]

    Liu, H. H.; Li, M. P.; Kaner, R. B.; Chen, S. Y.; Pei, Q. B. Monolithically integrated self-charging power pack consisting of a silicon nanowire array/conductive polymer hybrid solar cell and a laser-scribed graphene supercapacitor. ACS Appl. Mater. Interfaces2018, 10, 15609–15615.

    CAS  Google Scholar 

  10. [10]

    Arramel; Wang, Q.; Zheng, Y.; Zhang, W.; Wee, A. T. S. Towards molecular doping effect on the electronic properties of two-dimensional layered materials. J. Phys. Conf. Ser.2016, 739, 012014.

    Google Scholar 

  11. [11]

    Guan, Z. Y.; Lian, C. S.; Hu, S. L.; Ni, S.; Li, J.; Duan, W. H. Tunable structural, electronic, and optical properties of layered two-dimensional C2N and MoS2 van der Waals heterostructure as photovoltaic material. J. Phys. Chem. C2017, 121, 3654–3660.

    CAS  Google Scholar 

  12. [12]

    Sun, Z. H.; Chang, H. X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano2014, 8, 4133–4156.

    CAS  Google Scholar 

  13. [13]

    Dissanayake, D. M. A. S.; Cifuentes, M. P.; Humphrey, M. G. Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes. Coord. Chem. Rev.2018, 375, 489–513.

    CAS  Google Scholar 

  14. [14]

    Hu, G. H.; Kang, J.; Ng, L. W. T.; Zhu, X. X.; Howe, R. C. T.; Jones, C. G.; Hersam, M. C.; Hasan, T. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev.2018, 47, 3265–3300.

    CAS  Google Scholar 

  15. [15]

    Kumar, R.; Savu, R.; Joanni, E.; Vaz, A. R.; Canesqui, M. A.; Singh, R. K.; Timm, R. A.; Kubota, L. T.; Moshkalev, S. A. Fabrication of interdigitated micro-supercapacitor devices by direct laser writing onto ultra-thin, flexible and free-standing graphite oxide films. RSC Adv. 2016, 6, 84769–84776.

    CAS  Google Scholar 

  16. [16]

    Farooqui, U. R.; Ahmad, A. L.; Hamid, N. A. Graphene oxide: A promising membrane material for fuel cells. Renew. Sustain. Energy Rev.2018, 82, 714–733.

    CAS  Google Scholar 

  17. [17]

    Kumar, R.; Joanni, E.; Singh, R. K.; da Silva, E. T. S. G.; Savu, R.; Kubota, L. T.; Moshkalev, S. A. Direct laser writing of micro-supercapacitors on thick graphite oxide films and their electrochemical properties in different liquid inorganic electrolytes. J. Colloid Interface Sci.2017, 507, 271–278.

    CAS  Google Scholar 

  18. [18]

    Irani, R.; Naseri, N.; Beke, S. A review of 2D-based counter electrodes applied in solar-assisted devices. Coord. Chem. Rev.2016, 324, 54–81.

    CAS  Google Scholar 

  19. [19]

    Yadav, S. K.; Kumar, R.; Sundramoorthy, A. K.; Singh, R. K.; Koo, C. M. Simultaneous reduction and covalent grafting of polythiophene on graphene oxide sheets for excellent capacitance retention. RSC Adv.2016, 6, 52945–52949.

    CAS  Google Scholar 

  20. [20]

    Shuvo, M. A. I.; Khan, M. A. R.; Karim, H.; Morton, P.; Wilson, T.; Lin, Y. R. Investigation of modified graphene for energy storage applications. ACS Appl. Mater. Interfaces2013, 5, 7881–7885.

    CAS  Google Scholar 

  21. [21]

    Lee, S. K.; Rana, K.; Ahn, J. H. Graphene films for flexible organic and energy storage devices. J. Phys. Chem. Lett.2013, 4, 831–841.

    CAS  Google Scholar 

  22. [22]

    Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Graphene-paper pressure sensor for detecting human motions. ACS Nano2017, 11, 8790–8795.

    CAS  Google Scholar 

  23. [23]

    Zhu, J.; Ha, E. N.; Zhao, G. L.; Zhou, Y.; Huang, D. S.; Yue, G. Z.; Hu, L. S.; Sun, N.; Wang, Y.; Lee, L. Y. S. et al. Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev.2017, 352, 306–327.

    CAS  Google Scholar 

  24. [24]

    Kang, M.; Kim, J.; Jang, B.; Chae, Y.; Kim, J. H.; Ahn, J. H. Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano2017, 11, 7950–7957.

    CAS  Google Scholar 

  25. [25]

    Rosli, N. N.; Ibrahim, M. A.; Ahmad Ludin, N.; Mat Teridi, M. A.; Sopian, K. A review of graphene based transparent conducting films for use in solar photovoltaic applications. Renew. Sustain. Energy Rev.2019, 99, 83–99.

    CAS  Google Scholar 

  26. [26]

    Ghawanmeh, A. A.; Ali, G. A. M.; Algarni, H.; Sarkar, S. M.; Chong, K. F. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res. 2019, 12, 973–990.

    CAS  Google Scholar 

  27. [27]

    Bulusheva, L. G.; Koroteev, V. O.; Stolyarova, S. G.; Chuvilin, A. L.; Plyusnin, P. E.; Shubin, Y. V.; Vilkov, O. Y.; Chen, X. H.; Song, H. H.; Okotrub, A. V. Effect of in-plane size of MoS2 nanoparticles grown over multilayer graphene on the electrochemical performance of anodes in Li-ion batteries. Electrochim. Acta2018, 283, 45–53.

    CAS  Google Scholar 

  28. [28]

    Kumar, R.; Oh, J. H.; Kim, H. J.; Jung, J. H.; Jung, C. H.; Hong, W. G.; Kim, H. J.; Park, J. Y.; Oh, I. K. Nanohole-structured and palladium-embedded 3D porous graphene for ultrahigh hydrogen storage and CO oxidation multifunctionalities. ACS Nano2015, 9, 7343–7351.

    CAS  Google Scholar 

  29. [29]

    Zhang, H. Introduction: 2D materials chemistry. Chem. Rev.2018, 118, 6089–6090.

    CAS  Google Scholar 

  30. [30]

    Chen, C. C.; Li, Z.; Shi, L.; Cronin, S. B. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res. 2015, 8, 666–672.

    CAS  Google Scholar 

  31. [31]

    Wang, P.; Jiang, T. F.; Zhu, C. Z.; Zhai, Y. M.; Wang, D. J.; Dong, S. J. One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties. Nano Res. 2010, 3, 794–799.

    Google Scholar 

  32. [32]

    He, Z. L.; Que, W. X. Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Appl. Mater. Today2016, 3, 23–56.

    Google Scholar 

  33. [33]

    Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics2014, 8, 899–907.

    CAS  Google Scholar 

  34. [34]

    Xia, W. S.; Dai, L. P.; Yu, P.; Tong, X.; Song, W. P.; Zhang, G. J.; Wang, Z. M. Recent progress in van der Waals heterojunctions. Nanoscale2017, 9, 4324–4365.

    CAS  Google Scholar 

  35. [35]

    Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics2016, 10, 227–238.

    CAS  Google Scholar 

  36. [36]

    Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics2010, 4, 611–622.

    CAS  Google Scholar 

  37. [37]

    Ferrari, A. C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale2015, 7, 4598–4810.

    CAS  Google Scholar 

  38. [38]

    Samaddar, P.; Son, Y. S.; Tsang, D. C. W.; Kim, K. H.; Kumar, S. Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coord. Chem. Rev.2018, 368, 93–114.

    CAS  Google Scholar 

  39. [39]

    Muschi, M.; Serre, C. Progress and challenges of graphene oxide/metalorganic composites. Coord. Chem. Rev.2019, 387, 262–272.

    CAS  Google Scholar 

  40. [40]

    Dai, B. Y.; Fu, L.; Liao, L.; Liu, N.; Yan, K.; Chen, Y. S.; Liu, Z. F. High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res. 2011, 4, 434–439.

    CAS  Google Scholar 

  41. [41]

    Kumar, R.; Yadav, R. M.; Awasthi, K.; Shripathi, T.; Sinha, A. S. K.; Tiwari, R. S.; Srivastava, O. N. Synthesis of carbon and carbon-nitrogen nanotubes using green precursor: Jatropha-derived biodiesel. J. Exp. Nanosci.2013, 8, 606–620.

    CAS  Google Scholar 

  42. [42]

    Kumar, R.; Dubey, P. K.; Singh, R. K.; Vaz, A. R.; Moshkalev, S. A. Catalyst-free synthesis of a three-dimensional nanoworm-like gallium oxide-graphene nanosheet hybrid structure with enhanced optical properties. RSC Adv. 2016, 6, 17669–17677.

    CAS  Google Scholar 

  43. [43]

    Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

    CAS  Google Scholar 

  44. [44]

    Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    CAS  Google Scholar 

  45. [45]

    Shahil, K. M. F.; Balandin, A. A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun. 2012, 152, 1331–1340.

    CAS  Google Scholar 

  46. [46]

    Mahanta, N. K.; Abramson, A. R. Thermal conductivity of graphene and graphene oxide nanoplatelets. In Proceedings of the 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA, 2012, pp 1–6.

  47. [47]

    Fugallo, G.; Cepellotti, A.; Paulatto, L.; Lazzeri, M.; Marzari, N.; Mauri, F. Thermal conductivity of graphene and graphite: Collective excitations and mean free paths. Nano Lett. 2014, 14, 6109–6114.

    CAS  Google Scholar 

  48. [48]

    Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science2008, 321, 385–388.

    CAS  Google Scholar 

  49. [49]

    Androulidakis, C.; Zhang, K. H.; Robertson, M.; Tawfick, S. Tailoring the mechanical properties of 2D materials and heterostructures. 2D Mater. 2018, 5, 032005.

    Google Scholar 

  50. [50]

    Chen, J. H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol.2008, 3, 206–209.

    CAS  Google Scholar 

  51. [51]

    Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

    CAS  Google Scholar 

  52. [52]

    Nag, A.; Raidongia, K.; Hembram, K. P. S. S.; Datta, R.; Waghmare, U. V.; Rao, C. N. R. Graphene analogues of BN: Novel synthesis and properties. ACS Nano2010, 4, 1539–1544.

    CAS  Google Scholar 

  53. [53]

    Topsakal, M.; Aktürk, E.; Ciraci, S. First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys. Rev. B2009, 79, 115442.

    Google Scholar 

  54. [54]

    Peng, Q.; Ji, W.; De, S. Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study. Comput. Mater. Sci.2012, 56, 11–17.

    CAS  Google Scholar 

  55. [55]

    Hernández, E.; Goze, C.; Bernier, P.; Rubio, A. Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett.1998, 80, 4502–4505.

    Google Scholar 

  56. [56]

    Suryavanshi, A. P.; Yu, M. F.; Wen, J. G.; Tang, C. C.; Bando, Y. Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett.2004, 84, 2527–2529.

    CAS  Google Scholar 

  57. [57]

    Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett.2001, 87, 215502.

    CAS  Google Scholar 

  58. [58]

    Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater.2004, 3, 404–409.

    CAS  Google Scholar 

  59. [59]

    Lee, G. W.; Park, M.; Kim, J.; Lee, J. I.; Yoon, H. G. Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos. Part A Appl. Sci. Manuf.2006, 37, 727–734.

    Google Scholar 

  60. [60]

    Zhi, C. Y.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater.2009, 21, 2889–2893.

    CAS  Google Scholar 

  61. [61]

    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett.2010, 105, 136805.

    Google Scholar 

  62. [62]

    Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    CAS  Google Scholar 

  63. [63]

    Li, T. S.; Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C2007, 111, 16192–16196.

    CAS  Google Scholar 

  64. [64]

    Lebègue, S.; Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B2009, 79, 115409.

    Google Scholar 

  65. [65]

    Kan, M.; Wang, J. Y.; Li, X. W.; Zhang, S. H.; Li, Y. W.; Kawazoe, Y.; Sun, Q.; Jena, P. Structures and phase transition of a MoS2 monolayer. J. Phys. Chem. C2014, 118, 1515–1522.

    CAS  Google Scholar 

  66. [66]

    Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects.Appl. Phys. Lett.2013, 102, 042104.

    Google Scholar 

  67. [67]

    Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768–3773.

    CAS  Google Scholar 

  68. [68]

    Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

    CAS  Google Scholar 

  69. [69]

    Zhang, Q.; Jie, J. S.; Diao, S. L.; Shao, Z. B.; Zhang, Q.; Wang, L.; Deng, W.; Hu, W. D.; Xia, H.; Yuan, X. D. et al. Solution-processed graphene quantum dot deep-UV photodetectors. ACS Nano2015, 9, 1561–1570.

    CAS  Google Scholar 

  70. [70]

    Cheng, H. H.; Zhao, Y.; Fan, Y. Q.; Xie, X. J.; Qu, L. T.; Shi, G. Q. Graphene-quantum-dot assembled nanotubes: A new platform for efficient Raman enhancement. ACS Nano2012, 6, 2237–2244.

    CAS  Google Scholar 

  71. [71]

    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett.2010, 105, 136805.

    Google Scholar 

  72. [72]

    Pu, J.; Yomogida, Y.; Liu, K. K.; Li, L. J.; Iwasa, Y.; Takenobu, T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 2012, 12, 4013–4017.

    CAS  Google Scholar 

  73. [73]

    Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci.2014, 7, 209–231.

    CAS  Google Scholar 

  74. [74]

    Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomiclayer MoS2 for energy conversion and piezotronics. Nature2014, 514, 470–474.

    CAS  Google Scholar 

  75. [75]

    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors.Nat. Nanotechnol.2011, 6, 147–150.

    CAS  Google Scholar 

  76. [76]

    Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol.2012, 7, 494–498.

    CAS  Google Scholar 

  77. [77]

    Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol.2012, 7, 490–493.

    CAS  Google Scholar 

  78. [78]

    Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun.2012, 3, 887.

    Google Scholar 

  79. [79]

    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater.2013, 12, 207–211.

    CAS  Google Scholar 

  80. [80]

    Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater.2011, 10, 424–428.

    CAS  Google Scholar 

  81. [81]

    Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev.2018, 118, 6091–6133.

    CAS  Google Scholar 

  82. [82]

    Gao, L. B.; Ren, W. C.; Zhao, J. P.; Ma, L. P.; Chen, Z. P.; Cheng, H. M. Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition. Appl. Phys. Lett.2010, 97, 183109.

    Google Scholar 

  83. [83]

    Gan, X. R.; Zhao, H. M.; Quan, X. Two-dimensional MoS2: A promising building block for biosensors. Biosens. Bioelectron.2017, 89, 56–71.

    CAS  Google Scholar 

  84. [84]

    Ma, L. P.; Ren, W. C.; Dong, Z. L.; Liu, L. Q.; Cheng, H. M. Progress of graphene growth on copper by chemical vapor deposition: Growth behavior and controlled synthesis. Chin. Sci. Bull.2012, 57, 2995–2999.

    CAS  Google Scholar 

  85. [85]

    Serp, P.; Kalck, P.; Feurer, R. Chemical vapor deposition methods for the controlled preparation of supported catalytic materials. Chem. Rev.2002, 102, 3085–3128.

    CAS  Google Scholar 

  86. [86]

    Shi, Y. M.; Li, H. N.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev.2015, 44, 2744–2756.

    CAS  Google Scholar 

  87. [87]

    Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc.2013, 135, 10274–10277.

    CAS  Google Scholar 

  88. [88]

    Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc.2013, 135, 5304–5307.

    CAS  Google Scholar 

  89. [89]

    Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small2012, 8, 966–971.

    CAS  Google Scholar 

  90. [90]

    Li, X. L.; Ge, J. P.; Li, Y. D. Atmospheric pressure chemical vapor deposition: An alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers. Chem.—Eur. J.2004, 10, 6163–6171.

    CAS  Google Scholar 

  91. [91]

    Etzkorn, J.; Therese, H. A.; Rocker, F.; Zink, N.; Kolb, U.; Tremel, W. Metal-organic chemical vapor depostion synthesis of hollow inorganic-fullerene-type MoS2 and MoSe2 nanoparticles. Adv. Mater.2005, 17, 2372–2375.

    CAS  Google Scholar 

  92. [92]

    Lee, W. Y.; Besmann, T. M.; Stott, M. W. Preparation of MoS2 thin films by chemical vapor deposition. J. Mater. Res.1994, 9, 1474–1483.

    CAS  Google Scholar 

  93. [93]

    Sun, Y. Y.; Zhang, W. H.; Chi, H. J.; Liu, Y. Q.; Hou, C. L.; Fang, D. N. Recent development of graphene materials applied in polymer solar cell. Renew. Sustain. Energy Rev.2015, 43, 973–980.

    CAS  Google Scholar 

  94. [94]

    Yang, P.; Yang, A. G.; Chen, L. X.; Chen, J.; Zhang, Y. W.; Wang, H. M.; Hu, L. G.; Zhang, R. J.; Liu, R.; Qu, X. P. et al. Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. Nano Res. 2019, 12, 823–827.

    CAS  Google Scholar 

  95. [95]

    Edwards, R. S.; Coleman, K. S. Graphene film growth on polycrystalline metals.Acc. Chem. Res.2013, 46, 23–30.

    CAS  Google Scholar 

  96. [96]

    Huang, M.; Biswal, M.; Park, H. J.; Jin, S.; Qu, D. S.; Hong, S.; Zhu, Z. L.; Qiu, L.; Luo, D.; Liu, X. C. et al. Highly oriented monolayer graphene grown on a Cu/Ni(111) alloy foil. ACS Nano2018, 12, 6117–6127.

    CAS  Google Scholar 

  97. [97]

    Eom, D.; Prezzi, D.; Rim, K. T.; Zhou, H.; Lefenfeld, M.; Xiao, S. X.; Nuckolls, C.; Hybertsen, M. S.; Heinz, T. F.; Flynn, G. W. Structure and electronic properties of graphene nanoislands on Co(0001). Nano Lett. 2009, 9, 2844–2848.

    CAS  Google Scholar 

  98. [98]

    Kondo, D.; Yagi, K.; Sato, M.; Nihei, M.; Awano, Y.; Sato, S.; Yokoyama, N. Selective synthesis of carbon nanotubes and multi-layer graphene by controlling catalyst thickness. Chem. Phys. Lett.2011, 514, 294–300.

    CAS  Google Scholar 

  99. [99]

    Gomez De Arco, L.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C. W. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano2010, 4, 2865–2873.

    CAS  Google Scholar 

  100. [100]

    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    CAS  Google Scholar 

  101. [101]

    Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces.Nano Res. 2009, 2, 509–516.

    CAS  Google Scholar 

  102. [102]

    Zhang, Y.; Gomez, L.; Ishikawa, F. N.; Madaria, A.; Ryu, K.; Wang, C.; Badmaev, A.; Zhou, C. W. Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J. Phys. Chem. Lett.2010, 1, 3101–3107.

    CAS  Google Scholar 

  103. [103]

    Thiele, S.; Reina, A.; Healey, P.; Kedzierski, J.; Wyatt, P.; Hsu, P. L.; Keast, C.; Schaefer, J.; Kong, J. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology2010, 21, 015601.

    Google Scholar 

  104. [104]

    Chae, S. J.; Güneş, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H. et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation.Adv. Mater.2009, 21, 2328–2333.

    CAS  Google Scholar 

  105. [105]

    Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano2010, 4, 1321–1326.

    CAS  Google Scholar 

  106. [106]

    Takahashi, K.; Yamada, K.; Kato, H.; Hibino, H.; Homma, Y. In situ scanning electron microscopy of graphene growth on polycrystalline Ni substrate. Surf. Sci.2012, 606, 728–732.

    CAS  Google Scholar 

  107. [107]

    Guermoune, A.; Chari, T.; Popescu, F.; Sabri, S. S.; Guillemette, J.; Skulason, H. S.; Szkopek, T.; Siaj, M. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon2011, 49, 4204–4210.

    CAS  Google Scholar 

  108. [108]

    Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of highquality and uniform graphene films on copper foils. Science2009, 324, 1312–1314.

    CAS  Google Scholar 

  109. [109]

    Zhang, F.; Cao, H. Q.; Yue, D. M.; Zhang, J. X.; Qu, M. Z. Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries. Inorg. Chem. 2012, 51, 9544–9551.

    CAS  Google Scholar 

  110. [110]

    Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol.2010, 5, 574–578.

    CAS  Google Scholar 

  111. [111]

    Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

    CAS  Google Scholar 

  112. [112]

    Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper.J. Mater. Chem.2011, 21, 3324–3334.

    CAS  Google Scholar 

  113. [113]

    Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328–4334.

    CAS  Google Scholar 

  114. [114]

    Luo, Z. T.; Lu, Y.; Singer, D. W.; Berck, M. E.; Somers, L. A.; Goldsmith, B. R.; Johnson, A. T. C. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem. Mater.2011, 23, 1441–1447.

    CAS  Google Scholar 

  115. [115]

    Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S. E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J. H. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 2010, 10, 490–493.

    CAS  Google Scholar 

  116. [116]

    Vo-Van, C.; Kimouche, A.; Reserbat-Plantey, A.; Fruchart, O.; Bayle-Guillemaud, P.; Bendiab, N.; Coraux, J. Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire. Appl. Phys. Lett.2011, 98, 181903.

    Google Scholar 

  117. [117]

    Ramón, M. E.; Gupta, A.; Corbet, C.; Ferrer, D. A.; Movva, H. C. P.; Carpenter, G.; Colombo, L.; Bourianoff, G.; Doczy, M.; Akinwande, D. et al. Cmos-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano2011, 5, 7198–7204.

    Google Scholar 

  118. [118]

    Cushing, G. W.; Johánek, V.; Navin, J. K.; Harrison, I. Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. J. Phys. Chem. C2015, 119, 4759–4768.

    CAS  Google Scholar 

  119. [119]

    Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao, H. J. Epitaxial growth and structural property of graphene on Pt(111). Appl. Phys. Lett.2011, 98, 033101.

    Google Scholar 

  120. [120]

    Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction.Phys. Rev. B2009, 80, 245411.

    Google Scholar 

  121. [121]

    Gao, T.; Xie, S. B.; Gao, Y. B.; Liu, M. X.; Chen, Y. B.; Zhang, Y. F.; Liu, Z. F. Growth and atomic-scale characterizations of graphene on multifaceted textured Pt foils prepared by chemical vapor deposition. ACS Nano2011, 5, 9194–9201.

    CAS  Google Scholar 

  122. [122]

    Kang, B. J.; Mun, J. H.; Hwang, C. Y.; Cho, B. J. Monolayer graphene growth on sputtered thin film platinum. J. Appl. Phys.2009, 106, 104309.

    Google Scholar 

  123. [123]

    Imamura, G.; Saiki, K. Synthesis of nitrogen-doped graphene on Pt(111) by chemical vapor deposition. J. Phys. Chem. C2011, 115, 10000–10005.

    CAS  Google Scholar 

  124. [124]

    Oznuluer, T.; Pince, E.; Polat, E. O.; Balci, O.; Salihoglu, O.; Kocabas, C. Synthesis of graphene on gold. Appl. Phys. Lett.2011, 98, 183101.

    Google Scholar 

  125. [125]

    He, D. Y.; Zhang, P.; Li, S. H.; Luo, H. X. A novel free-standing CVD graphene platform electrode modified with AuPt hybrid nanoparticles and L-cysteine for the selective determination of epinephrine.J. Electroanal. Chem.2018, 823, 678–687.

    CAS  Google Scholar 

  126. [126]

    Gao, J. H.; Ishida, N.; Scott, I.; Fujita, D. Controllable growth of single-layer graphene on a Pd(111) substrate. Carbon2012, 50, 1674–1680.

    CAS  Google Scholar 

  127. [127]

    Di Gaspare, L.; Scaparro, A. M.; Fanfoni, M.; Fazi, L.; Sgarlata, A.; Notargiacomo, A.; Miseikis, V.; Coletti, C.; De Seta, M. Early stage of CVD graphene synthesis on Ge(001) substrate. Carbon2018, 134, 183–188.

    CAS  Google Scholar 

  128. [128]

    Tonnoir, C.; Kimouche, A.; Coraux, J.; Magaud, L.; Delsol, B.; Gilles, B.; Chapelier, C. Induced superconductivity in graphene grown on rhenium. Phys. Rev. Lett.2013, 111, 246805.

    CAS  Google Scholar 

  129. [129]

    Rut’kov, E. V.; Kuz’michev, A. V.; Gall’, N. R. Carbon interaction with rhodium surface: Adsorption, dissolution, segregation, growth of graphene layers. Phys. Solid State2011, 53, 1092–1098.

    Google Scholar 

  130. [130]

    Liu, L.; Zhou, Z. H.; Guo, Q. L.; Yan, Z.; Yao, Y. X.; Goodman, D. W. The 2D growth of gold on single-layer graphene/Ru(0001): Enhancement of CO adsorption. Surf. Sci.2011, 605, L47–L50.

    CAS  Google Scholar 

  131. [131]

    Pan, Y.; Zhang, H. G.; Shi, D. X.; Sun, J. T.; Du, S. X.; Liu, F.; Gao, H. J. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 2009, 21, 2777–2780.

    CAS  Google Scholar 

  132. [132]

    Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium.Nat. Mater.2008, 7, 406–411.

    CAS  Google Scholar 

  133. [133]

    Vázquez de Parga, A. L.; Calleja, F.; Borca, B.; Passeggi, M. C. G. Jr.; Hinarejos, J. J.; Guinea, F.; Miranda, R. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett.2008, 100, 056807.

    Google Scholar 

  134. [134]

    N’Diaye, A. T.; Coraux, J.; Plasa, T. N.; Busse, C.; Michely, T. Structure of epitaxial graphene on Ir(111). New J. Phys.2008, 10, 043033.

    Google Scholar 

  135. [135]

    Negishi, R.; Hirano, H.; Ohno, Y.; Maehashi, K.; Matsumoto, K.; Kobayashi, Y. Layer-by-layer growth of graphene layers on graphene substrates by chemical vapor deposition. Thin Solid Films2011, 519, 6447–6452.

    CAS  Google Scholar 

  136. [136]

    Wang, S. M.; Pei, Y. H.; Wang, X.; Wang, H.; Meng, Q. N.; Tian, H. W.; Zheng, X. L.; Zheng, W. T.; Liu, Y. C. Synthesis of graphene on a polycrystalline Co film by radio-frequency plasma-enhanced chemical vapour deposition. J. Phys. D Appl. Phys.2010, 43, 455402.

    Google Scholar 

  137. [137]

    Zhan, N.; Wang, G. P.; Liu, J. L. Cobalt-assisted large-area epitaxial graphene growth in thermal cracker enhanced gas source molecular beam epitaxy. Appl. Phys. A2011, 105, 341–345.

    CAS  Google Scholar 

  138. [138]

    Yazici, M. S.; Azder, M. A.; Salihoglu, O. CVD grown graphene as catalyst for acid electrolytes. Int. J. Hydrog. Energy2018, 43, 10710–10716.

    CAS  Google Scholar 

  139. [139]

    Tu, R.; Liang, Y.; Zhang, C.; Li, J.; Zhang, S.; Yang, M. J.; Li, Q. Z.; Goto, T.; Zhang, L. M.; Shi, J. et al. Fast synthesis of high-quality large-area graphene by laser CVD. Appl. Surf. Sci.2018, 445, 204–210.

    CAS  Google Scholar 

  140. [140]

    Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.

    CAS  Google Scholar 

  141. [141]

    Lu, Y. F.; Lo, S. T.; Lin, J. C.; Zhang, W. J.; Lu, J. Y.; Liu, F. H.; Tseng, C. M.; Lee, Y. H.; Liang, C. T.; Li, L. J. Nitrogen-doped graphene sheets grown by chemical vapor deposition: Synthesis and influence of nitrogen impurities on carrier transport. ACS Nano2013, 7, 6522–6532.

    CAS  Google Scholar 

  142. [142]

    Mondal, T.; Bhowmick, A. K.; Krishnamoorti, R. Controlled synthesis of nitrogen-doped graphene from a heteroatom polymer and its mechanism of formation. Chem. Mater.2015, 27, 716–725.

    CAS  Google Scholar 

  143. [143]

    Zhang, Y. H.; Chen, Z. Y.; Ge, X. M.; Liang, Y. J.; Hu, S. K.; Sui, Y. P.; Yu, G. H. A waterless cleaning method of the Cu foil for CVD graphene growth. Mater. Lett.2018, 211, 258–260.

    CAS  Google Scholar 

  144. [144]

    De Luca, O.; Grillo, R.; Castriota, M.; Policicchio, A.; Penelope De Santo, M.; Desiderio, G.; Fasanella, A.; Giuseppe Agostino, R.; Cazzanelli, E.; Giarola, M. et al. Different spectroscopic behavior of coupled and freestanding monolayer graphene deposited by CVD on Cu foil. Appl. Surf. Sci.2018, 458, 580–585.

    CAS  Google Scholar 

  145. [145]

    Hui, L. S.; Whiteway, E.; Hilke, M.; Turak, A. Synergistic oxidation of CVD graphene on Cu by oxygen plasma etching. Carbon2017, 125, 500–508.

    CAS  Google Scholar 

  146. [146]

    Limbu, T. B.; Hernández, J. C.; Mendoza, F.; Katiyar, R. K.; Razink, J. J.; Makarov, V. I.; Weiner, B. R.; Morell, G. A novel approach to the layer-number-controlled and grain-size-controlled growth of high quality graphene for nanoelectronics. ACS Appl. Nano Mater.2018, 1, 1502–1512.

    CAS  Google Scholar 

  147. [147]

    Choi, J. K.; Kwak, J.; Park, S. D.; Yun, H. D.; Kim, S. Y.; Jung, M.; Kim, S. Y.; Park, K.; Kang, S.; Kim, S. D. et al. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene. ACS Nano2015, 9, 679–686.

    CAS  Google Scholar 

  148. [148]

    Chan, N.; Balakrishna, S. G.; Klemenz, A.; Moseler, M.; Egberts, P.; Bennewitz, R. Contrast in nanoscale friction between rotational domains of graphene on Pt(111). Carbon2017, 113, 132–138.

    CAS  Google Scholar 

  149. [149]

    Nam, J.; Kim, D. C.; Yun, H.; Shin, D. H.; Nam, S.; Lee, W. K.; Hwang, J. Y.; Lee, S. W.; Weman, H.; Kim, K. S. Chemical vapor deposition of graphene on platinum: Growth and substrate interaction. Carbon2017, 111, 733–740.

    CAS  Google Scholar 

  150. [150]

    Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y. M.; Li, L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev.2018, 118, 6134–6150.

    CAS  Google Scholar 

  151. [151]

    Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science2004, 303, 217–220.

    CAS  Google Scholar 

  152. [152]

    Roth, S.; Matsui, F.; Greber, T.; Osterwalder, J. Chemical vapor deposition and characterization of aligned and incommensurate graphene/hexagonal boron nitride heterostack on cu(111). Nano Lett. 2013, 13, 2668–2675.

    CAS  Google Scholar 

  153. [153]

    Zhang, Y. H.; Weng, X. F.; Li, H.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Liu, Z.; Chen, M. S.; Fu, Q.; Bao, X. H. Hexagonal boron nitride cover on Pt(111): A new route to tune molecule-metal interaction and metalcatalyzed reactions. Nano Lett. 2015, 15, 3616–3623.

    CAS  Google Scholar 

  154. [154]

    Morchutt, C.; Björk, J.; Krotzky, S.; Gutzler, R.; Kern, K. Covalent coupling via dehalogenation on Ni(111) supported boron nitride and graphene. Chem. Commun.2015, 51, 2440–2443.

    CAS  Google Scholar 

  155. [155]

    Ren, J.; Zhang, N. C.; Zhang, H.; Peng, X. J. First-principles study of hydrogen storage on Pt (Pd)-doped boron nitride sheet. Struct. Chem.2015, 26, 731–738.

    CAS  Google Scholar 

  156. [156]

    Sutter, P.; Lahiri, J.; Albrecht, P.; Sutter, E. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films. ACS Nano2011, 5, 7303–7309.

    CAS  Google Scholar 

  157. [157]

    Kuang, A. L.; Zhou, T. W.; Wang, G. Z.; Li, Y.; Wu, G.; Yuan, H. K.; Chen, H.; Yang, X. L. Dehydrogenation of ammonia borane catalyzed by pristine and defective h-BN sheets.Appl. Surf. Sci.2016, 362, 562–571.

    CAS  Google Scholar 

  158. [158]

    Yang, X. J.; Li, L. L.; Sang, W. L.; Zhao, J. L.; Wang, X. X.; Yu, C.; Zhang, X. H.; Tang, C. C. Boron nitride supported Ni nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. J. Alloys Compd.2017, 693, 642–649.

    CAS  Google Scholar 

  159. [159]

    Zhang, Y. H.; Wei, M. M.; Fu, Q.; Bao, X. H. Oxygen intercalation under hexagonal boron nitride (h-BN) on Pt(111). Sci. Bull.2015, 60, 1572–1579.

    CAS  Google Scholar 

  160. [160]

    Cao, F.; Ding, Y.; Chen, L.; Chen, C.; Fang, Z. Y. Fabrication and characterization of boron nitride bulk foam from borazine.Mater. Des.2014, 54, 610–615.

    Google Scholar 

  161. [161]

    Deshmukh, V.; Nagnathappa, M.; Kharat, B.; Chaudhari, A. Theoretical study of borazine and substituted borazines using density functional theory method. J. Mol. Liq.2014, 193, 13–22.

    CAS  Google Scholar 

  162. [162]

    Duperrier, S.; Chiriac, R.; Sigala, C.; Gervais, C.; Bernard, S.; Cornu, D.; Miele, P. Thermal behaviour of a series of poly[B-(methylamino)borazine] for the preparation of boron nitride fibers. J. Eur. Ceram. Soc.2009, 29, 851–855.

    CAS  Google Scholar 

  163. [163]

    Duriez, C.; Framery, E.; Toury, B.; Toutois, P.; Miele, P.; Vaultier, M.; Bonnetot, B. Boron nitride thin fibres obtained from a new copolymer borazine-tri(methylamino)borazine precursor. J. Organomet. Chem.2002, 657, 107–114.

    CAS  Google Scholar 

  164. [164]

    Gao, S. T.; Li, B.; Li, D.; Zhang, C. R.; Liu, R. J.; Wang, S. Q. Micromorphology and structure of pyrolytic boron nitride synthesized by chemical vapor deposition from borazine. Ceram. Int.2018, 44, 11424–11430.

    CAS  Google Scholar 

  165. [165]

    Li, J. S.; Zhang, C. R.; Li, B. Preparation and characterization of boron nitride coatings on carbon fibers from borazine by chemical vapor deposition.Appl. Surf. Sci.2011, 257, 7752–7757.

    CAS  Google Scholar 

  166. [166]

    Joshi, S.; Ecija, D.; Koitz, R.; Iannuzzi, M.; Seitsonen, A. P.; Hutter, J.; Sachdev, H.; Vijayaraghavan, S.; Bischoff, F.; Seufert, K. et al. Boron nitride on Cu(111): An electronically corrugated monolayer. Nano Lett. 2012, 12, 5821–5828.

    CAS  Google Scholar 

  167. [167]

    Lee, K. H.; Shin, H. J.; Lee, J.; Lee, I. Y.; Kim, G. H.; Choi, J. Y.; Kim, S. W. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 2012, 12, 714–718.

    CAS  Google Scholar 

  168. [168]

    Whittell, G. R.; Manners, I. Advances with ammonia-borane: Improved recycling and use as a precursor to atomically thin BN films.Angew. Chem., Int. Ed.2011, 50, 10288–10289.

    CAS  Google Scholar 

  169. [169]

    Kim, S. K.; Cho, H.; Kim, M. J.; Lee, H. J.; Park, J. H.; Lee, Y. B.; Kim, H. C.; Yoon, C. W.; Nam, S. W.; Kang, S. O. Efficient catalytic conversion of ammonia borane to borazine and its use for hexagonal boron nitride (white graphene). J. Mater. Chem. A2013, 1, 1976–1981.

    CAS  Google Scholar 

  170. [170]

    Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

    CAS  Google Scholar 

  171. [171]

    Koepke, J. C.; Wood, J. D.; Chen, Y. F.; Schmucker, S. W.; Liu, X. M.; Chang, N. N.; Nienhaus, L.; Do, J. W.; Carrion, E. A.; Hewaparakrama, J. et al. Role of pressure in the growth of hexagonal boron nitride thin films from ammonia-borane. Chem. Mater.2016, 28, 4169–4179.

    CAS  Google Scholar 

  172. [172]

    Liu, Z.; Song, L.; Zhao, S. Z.; Huang, J. Q.; Ma, L. L.; Zhang, J. N.; Lou, J.; Ajayan, P. M. Direct growth of graphene/hexagonal boron nitride stacked layers.Nano Lett. 2011, 11, 2032–2037.

    CAS  Google Scholar 

  173. [173]

    Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161–166.

    Google Scholar 

  174. [174]

    Ismach, A.; Chou, H.; Ferrer, D. A.; Wu, Y. P.; McDonnell, S.; Floresca, H. C.; Covacevich, A.; Pope, C.; Piner, R.; Kim, M. J. et al. Toward the controlled synthesis of hexagonal boron nitride films. ACS Nano2012, 6, 6378–6385.

    CAS  Google Scholar 

  175. [175]

    Chatterjee, S.; Luo, Z. T.; Acerce, M.; Yates, D. M.; Johnson, A. T. C.; Sneddon, L. G. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions. Chem. Mater.2011, 23, 4414–4416.

    CAS  Google Scholar 

  176. [176]

    Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. Y. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139.

    CAS  Google Scholar 

  177. [177]

    Lu, G. Y.; Wu, T. R.; Yuan, Q. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Xie, X. M.; Jiang, M. H. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat. Commun.2015, 6, 6160.

    CAS  Google Scholar 

  178. [178]

    Pan, H.; Zhang, Y. W. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. J. Phys. Chem. C2012, 116, 11752–11757.

    CAS  Google Scholar 

  179. [179]

    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol.2011, 6, 147–150.

    CAS  Google Scholar 

  180. [180]

    Lee, T. S.; Esposito, B.; Donley, M. S.; Zabinski, J. S.; Tatarchuk, B. J. Surface and buried-interfacial reactivity of iron and MoS2: A study of laser-deposited materials.Thin Solid Films1996, 286, 282–288.

    CAS  Google Scholar 

  181. [181]

    Ataca, C.; Ciraci, S. Functionalization of single-layer MoS2 honeycomb structures. J. Phys. Chem. C2011, 115, 13303–13311.

    CAS  Google Scholar 

  182. [182]

    Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784–2791.

    CAS  Google Scholar 

  183. [183]

    Yao, Y. G.; Lin, Z. Y.; Li, Z.; Song, X. J.; Moon, K. S.; Wong, C. P. Largescale production of two-dimensional nanosheets.J. Mater. Chem.2012, 22, 13494–13499.

    CAS  Google Scholar 

  184. [184]

    Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials.Chem. Rev.2013, 113, 3766–3798.

    CAS  Google Scholar 

  185. [185]

    Ding, X. L.; Ding, G. Q.; Xie, X. M.; Huang, F. Q.; Jiang, M. H. Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon2011, 49, 2522–2525.

    CAS  Google Scholar 

  186. [186]

    Oshima, C.; Tanaka, N.; Itoh, A.; Rokuta, E.; Yamashita, K.; Sakurai, T. A heteroepitaxial multi-atomic-layer system of graphene and h-BN.Surf. Rev. Lett.2000, 7, 521–525.

    CAS  Google Scholar 

  187. [187]

    Fanton, M. A.; Robinson, J. A.; Puls, C.; Liu, Y.; Hollander, M. J.; Weiland, B. E.; LaBella, M.; Trumbull, K.; Kasarda, R.; Howsare, C. et al. Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition.ACS Nano2011, 5, 8062–8069.

    CAS  Google Scholar 

  188. [187]

    Strupinski, W.; Grodecki, K.; Wysmolek, A.; Stepniewski, R.; Szkopek, T.; Gaskell, P. E.; Grüneis, A.; Haberer, D.; Bozek, R.; Krupka, J. et al. Graphene epitaxy by chemical vapor deposition on SiC.Nano Lett.2011, 11, 1786–1791.

    CAS  Google Scholar 

  189. [189]

    Ouerghi, A.; Kahouli, A.; Lucot, D.; Portail, M.; Travers, L.; Gierak, J.; Penuelas, J.; Jegou, P.; Shukla, A.; Chassagne, T. et al. Epitaxial graphene on cubic SiC(111)/Si(111) substrate. Appl. Phys. Lett.2010, 96, 191910.

    CAS  Google Scholar 

  190. [190]

    Sun, J.; Lindvall, N.; Cole, M. T.; Teo, K. B. K.; Yurgens, A. Large-area uniform graphene-like thin films grown by chemical vapor deposition directly on silicon nitride. Appl. Phys. Lett.2011, 98, 252107.

    Google Scholar 

  191. [191]

    Scott, A.; Dianat, A.; Börrnert, F.; Bachmatiuk, A.; Zhang, S. S.; Warner, J. H.; Borowiak-Paleñ, E.; Knupfer, M.; Büchner, B.; Cuniberti, G. et al. The catalytic potential of high-κ dielectrics for graphene formation. Appl. Phys. Lett.2011, 98, 073110.

    Google Scholar 

  192. [192]

    Rümmeli, M. H.; Bachmatiuk, A.; Scott, A.; Börrnert, F.; Warner, J. H.; Hoffman, V.; Lin, J. H.; Cuniberti, G.; Büchner, B. Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano2010, 4, 4206–4210.

    Google Scholar 

  193. [193]

    Pakdel, A.; Zhi, C. Y.; Bando, Y.; Nakayama, T.; Golberg, D. Boron nitride nanosheet coatings with controllable water repellency. ACS Nano2011, 5, 6507–6515.

    CAS  Google Scholar 

  194. [194]

    Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J. B. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers.Nano Lett. 2014, 14, 3185–3190.

    CAS  Google Scholar 

  195. [195]

    Trung, T. N.; Seo, D. B.; Quang, N. D.; Kim, D.; Kim, E. T. Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO.Electrochimica Acta2018, 260, 150–156.

    CAS  Google Scholar 

  196. [196]

    Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate.Small2012, 8, 966–971.

    CAS  Google Scholar 

  197. [197]

    Li, X. L.; Li, Y. D. Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S.Chem.—Eur. J.2003, 9, 2726–2731.

    CAS  Google Scholar 

  198. [198]

    Yan, P. F.; Wang, J.; Yang, G. F.; Lu, N. Y.; Chu, G. Y.; Zhang, X. M.; Shen, X. W. Chemical vapor deposition of monolayer MoS2 on sapphire, Si and GaN substrates. Superlatt. Microst.2018, 120, 235–240.

    CAS  Google Scholar 

  199. [199]

    Bai, H.; Ma, J.; Wang, F.; Yuan, Y.; Li, W.; Mi, W.; Han, Y.; Li, Y.; Tang, D.; Zhao, W. et al. A controllable synthesis of uniform MoS2 monolayers on annealed molybdenum foils. Mater. Lett.2017, 204, 35–38.

    CAS  Google Scholar 

  200. [200]

    Balendhran, S.; Ou, J. Z.; Bhaskaran, M.; Sriram, S.; Ippolito, S.; Vasic, Z.; Kats, E.; Bhargava, S.; Zhuiykov, S.; Kalantar-zadeh, K. Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. Nanoscale2012, 4, 461–466.

    CAS  Google Scholar 

  201. [201]

    Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater.2012, 24, 2320–2325.

    CAS  Google Scholar 

  202. [202]

    Lin, Z. Y.; Zhao, Y. D.; Zhou, C. J.; Zhong, R.; Wang, X. S.; Tsang, Y. H.; Chai, Y. Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep.2015, 5, 18596.

    CAS  Google Scholar 

  203. [203]

    Rahmati, B.; Hajzadeh, I.; Karimzadeh, R.; Mohseni, S. M. Facile, scalable and transfer free vertical-MoS2 nanostructures grown on Au/SiO2 patterned electrode for photodetector application. Appl. Surf. Sci.2018, 455, 876–882.

    CAS  Google Scholar 

  204. [204]

    Oh, H. M.; Han, G. H.; Kim, H.; Jeong, M. S. Influence of residual promoter to photoluminescence of CVD grown MoS2. Curr. Appl. Phys.2016, 16, 1223–1228.

    Google Scholar 

  205. [205]

    Chen, X.; Wu, B.; Liu, Y. Q. Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev.2016, 45, 2057–2074.

    CAS  Google Scholar 

  206. [206]

    Cuxart, M. G.; Šics, I.; Goñi, A. R.; Pach, E.; Sauthier, G.; Paradinas, M.; Foerster, M.; Aballe, L.; Fernandez, H. M.; Carlino, V. et al. Inductively coupled remote plasma-enhanced chemical vapor deposition (rPE-CVD) as a versatile route for the deposition of graphene micro- and nanostructures. Carbon2017, 117, 331–342.

    CAS  Google Scholar 

  207. [207]

    Pekdemir, S.; Onses, M. S.; Hancer, M. Low temperature growth of graphene using inductively-coupled plasma chemical vapor deposition.Surf. Coat. Technol.2017, 309, 814–819.

    CAS  Google Scholar 

  208. [208]

    Zhang, L. F.; Feng, S. P.; Xiao, S. Q.; Shen, G.; Zhang, X. M.; Nan, H. Y.; Gu, X. F.; Ostrikov, K. Layer-controllable graphene by plasma thinning and post-annealing. Appl. Surf. Sci.2018, 441, 639–646.

    CAS  Google Scholar 

  209. [209]

    Fan, L. W.; Zhang, H.; Zhang, P. P.; Sun, X. H. One-step synthesis of chlorinated graphene by plasma enhanced chemical vapor deposition. Appl. Surf. Sci.2015, 347, 632–635.

    CAS  Google Scholar 

  210. [210]

    Tang, S.; Zhang, Y.; Tian, Y.; Jin, S. Y.; Zhao, P.; Liu, F.; Zhan, R. Z.; Deng, S. Z.; Chen, J.; Xu, N. S. A two-dimensional structure graphene STM tips fabricated by microwave plasma enhanced chemical vapor deposition. Carbon2017, 121, 337–342.

    CAS  Google Scholar 

  211. [211]

    Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C.; Mammana, V. P. Free-standing subnanometer graphite sheets. Appl. Phys. Lett.2004, 85, 1265–1267.

    CAS  Google Scholar 

  212. [212]

    Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon2004, 42, 2867–2872.

    CAS  Google Scholar 

  213. [213]

    Zhu, M. Y.; Wang, J. J.; Holloway, B. C.; Outlaw, R. A.; Zhao, X.; Hou, K.; Shutthanandan, V.; Manos, D. M. A mechanism for carbon nanosheet formation. Carbon2007, 45, 2229–2234.

    CAS  Google Scholar 

  214. [214]

    Kumar, R.; Singh, R. K.; Singh, D. P.; Savu, R.; Moshkalev, S. A. Microwave heating time dependent synthesis of various dimensional graphene oxide supported hierarchical ZnO nanostructures and its photoluminescence studies.Mater. Des.2016, 111, 291–300.

    CAS  Google Scholar 

  215. [215]

    Kumar, R.; Singh, R. K.; Singh, D. P.; Vaz, A. R.; Yadav, R. R.; Rout, C. S.; Moshkalev, S. A. Synthesis of self-assembled and hierarchical palladium-CNTs-reduced graphene oxide composites for enhanced field emission properties.Mater. Des.2017, 122, 110–117.

    CAS  Google Scholar 

  216. [216]

    Kumar, R.; Savu, R.; Singh, R. K.; Joanni, E.; Singh, D. P.; Tiwari, V. S.; Vaz, A. R.; da Silva, E. T. S. G.; Maluta, J. R.; Kubota, L. T. et al. Controlled density of defects assisted perforated structure in reduced graphene oxide nanosheets-palladium hybrids for enhanced ethanol electro-oxidation. Carbon2017, 117, 137–146.

    CAS  Google Scholar 

  217. [217]

    Kumar, R.; Singh, R. K.; Vaz, A. R.; Savu, R.; Moshkalev, S. A. Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces2017, 9, 8880–8890.

    CAS  Google Scholar 

  218. [218]

    Kumar, R.; Singh, R. K.; Singh, A. K.; Vaz, A. R.; Rout, C. S.; Moshkalev, S. A. Facile and single step synthesis of three dimensional reduced graphene oxide-NiCoO2 composite using microwave for enhanced electron field emission properties. Appl. Surf. Sci.2017, 416, 259–265.

    CAS  Google Scholar 

  219. [219]

    Kumar, R.; Singh, R. K.; Vaz, A. R.; Yadav, R. M.; Rout, C. S.; Moshkalev, S. A. Synthesis of reduced graphene oxide nanosheet-supported agglomerated cobalt oxide nanoparticles and their enhanced electron field emission properties. New J. Chem.2017, 41, 8431–8436.

    CAS  Google Scholar 

  220. [220]

    Kumar, R.; da Silva, E. T. S. G.; Singh, R. K.; Savu, R.; Alaferdov, A. V.; Fonseca, L. C.; Carossi, L. C.; Singh, A.; Khandka, S.; Kar, K. K. et al. Microwave-assisted synthesis of palladium nanoparticles intercalated nitrogen doped reduced graphene oxide and their electrocatalytic activity for direct-ethanol fuel cells. J. Colloid Interface Sci. 2018, 515, 160–171.

    CAS  Google Scholar 

  221. [221]

    Kumar, R.; Singh, R. K.; Alaferdov, A. V.; Moshkalev, S. A. Rapid and controllable synthesis of Fe3O4 octahedral nanocrystals embedded-reduced graphene oxide using microwave irradiation for high performance lithium-ion batteries. Electrochim. Acta2018, 281, 78–87.

    CAS  Google Scholar 

  222. [222]

    Bajpai, R.; Wagner, H. D. Fast growth of carbon nanotubes using a microwave oven. Carbon2015, 82, 327–336.

    CAS  Google Scholar 

  223. [223]

    Malesevic, A.; Vitchev, R.; Schouteden, K.; Volodin, A.; Zhang, L.; van Tendeloo, G.; Vanhulsel, A.; van Haesendonck, C. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology2008, 19, 305604.

    Google Scholar 

  224. [224]

    Vitchev, R.; Malesevic, A.; Petrov, R. H.; Kemps, R.; Mertens, M.; Vanhulsel, A.; van Haesendonck, C. Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition. Nanotechnology2010, 21, 095602.

    Google Scholar 

  225. [225]

    Yu, J.; Qin, L.; Hao, Y. F.; Kuang, S. Y.; Bai, X. D.; Chong, Y. M.; Zhang, W. J.; Wang, E. D. Vertically aligned boron nitride nanosheets: Chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano2010, 4, 414–422.

    CAS  Google Scholar 

  226. [226]

    Zhou, F.; Huang, H. B.; Xiao, C. H.; Zheng, S. H.; Shi, X. Y.; Qin, J. Q.; Fu, Q.; Bao, X. H.; Feng, X. L.; Müllen, K. et al. Electrochemically scalable production of fluorine-modified graphene for flexible and highenergy ionogel-based microsupercapacitors. J. Am. Chem. Soc.2018, 140, 8198–8205.

    CAS  Google Scholar 

  227. [227]

    Huo, C. X.; Yan, Z.; Song, X. F.; Zeng, H. B. 2D materials via liquid exfoliation: A review on fabrication and applications. Sci. Bull.2015, 60, 1994–2008.

    CAS  Google Scholar 

  228. [228]

    Zhang, J.; Xu, L.; Zhou, B.; Zhu, Y. Y.; Jiang, X. Q. The pristine graphene produced by liquid exfoliation of graphite in mixed solvent and its application to determination of dopamine. J. Colloid Interface Sci.2018, 513, 279–286.

    CAS  Google Scholar 

  229. [229]

    Haar, S.; El Gemayel, M.; Shin, Y.; Melinte, G.; Squillaci, M. A.; Ersen, O.; Casiraghi, C.; Ciesielski, A.; Samorì, P. Enhancing the liquid-phase exfoliation of graphene in organic solvents upon addition of n-octylbenzene. Sci. Rep.2015, 5, 16684.

    CAS  Google Scholar 

  230. [230]

    Coleman, J. N. Liquid exfoliation of defect-free graphene. Acc. Chem. Res.2013, 46, 14–22.

    CAS  Google Scholar 

  231. [231]

    Gupta, A.; Arunachalam, V.; Vasudevan, S. Liquid-phase exfoliation of MoS2 nanosheets: The critical role of trace water.J. Phys. Chem. Lett.2016, 7, 4884–4890.

    CAS  Google Scholar 

  232. [232]

    Jawaid, A.; Nepal, D.; Park, K.; Jespersen, M.; Qualley, A.; Mirau, P.; Drummy, L. F.; Vaia, R. A. Mechanism for liquid phase exfoliation of MoS2. Chem. Mater.2016, 28, 337–348.

    CAS  Google Scholar 

  233. [233]

    Wang, D. L.; Wu, F. M.; Song, Y. H.; Li, C.; Zhou, L. Large-scale production of defect-free MoS2 nanosheets via pyrene-assisted liquid exfoliation. J. Alloys Compd.2017, 728, 1030–1036.

    CAS  Google Scholar 

  234. [234]

    Grayfer, E. D.; Kozlova, M. N.; Fedorov, V. E. Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation.Adv. Colloid Interface Sci.2017, 245, 40–61.

    CAS  Google Scholar 

  235. [235]

    Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol.2008, 3, 538–542.

    CAS  Google Scholar 

  236. [236]

    Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen, S. T.; Ruoff, R. S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem.2006, 16, 155–158.

    CAS  Google Scholar 

  237. [237]

    Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabó, T.; Szeri, A.; Dékány, I. Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir2003, 19, 6050–6055.

    CAS  Google Scholar 

  238. [238]

    Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B2006, 110, 8535–8539.

    CAS  Google Scholar 

  239. [239]

    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon2007, 45, 1558–1565.

    CAS  Google Scholar 

  240. [240]

    Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc.2008, 130, 16201–16206.

    CAS  Google Scholar 

  241. [241]

    Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc.2008, 130, 5856–5857.

    CAS  Google Scholar 

  242. [242]

    Becerril, H. A.; Mao, J.; Liu, Z. F.; Stoltenberg, R. M.; Bao, Z. N.; Chen, Y. S. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano2008, 2, 463–470.

    CAS  Google Scholar 

  243. [243]

    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol.2008, 3, 270–274.

    CAS  Google Scholar 

  244. [244]

    Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett.2008, 8, 1679–1682.

    CAS  Google Scholar 

  245. [245]

    Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett.2007, 7, 3499–3503.

    Google Scholar 

  246. [246]

    Fan, X. B.; Peng, W. C.; Li, Y.; Li, X. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater.2008, 20, 4490–4493.

    CAS  Google Scholar 

  247. [247]

    Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir2009, 25, 5957–5968.

    CAS  Google Scholar 

  248. [248]

    Geng, Y.; Wang, S. J.; Kim, J. K. Preparation of graphite nanoplatelets and graphene sheets. J. Colloid Interface Sci.2009, 336, 592–598.

    CAS  Google Scholar 

  249. [249]

    Wang, G. X.; Yang, J.; Park, J.; Gou, X. L.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C2008, 112, 8192–8195.

    CAS  Google Scholar 

  250. [250]

    Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett.2008, 8, 3137–3140.

    CAS  Google Scholar 

  251. [251]

    Wu, S. X.; Yin, Z. Y.; He, Q. Y.; Huang, X.; Zhou, X. Z.; Zhang, H. Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes. J. Phys. Chem. C2010, 114, 11816–11821.

    CAS  Google Scholar 

  252. [252]

    Wei, Z. Q.; Barlow, D. E.; Sheehan, P. E. The assembly of single-layer graphene oxide and graphene using molecular templates. Nano Lett.2008, 8, 3141–3145.

    CAS  Google Scholar 

  253. [253]

    Bai, H.; Xu, Y. X.; Zhao, L.; Li, C.; Shi, G. Q. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun.2009, 1667–1669.

    Google Scholar 

  254. [254]

    Akhavan, O. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon2010, 48, 509–519.

    CAS  Google Scholar 

  255. [255]

    Lv, W.; Tang, D. M.; He, Y. B.; You, C. H.; Shi, Z. Q.; Chen, X. C.; Chen, C. M.; Hou, P. X.; Liu, C.; Yang, Q. H. Low-temperature exfoliated graphenes: Vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano2009, 3, 3730–3736.

    CAS  Google Scholar 

  256. [256]

    Park, J. S.; Cho, S. M.; Kim, W. J.; Park, J.; Yoo, P. J. Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets. ACS Appl. Mater. Interfaces2011, 3, 360–368.

    CAS  Google Scholar 

  257. [257]

    Deng, D. H.; Pan, X. L.; Yu, L.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X. C.; Xue, Q. K. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater.2011, 23, 1188–1193.

    CAS  Google Scholar 

  258. [258]

    Feng, L. Y.; Chen, Y. G.; Chen, L. Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped graphene and its application as cathode catalyst in microbial fuel cells. ACS Nano2011, 5, 9611–9618.

    CAS  Google Scholar 

  259. [259]

    Geng, D. S.; Hu, Y. H.; Li, Y. L.; Li, R. Y.; Sun, X. L. One-pot solvothermal synthesis of doped graphene with the designed nitrogen type used as a Pt support for fuel cells. Electrochem. Commun.2012, 22, 65–68.

    CAS  Google Scholar 

  260. [260]

    Li, Q.; Li, M.; Chen, Z. Q.; Li, C. M. Simple solution route to uniform MoS2 particles with randomly stacked layers. Mater. Res. Bull.2004, 39, 981–986.

    CAS  Google Scholar 

  261. [261]

    Chen, X. Y.; Li, H. L.; Wang, S. M.; Yang, M.; Qi, Y. X. Biomolecule-assisted hydrothermal synthesis of molybdenum disulfide microspheres with nanorods. Mater. Lett.2012, 66, 22–24.

    CAS  Google Scholar 

  262. [262]

    Li, G. W.; Li, C. S.; Tang, H.; Cao, K. S.; Chen, J.; Wang, F. F.; Jin, Y. Synthesis and characterization of hollow MoS2 microspheres grown from MoO3 precursors. J. Alloys Compd.2010, 501, 275–281.

    CAS  Google Scholar 

  263. [263]

    Liu, Y. D.; Ren, L.; Qi, X.; Yang, L. W.; Hao, G. L.; Li, J.; Wei, X. L.; Zhong, J. X. Preparation, characterization and photoelectrochemical property of ultrathin MoS2 nanosheets via hydrothermal intercalation and exfoliation route. J. Alloys Compd.2013, 571, 37–42.

    CAS  Google Scholar 

  264. [264]

    Lin, H. T.; Chen, X. Y.; Li, H. L.; Yang, M.; Qi, Y. X. Hydrothermal synthesis and characterization of MoS2 nanorods. Mater. Lett.2010, 64, 1748–1750.

    CAS  Google Scholar 

  265. [265]

    Wei, R. H.; Yang, H. B.; Du, K.; Fu, W. Y.; Tian, Y. M.; Yu, Q. J.; Liu, S. K.; Li, M. H.; Zou, G. T. A facile method to prepare MoS2 with nanoflower-like morphology. Mater. Chem. Phys.2008, 108, 188–191.

    CAS  Google Scholar 

  266. [266]

    Sen, U. K.; Mitra, S. High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Appl. Mater. Interfaces2013, 5, 1240–1247.

    CAS  Google Scholar 

  267. [267]

    Huang, W. Z.; Xu, Z. D.; Liu, R.; Ye, X. F.; Zheng, Y. F. Tungstenic acid induced assembly of hierarchical flower-like MoS2 spheres. Mater. Res. Bull.2008, 43, 2799–2805.

    CAS  Google Scholar 

  268. [268]

    Gong, H. Q.; Zheng, F.; Li, Z.; Li, Y.; Hu, P. F.; Gong, Y.; Song, S. L.; Zhan, F. Y.; Zhen, Q. Hydrothermal preparation of MoS2 nanoflake arrays on Cu foil with enhanced supercapacitive property. Electrochim. Acta2017, 227, 101–109.

    CAS  Google Scholar 

  269. [269]

    Ding, S. J.; Zhang, D. Y.; Chen, J. S.; Lou, X. W. Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale2012, 4, 95–98.

    CAS  Google Scholar 

  270. [270]

    Peng, Y. Y.; Meng, Z. Y.; Zhong, C.; Lu, J.; Yu, W. C.; Jia, Y. B.; Qian, Y. T. Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chem. Lett.2001, 30, 772–773.

    Google Scholar 

  271. [271]

    Zhu, P.; Chen, Y.; Zhou, Y.; Yang, Z. X.; Wu, D.; Xiong, X.; Ouyang, F. P. Defect-rich MoS2 nanosheets vertically grown on graphene-protected Ni foams for high efficient electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy2018, 43, 14087–14095.

    CAS  Google Scholar 

  272. [272]

    Senthil Kumar, S. M.; Selvakumar, K.; Thangamuthu, R.; Karthigai Selvi, A.; Ravichandran, S.; Sozhan, G.; Rajasekar, K.; Navascues, N.; Irusta, S. Hydrothermal assisted morphology designed MoS2 material as alternative cathode catalyst for PEM electrolyser application. Int. J. Hydrogen Energy2016, 41, 13331–13340.

    CAS  Google Scholar 

  273. [273]

    Tiwary, C. S.; Javvaji, B.; Kumar, C.; Mahapatra, D. R.; Ozden, S.; Ajayan, P. M.; Chattopadhyay, K. Chemical-free graphene by unzipping carbon nanotubes using cryo-milling. Carbon2015, 89, 217–224.

    CAS  Google Scholar 

  274. [274]

    Mohammadi, S.; Kolahdouz, Z.; Darbari, S.; Mohajerzadeh, S.; Masoumi, N. Graphene formation by unzipping carbon nanotubes using a sequential plasma assisted processing. Carbon2013, 52, 451–463.

    CAS  Google Scholar 

  275. [275]

    Dhakate, S. R.; Chauhan, N.; Sharma, S.; Mathur, R. B. The production of multi-layer graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes. Carbon2011, 49, 4170–4178.

    CAS  Google Scholar 

  276. [276]

    Cataldo, F.; Compagnini, G.; Patané, G.; Ursini, O.; Angelini, G.; Ribic, P. R.; Margaritondo, G.; Cricenti, A.; Palleschi, G.; Valentini, F. Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes. Carbon2010, 48, 2596–2602.

    CAS  Google Scholar 

  277. [277]

    Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature2009, 458, 877–880.

    CAS  Google Scholar 

  278. [278]

    Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature2009, 458, 872–876.

    CAS  Google Scholar 

  279. [279]

    Cano-Márquez, A. G.; Rodríguez-Macías, F. J.; Campos-Delgado, J.; Espinosa-González, C. G.; Tristán-López, F.; Ramírez-González, D.; Cullen, D. A.; Smith, D. J.; Terrones, M.; Vega-Cantú, Y. I. Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett.2009, 9, 1527–1533.

    Google Scholar 

  280. [280]

    Ozden, S.; Autreto, P. A. S.; Tiwary, C. S.; Khatiwada, S.; Machado, L.; Galvao, D. S.; Vajtai, R.; Barrera, E. V.; Ajayan, P. M. Unzipping carbon nanotubes at high impact. Nano Lett.2014, 14, 4131–4137.

    CAS  Google Scholar 

  281. [281]

    Vadahanambi, S.; Jung, J. H.; Kumar, R.; Kim, H. J.; Oh, I. K. An ionic liquid-assisted method for splitting carbon nanotubes to produce graphene nano-ribbons by microwave radiation. Carbon2013, 53, 391–398.

    CAS  Google Scholar 

  282. [282]

    Erickson, K. J.; Gibb, A. L.; Sinitskii, A.; Rousseas, M.; Alem, N.; Tour, J. M.; Zettl, A. K. Longitudinal splitting of boron nitride nanotubes for the facile synthesis of high quality boron nitride nanoribbons. Nano Lett.2011, 11, 3221–3226.

    CAS  Google Scholar 

  283. [283]

    Zeng, H. B.; Zhi, C. Y.; Zhang, Z. H.; Wei, X. L.; Wang, X. B.; Guo, W. L.; Bando, Y.; Golberg, D. “White graphenes”: Boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett.2010, 10, 5049–5055.

    CAS  Google Scholar 

  284. [284]

    Vasu, K.; Yamijala, S. S. R. K. C.; Zak, A.; Gopalakrishnan, K.; Pati, S. K.; Rao, C. N. R. Clean WS2 and MoS2 nanoribbons generated by laserinduced unzipping of the nanotubes. Small2015, 11, 3916–3920.

    CAS  Google Scholar 

  285. [285]

    Silva, A. A.; Pinheiro, R. A.; Rodrigues, A. C.; Baldan, M. R.; Trava-Airoldi, V. J.; Corat, E. J. Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor. Appl. Surf. Sci.2018, 446, 201–208.

    CAS  Google Scholar 

  286. [286]

    Wu, Z. S.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Zhao, J. P.; Cheng, H. M. Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Res.2010, 3, 16–22.

    CAS  Google Scholar 

  287. [287]

    Kumar, R.; Tiwari, R. S.; Srivastava, O. N. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: Neem oil. Nanoscale Res. Lett.2011, 6, 92.

    Google Scholar 

  288. [288]

    Awasthi, K.; Kumar, R.; Tiwari, R. S.; Srivastava, O. N. Large scale synthesis of bundles of aligned carbon nanotubes using a natural precursor: Turpentine oil. J. Exp. Nanosci.2010, 5, 498–508.

    CAS  Google Scholar 

  289. [289]

    Zhuang, N. F.; Liu, C. C.; Jia, L. N.; Wei, L.; Cai, J. D.; Guo, Y. L.; Zhang, Y. F.; Hu, X. L.; Chen, J. Z.; Chen, X. D. et al. Clean unzipping by steam etching to synthesize graphene nanoribbons. Nanotechnology2013, 24, 325604.

    Google Scholar 

  290. [290]

    Jiao, L. Y.; Zhang, L.; Ding, L.; Liu, J.; Dai, H. J. Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Res.2010, 3, 387–394.

    CAS  Google Scholar 

  291. [291]

    Shinde, D. B.; Majumder, M.; Pillai, V. K. Counter-ion dependent, longitudinal unzipping of multi-walled carbon nanotubes to highly conductive and transparent graphene nanoribbons. Sci. Rep.2014, 4, 4363.

    Google Scholar 

  292. [292]

    Shinde, D. B.; Debgupta, J.; Kushwaha, A.; Aslam, M.; Pillai, V. K. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. J. Am. Chem. Soc.2011, 133, 4168–4171.

    CAS  Google Scholar 

  293. [293]

    Li, Y. S.; Liao, J. L.; Wang, S. Y.; Chiang, W. H. Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Sci. Rep.2016, 6, 22755.

    CAS  Google Scholar 

  294. [294]

    Yang, M.; Hu, L. G.; Tang, X. W.; Zhang, H. D.; Zhu, H. X.; Fan, T. X.; Zhang, D. Longitudinal splitting versus sequential unzipping of thick-walled carbon nanotubes: Towards controllable synthesis of high-quality graphitic nanoribbons. Carbon2016, 110, 480–489.

    CAS  Google Scholar 

  295. [295]

    Rollings, E.; Gweon, G. H.; Zhou, S. Y.; Mun, B. S.; McChesney, J. L.; Hussain, B. S.; Fedorov, A. V.; First, P. N.; de Heer, W. A.; Lanzara, A. Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids2006, 67, 2172–2177.

    CAS  Google Scholar 

  296. [296]

    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science2008, 319, 1229–1232.

    CAS  Google Scholar 

  297. [297]

    Chen, Z. H.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Phys. E2007, 40, 228–232.

    CAS  Google Scholar 

  298. [298]

    Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett.2007, 98, 206805.

    Google Scholar 

  299. [299]

    Yang, X. Y.; Dou, X.; Rouhanipour, A.; Zhi, L. J.; Räder, H. J.; Müllen, K. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc.2008, 130, 4216–4217.

    CAS  Google Scholar 

  300. [300]

    Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X. T.; Cullen, D. A.; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z. F.; Smith, D. J.; Okuno, Y. et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 2008, 8, 2773–2778.

    CAS  Google Scholar 

  301. [301]

    Valentini, L. Formation of unzipped carbon nanotubes by CF4 plasma treatment. Diam. Relat. Mater.2011, 20, 445–448.

    CAS  Google Scholar 

  302. [302]

    Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature2009, 458, 872–876.

    CAS  Google Scholar 

  303. [303]

    Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z. Z.; Tour, J. M. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano2010, 4, 2059–2069.

    CAS  Google Scholar 

  304. [304]

    Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature2009, 458, 877–880.

    CAS  Google Scholar 

  305. [305]

    Kang, Y. R.; Li, Y. L.; Deng, M. Y. Precise unzipping of flattened carbon nanotubes to regular graphene nanoribbons by acid cutting along the folded edges. J. Mater. Chem.2012, 22, 16283–16287.

    CAS  Google Scholar 

  306. [306]

    Cho, S.; Kikuchi, K.; Kawasaki, A. Radial followed by longitudinal unzipping of multiwalled carbon nanotubes. Carbon2011, 49, 3865–3872.

    CAS  Google Scholar 

  307. [307]

    Kumar, P.; Panchakarla, L. S.; Rao, C. N. R. Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons. Nanoscale2011, 3, 2127–2129.

    CAS  Google Scholar 

  308. [308]

    Zheng, M.; Takei, K.; Hsia, B.; Fang, H.; Zhang, X. B.; Ferralis, N.; Ko, H.; Chueh, Y. L.; Zhang, Y. G.; Maboudian, R. et al. Metal-catalyzed crystallization of amorphous carbon to graphene. Appl. Phys. Lett.2010, 96, 063110.

    Google Scholar 

  309. [309]

    García, J. M.; He, R.; Jiang, M. P.; Kim, P.; Pfeiffer, L. N.; Pinczuk, A. Multilayer graphene grown by precipitation upon cooling of nickel on diamond. Carbon2011, 49, 1006–1012.

    Google Scholar 

  310. [310]

    Sutter, P.; Lahiri, J.; Zahl, P.; Wang, B.; Sutter, E. Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films. Nano Lett.2013, 13, 276–281.

    CAS  Google Scholar 

  311. [311]

    Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M. J.; Riechert, H. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy. Appl. Phys. Lett.2015, 106, 213108.

    Google Scholar 

  312. [312]

    Tonkikh, A. A.; Voloshina, E. N.; Werner, P.; Blumtritt, H.; Senkovskiy, B.; Güntherodt, G.; Parkin, S. S. P.; Dedkov, Y. S. Structural and electronic properties of epitaxial multilayer h-BN on Ni(111) for spintronics applications. Sci. Rep.2016, 6, 23547.

    CAS  Google Scholar 

  313. [313]

    Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano2012, 6, 74–80.

    CAS  Google Scholar 

  314. [314]

    Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano2010, 4, 2695–2700.

    CAS  Google Scholar 

  315. [315]

    Ramakrishna Matte, H. S. S.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed.2010, 49, 4059–4062.

    Google Scholar 

  316. [316]

    Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed.2011, 50, 11093–11097.

    CAS  Google Scholar 

  317. [317]

    Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett.2011, 11, 5111–5116.

    CAS  Google Scholar 

  318. [318]

    Loh, T. A. J.; Chua, D. H. C. Growth mechanism of pulsed laser fabricated few-layer MoS2 on metal substrates. ACS Appl. Mater. Interfaces2014, 6, 15966–15971.

    CAS  Google Scholar 

  319. [319]

    Late, D. J.; Shaikh, P. A.; Khare, R.; Kashid, R. V.; Chaudhary, M.; More, M. A.; Ogale, S. B. Pulsed laser-deposited MoS2 thin films on W and Si: Field emission and photoresponse studies. ACS Appl. Mater. Interfaces2014, 6, 15881–15888.

    CAS  Google Scholar 

  320. [320]

    Serrao, C. R.; Diamond, A. M.; Hsu, S. L.; You, L.; Gadgil, S.; Clarkson, J.; Carraro, C.; Maboudian, R.; Hu, C. M.; Salahuddin, S. Highly crystalline MoS2 thin films grown by pulsed laser deposition. Appl. Phys. Lett.2015, 106, 052101.

    Google Scholar 

  321. [321]

    Muratore, C.; Hu, J. J.; Wang, B.; Haque, M. A.; Bultman, J. E.; Jespersen, M. L.; Shamberger, P. J.; McConney, M. E.; Naguy, R. D.; Voevodin, A. A. Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl. Phys. Lett.2014, 104, 261604.

    Google Scholar 

  322. [322]

    Helveg, S.; Lauritsen, J. V.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; Besenbacher, F. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett.2000, 84, 951–954.

    CAS  Google Scholar 

  323. [323]

    Sun, Z. Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of graphene from solid carbon sources. Nature2010, 468, 549–552.

    CAS  Google Scholar 

  324. [324]

    Shin, H. J.; Choi, W. M.; Yoon, S. M.; Han, G. H.; Woo, Y. S.; Kim, E. S.; Chae, S. J.; Li, X. S.; Benayad, A.; Loc, D. D. et al. Transfer-free growth of few-layer graphene by self-assembled monolayers. Adv. Mater.2011, 23, 4392–4397.

    CAS  Google Scholar 

  325. [325]

    Yan, Z.; Peng, Z. W.; Sun, Z. Z.; Yao, J.; Zhu, Y.; Liu, Z.; Ajayan, P. M.; Tour, J. M. Growth of bilayer graphene on insulating substrates. ACS Nano2011, 5, 8187–8192.

    CAS  Google Scholar 

  326. [326]

    Herron, C. R.; Coleman, K. S.; Edwards, R. S.; Mendis, B. G. Simple and scalable route for the “bottom-up” synthesis of few-layer graphene platelets and thin films. J. Mater. Chem.2011, 21, 3378–3383.

    CAS  Google Scholar 

  327. [327]

    Memon, N. K.; Tse, S. D.; Chhowalla, M.; Kear, B. H. Role of substrate, temperature, and hydrogen on the flame synthesis of graphene films. Proc. Combust. Inst.2013, 34, 2163–2170.

    CAS  Google Scholar 

  328. [328]

    Memon, N. K.; Tse, S. D.; Al-Sharab, J. F.; Yamaguchi, H.; Goncalves, A. M. B.; Kear, B. H.; Jaluria, Y.; Andrei, E. Y.; Chhowalla, M. Flame synthesis of graphene films in open environments. Carbon2011, 49, 5064–5070.

    CAS  Google Scholar 

  329. [329]

    Liu, H. Z.; Zhu, S. Y.; Jiang, W. T. Rapid flame synthesis of multilayer graphene on SiO2/Si substrate. J. Mater. Sci. Mater. Electron.2016, 27, 2795–2799.

    CAS  Google Scholar 

  330. [330]

    Cai, L. L.; McClellan, C. J.; Koh, A. L.; Li, H.; Yalon, E.; Pop, E.; Zheng, X. L. Rapid flame synthesis of atomically thin MoO3 down to monolayer thickness for effective hole doping of WSe2. Nano Lett.2017, 17, 3854–3861.

    CAS  Google Scholar 

  331. [331]

    Guo, L. J.; Peng, J. Growth of graphene sheets under an oxyacetylene flame without a catalyst. New Carbon Mater.2017, 32, 188–192.

    Google Scholar 

  332. [332]

    Mohammed, M. K. A.; Al-Mousoi, A. K.; Khalaf, H. A. Deposition of multi-layer graphene (MLG) film on glass slide by flame synthesis technique. Optik2016, 127, 9848–9852.

    CAS  Google Scholar 

  333. [333]

    Zhang, J.; Tian, T.; Chen, Y. H.; Niu, Y. F.; Tang, J.; Qin, L. C. Synthesis of graphene from dry ice in flames and its application in supercapacitors. Chem. Phys. Lett.2014, 591, 78–81.

    CAS  Google Scholar 

  334. [334]

    Zhao, J. G.; Guo, Y.; Li, Z. P.; Guo, Q. H.; Shi, J. H.; Wang, L. H.; Fan, J. F. An approach for synthesizing graphene with calcium carbonate and magnesium. Carbon2012, 50, 4939–4944.

    CAS  Google Scholar 

  335. [335]

    Chakrabarti, A.; Lu, J.; Skrabutenas, J. C.; Xu, T.; Xiao, Z. L.; Maguire, J. A.; Hosmane, N. S. Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem.2011, 21, 9491–9493.

    CAS  Google Scholar 

  336. [336]

    Liu, N.; Luo, F.; Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. One-step ionicliquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater.2008, 18, 1518–1525.

    CAS  Google Scholar 

  337. [337]

    Gomes, F. O. V.; Pokle, A.; Marinkovic, M.; Balster, T.; Canavan, M.; Fleischer, K.; Anselmann, R.; Nicolosi, V.; Wagner, V. Influence of temperature on morphological and optical properties of MoS2 layers as grown based on solution processed precursor. Thin Solid Films2018, 645, 38–44.

    CAS  Google Scholar 

  338. [338]

    Shahzad, R.; Kim, T.; Kang, S. W. Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis. Thin Solid Films2017, 641, 79–86.

    CAS  Google Scholar 

  339. [339]

    Schwenke, A. M.; Hoeppener, S.; Schubert, U. S. Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv. Mater.2015, 27, 4113–4141.

    CAS  Google Scholar 

  340. [340]

    Kim, H. R.; Lee, S. H.; Lee, K. H. Scalable production of large singlelayered graphenes by microwave exfoliation “in deionized water”. Carbon2018, 134, 431–438.

    CAS  Google Scholar 

  341. [341]

    Sreedhar, D.; Devireddy, S.; Veeredhi, V. R. Synthesis and study of reduced graphene oxide layers under microwave irradiation. Mater. Today Proc.2018, 5, 3403–3410.

    CAS  Google Scholar 

  342. [342]

    Zhao, X.; Gou, L. Comparative analysis of graphene grown on copper and nickel sheet by microwave plasma chemical vapor deposition. Vacuum2018, 153, 48–52.

    CAS  Google Scholar 

  343. [343]

    Dato, A.; Radmilovic, V.; Lee, Z.; Phillips, J.; Frenklach, M. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett.2008, 8, 2012–2016.

    CAS  Google Scholar 

  344. [344]

    Dato, A.; Frenklach, M. Substrate-free microwave synthesis of graphene: Experimental conditions and hydrocarbon precursors. New J. Phys.2010, 12, 125013.

    Google Scholar 

  345. [345]

    Kim, C. D.; Min, B. K.; Jung, W. S. Preparation of graphene sheets by the reduction of carbon monoxide. Carbon2009, 47, 1610–1612.

    Google Scholar 

  346. [346]

    Vollath, D.; Szabó, D. V. Synthesis of nanocrystalline MoS2 and WS2 in a microwave plasma. Mater. Lett.1998, 35, 236–244.

    CAS  Google Scholar 

  347. [347]

    Vollath, D.; Szabó, D. V. Nanoparticles from compounds with layered structures. Acta Mater.2000, 48, 953–967.

    CAS  Google Scholar 

  348. [348]

    Liu, N.; Wang, X. Z.; Xu, W. Y.; Hu, H.; Liang, J. J.; Qiu, J. S. Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel2014, 119, 163–169.

    CAS  Google Scholar 

  349. [349]

    Si, P. Z.; Zhang, M.; Zhang, Z. D.; Zhao, X. G.; Ma, X. L.; Geng, D. Y. Synthesis and structure of multi-layered WS2(CoS), MoS2(Mo) nanocapsules and single-layered WS2(W) nanoparticles. J. Mater. Sci.2005, 40, 4287–4291.

    CAS  Google Scholar 

  350. [350]

    Hu, J. J.; Bultman, J. E.; Zabinski, J. S. Inorganic fullerene-like nanoparticles produced by arc discharge in water with potential lubricating ability. Tribol. Lett.2004, 17, 543–546.

    CAS  Google Scholar 

  351. [351]

    Chhowalla, M.; Amaratunga, G. A. J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature2000, 407, 164–167.

    CAS  Google Scholar 

  352. [352]

    Alexandrou, I.; Sano, N.; Burrows, A.; Meyer, R. R.; Wang, H.; Kirkland, A. I.; Kiely, C. J.; Amaratunga, G. A. J. Structural investigation of MoS2 core-shell nanoparticles formed by an arc discharge in water. Nanotechnology2003, 14, 913–917.

    CAS  Google Scholar 

  353. [353]

    Sano, N.; Wang, H. L.; Chhowalla, M.; Alexandrou, I.; Amaratunga, G. A. J.; Naito, M.; Kanki, T. Fabrication of inorganic molybdenum disulfide fullerenes by arc in water. Chem. Phys. Lett.2003, 368, 331–337.

    CAS  Google Scholar 

  354. [354]

    Gong, C.; Huang, C. M.; Miller, J.; Cheng, L. X.; Hao, Y. F.; Cobden, D.; Kim, J.; Ruoff, R. S.; Wallace, R. M.; Cho, K. et al. Metal contacts on physical vapor deposited monolayer MoS2. ACS Nano2013, 7, 11350–11357.

    CAS  Google Scholar 

  355. [355]

    Sen, R.; Govindaraj, A.; Suenaga, K.; Suzuki, S.; Kataura, H.; Iijima, S.; Achiba, Y. Encapsulated and hollow closed-cage structures of WS2 and MoS2 prepared by laser ablation at 450–1050 °C. Chem. Phys. Lett.2001, 340, 242–248.

    CAS  Google Scholar 

  356. [356]

    Parilla, P. A.; Dillon, A. C.; Jones, K. M.; Riker, G.; Schulz, D. L.; Ginley, D. S.; Heben, M. J. The first true inorganic fullerenes? Nature1999, 397, 114.

    CAS  Google Scholar 

  357. [357]

    Mdleleni, M. M.; Hyeon, T.; Suslick, K. S. Sonochemical synthesis of nanostructured molybdenum sulfide. J. Am. Chem. Soc.1998, 120, 6189–6190.

    CAS  Google Scholar 

  358. [358]

    Dhas, N. A.; Suslick, K. S. Sonochemical preparation of hollow nanospheres and hollow nanocrystals. J. Am. Chem. Soc.2005, 127, 2368–2369.

    CAS  Google Scholar 

  359. [359]

    Wang, K. P.; Wang, J.; Fan, J. T.; Lotya, M.; O’Neill, A.; Fox, D.; Feng, Y. Y.; Zhang, X. Y.; Jiang, B. X.; Zhao, Q. Z. et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano2013, 7, 9260–9267.

    CAS  Google Scholar 

  360. [360]

    Cho, A.; Koh, J. H.; Lee, S. I.; Moon, S. H. Activity and thermal stability of sonochemically synthesized MoS2 and Ni-promoted MoS2 catalysts. Catal. Today2010, 149, 47–51.

    CAS  Google Scholar 

  361. [361]

    Mastai, Y.; Homyonfer, M.; Gedanken, A.; Hodes, G. Room temperature sonoelectrochemical synthesis of molybdenum sulfide fullerene-like nanoparticles. Adv. Mater.1999, 11, 1010–1013.

    CAS  Google Scholar 

  362. [362]

    Audronis, M.; Leyland, A.; Kelly, P. J.; Matthews, A. Composition and structure-property relationships of chromium-diboride/molybdenumdisulphide PVD nanocomposite hard coatings deposited by pulsed magnetron sputtering. Appl. Phys. A2008, 91, 77–86.

    CAS  Google Scholar 

  363. [363]

    Spalvins, T. Morphological and frictional behavior of sputtered MoS2 films. Thin Solid Films1982, 96, 17–24.

    CAS  Google Scholar 

  364. [364]

    Bichsel, R.; Buffat, P.; Levy, F. Correlation between process conditions, chemical composition and morphology of MoS2 films prepared by RF planar magnetron sputtering. J. Phys. D Appl. Phys.1986, 19, 1575–1585.

    CAS  Google Scholar 

  365. [365]

    Spalvins, T. Deposition of MoS2 films by physical sputtering and their lubrication properties in vacuum. A S L E Trans.1969, 12, 36–43.

    CAS  Google Scholar 

  366. [366]

    Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy2012, 1, 107–131.

    CAS  Google Scholar 

  367. [367]

    Dong, Y. F.; Wu, Z. S.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Graphene: A promising 2D material for electrochemical energy storage. Sci. Bull.2017, 62, 724–740.

    CAS  Google Scholar 

  368. [368]

    Yang, J.; Liu, W.; Niu, H.; Cheng, K.; Ye, K.; Zhu, K.; Wang, G. L.; Cao, D. X.; Yan, J. Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots. Nano Res.2018, 11, 4744–4758.

    CAS  Google Scholar 

  369. [369]

    Kumar, R.; Kim, H. J.; Park, S.; Srivastava, A.; Oh, I. K. Graphene-wrapped and cobalt oxide-intercalated hybrid for extremely durable super-capacitor with ultrahigh energy and power densities. Carbon2014, 79, 192–202.

    CAS  Google Scholar 

  370. [370]

    Kumar, R.; Singh, R. K.; Dubey, P. K.; Singh, D. P.; Yadav, R. M. Self-assembled hierarchical formation of conjugated 3D cobalt oxide nanobead-CNT-graphene nanostructure using microwaves for highperformance supercapacitor electrode. ACS Appl. Mater. Interfaces2015, 7, 15042–15051.

    CAS  Google Scholar 

  371. [371]

    Li, P. P.; Jin, Z. Y.; Peng, L. L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. H. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater.2018, 30, 1800124.

    Google Scholar 

  372. [372]

    Bakandritsos, A.; Chronopoulos, D. D.; Jakubec, P.; Pykal, M.; Èépe, K.; Steriotis, T.; Kalytchuk, S.; Petr, M.; Zboøil, R.; Otyepka, M. Highperformance supercapacitors based on a zwitterionic network of covalently functionalized graphene with iron tetraaminophthalocyanine. Adv. Funct. Mater.2018, 28, 1801111.

    Google Scholar 

  373. [373]

    Nagar, B.; Dubal, D. P.; Pires, L.; Merkoçi, A.; Gómez-Romero, P. Design and fabrication of printed paper-based hybrid micro-supercapacitor by using graphene and redox-active electrolyte. ChemSusChem2018, 11, 1849–1856.

    CAS  Google Scholar 

  374. [374]

    Luo, Y. X.; Zhang, Q. E.; Hong, W. J.; Xiao, Z. Y.; Bai, H. A high-performance electrochemical supercapacitor based on a polyaniline/reduced graphene oxide electrode and a copper(II) ion active electrolyte. Phys. Chem. Chem. Phys.2018, 20, 131–136.

    CAS  Google Scholar 

  375. [375]

    Yao, B.; Chandrasekaran, S.; Zhang, J.; Xiao, W.; Qian, F.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule2019, 3, 459–470.

    CAS  Google Scholar 

  376. [376]

    Chen, N. N.; Ni, L.; Zhou, J. H.; Zhu, G. Y.; Kang, Q.; Zhang, Y.; Chen, S. Y.; Zhou, W. X.; Lu, C. L.; Chen, J. et al. Sandwich-like holey graphene/PANI/graphene nanohybrid for ultrahigh-rate supercapacitor. ACS Appl. Energy Mater.2018, 1, 5189–5197.

    CAS  Google Scholar 

  377. [377]

    Manjakkal, L.; Núñez, C. G.; Dang, W. T.; Dahiya, R. Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy2018, 51, 604–612.

    CAS  Google Scholar 

  378. [378]

    Zhang, Z. Y.; Liu, M. L.; Tian, X.; Xu, P.; Fu, C. Y.; Wang, S.; Liu, Y. Q. Scalable fabrication of ultrathin free-standing graphene nanomesh films for flexible ultrafast electrochemical capacitors with AC line-filtering performance. Nano Energy2018, 50, 182–191.

    CAS  Google Scholar 

  379. [379]

    Zhang, S.; Sui, L. N.; Dong, H. Z.; He, W. B.; Dong, L. F.; Yu, L. Y. High-performance supercapacitor of graphene quantum dots with uniform sizes. ACS Appl. Mater. Interfaces2018, 10, 12983–12991.

    CAS  Google Scholar 

  380. [380]

    Boruah, B. D.; Maji, A.; Misra, A. Flexible array of microsupercapacitor for additive energy storage performance over a large area. ACS Appl. Mater. Interfaces2018, 10, 15864–15872.

    CAS  Google Scholar 

  381. [381]

    Strauss, V.; Marsh, K.; Kowal, M. D.; El-Kady, M.; Kaner, R. B. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater.2018, 30, 1704449.

    Google Scholar 

  382. [382]

    Liu, K. K.; Jiang, Q. S.; Kacica, C.; Derami, H. G.; Biswas, P.; Singamaneni, S. Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. RSC Adv.2018, 8, 31296–31302.

    CAS  Google Scholar 

  383. [383]

    Wang, Z. Y.; Zhang, H.; Li, N.; Shi, Z. J.; Gu, Z. N.; Cao, G. P. Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res.2010, 3, 748–756.

    CAS  Google Scholar 

  384. [384]

    Li, L.; Gao, C. T.; Kovalchuk, A.; Peng, Z. W.; Ruan, G. D.; Yang, Y.; Fei, H. L.; Zhong, Q. F.; Li, Y. L.; Tour, J. M. Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Res.2016, 9, 2904–2911.

    CAS  Google Scholar 

  385. [385]

    Benítez, A.; Caballero, A.; Morales, J.; Hassoun, J.; Rodríguez-Castellón, E.; Canales-Vázquez, J. Physical activation of graphene: An effective, simple and clean procedure for obtaining microporous graphene for high-performance Li/S batteries. Nano Res.2019, 12, 759–766.

    Google Scholar 

  386. [386]

    Wang, A. X.; Tang, S.; Kong, D. B.; Liu, S.; Chiou, K.; Zhi, L. J.; Huang, J. X.; Xia, Y. Y.; Luo, J. Y. Bending-tolerant anodes for lithium-metal batteries. Adv. Mater.2018, 30, 1703891.

    Google Scholar 

  387. [387]

    Shi, H. D.; Zhao, X. J.; Wu, Z. S.; Dong, Y. F.; Lu, P. F.; Chen, J.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithiumsulfur batteries. Nano Energy2019, 60, 743–751.

    CAS  Google Scholar 

  388. [388]

    Hu, Y. X.; Luo, B.; Ye, D. L.; Zhu, X. B.; Lyu, M.; Wang, L. Z. An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries. Adv. Mater.2017, 29, 1606132.

    Google Scholar 

  389. [389]

    Yuan, T. C.; Wang, Y. X.; Zhang, J. X.; Pu, X. J.; Ai, X. P.; Chen, Z. X.; Yang, H. X.; Cao, Y. L. 3D Graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy2019, 56, 160–168.

    CAS  Google Scholar 

  390. [390]

    Huang, Y. X.; Wang, Z. H.; Jiang, Y.; Li, S. J.; Li, Z. H.; Zhang, H. Q.; Wu, F.; Xie, M.; Li, L.; Chen, R. J. Hierarchical porous Co0.85Se@reduced graphene oxide ultrathin nanosheets with vacancy-enhanced kinetics as superior anodes for sodium-ion batteries. Nano Energy2018, 53, 524–535.

    CAS  Google Scholar 

  391. [391]

    Pan, J.; Chen, S. L.; Fu, Q.; Sun, Y. W.; Zhang, Y. C.; Lin, N.; Gao, P.; Yang, J.; Qian, Y. T. Layered-structure SbPO4/reduced graphene oxide: An advanced anode material for sodium ion batteries. ACS Nano2018, 12, 12869–12878.

    CAS  Google Scholar 

  392. [392]

    Wang, H. W.; Wu, M. S.; Lei, X. L.; Tian, Z. F.; Xu, B.; Huang, K.; Ouyang, C. Y. Siligraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations. Nano Energy2018, 49, 67–76.

    CAS  Google Scholar 

  393. [393]

    Longoni, G.; Panda, J. K.; Gagliani, L.; Brescia, R.; Manna, L.; Bonaccorso, F.; Pellegrini, V. In situ LiFePO4 nano-particles grown on few-layer graphene flakes as high-power cathode nanohybrids for lithium-ion batteries. Nano Energy2018, 51, 656–667.

    CAS  Google Scholar 

  394. [394]

    Han, J. H.; Hirata, A.; Du, J.; Ito, Y.; Fujita, T.; Kohara, S.; Ina, T.; Chen, M. Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy2018, 49, 354–362.

    CAS  Google Scholar 

  395. [395]

    Li, J. L.; Qin, W.; Xie, J. P.; Lei, H.; Zhu, Y. Q.; Huang, W. Y.; Xu, X.; Zhao, Z. J.; Mai, W. J. Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy2018, 53, 415–424.

    CAS  Google Scholar 

  396. [396]

    Li, Q. C.; Song, Y. Z.; Xu, R. Z.; Zhang, L.; Gao, J.; Xia, Z.; Tian, Z. N.; Wei, N.; Rümmeli, M. H.; Zou, X. L. et al. Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries. ACS Nano2018, 12, 10240–10250.

    CAS  Google Scholar 

  397. [397]

    Kong, L.; Li, B. Q.; Peng, H. J.; Zhang, R.; Xie, J.; Huang, J. Q.; Zhang, Q. Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium-sulfur batteries. Adv. Energy Mater.2018, 8, 1800849.

    Google Scholar 

  398. [398]

    Zhou, L. J.; Zhang, C. Y.; Cai, X. Y.; Qian, Y.; Jiang, H. F.; Li, B. S.; Lai, L. F.; Shen, Z. X.; Huang, W. N, P co-doped hierarchical porous graphene as a metal-free bifunctional air cathode for Zn-air batteries. ChemElectroChem2018, 5, 1811–1816.

    CAS  Google Scholar 

  399. [399]

    Khan, A. F.; Down, M. P.; Smith, G. C.; Foster, C. W.; Banks, C. E. Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): Role of surfactant upon the electrochemical reduction of oxygen and capacitance applications. J. Mater. Chem. A2017, 5, 4103–4113.

    CAS  Google Scholar 

  400. [400]

    Saha, S.; Jana, M.; Khanra, P.; Samanta, P.; Koo, H.; Murmu, N. C.; Kuila, T. Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Appl. Mater. Interfaces2015, 7, 14211–14222.

    CAS  Google Scholar 

  401. [401]

    Saha, S.; Jana, M.; Samanta, P.; Murmu, N. C.; Kim, N. H.; Kuila, T.; Lee, J. H. Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications. Mater. Chem. Phys.2017, 190, 153–165.

    CAS  Google Scholar 

  402. [402]

    Byun, S.; Kim, J. H.; Song, S. H.; Lee, M.; Park, J. J.; Lee, G.; Hong, S. H.; Lee, D. Ordered, scalable heterostructure comprising boron nitride and graphene for high-performance flexible supercapacitors. Chem. Mater.2016, 28, 7750–7756.

    CAS  Google Scholar 

  403. [403]

    Gilshteyn, E. P.; Amanbayev, D.; Anisimov, A. S.; Kallio, T.; Nasibulin, A. G. All-nanotube stretchable supercapacitor with low equivalent series resistance. Sci. Rep.2017, 7, 17449.

    Google Scholar 

  404. [404]

    Zheng, S. H.; Lei, W. W.; Qin, J. Q.; Wu, Z.-S.; Zhou, F.; Wang, S.; Shi, X. Y.; Sun, C. L.; Chen, Y.; Bao, X. H. All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film using boron nitride nanosheets as separator. Energy Storage Mater.2018, 10, 24–31.

    Google Scholar 

  405. [405]

    Xie, J.; Liao, L.; Gong, Y. J.; Li, Y. B.; Shi, F. F.; Pei, A.; Sun, J.; Zhang, R. F.; Kong, B.; Subbaraman, R. et al. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv.2017, 3, eaao3170.

    Google Scholar 

  406. [406]

    Li, H. L.; Tay, R. Y.; Tsang, S. H.; Liu, W. W.; Teo, E. H. T. Reduced graphene oxide/boron nitride composite film as a novel binder-free anode for lithium ion batteries with enhanced performances. Electrochim. Acta2015, 166, 197–205.

    CAS  Google Scholar 

  407. [407]

    Monajjemi, M. Graphene/(h-BN)n/X-doped graphene as anode material in lithium ion batteries (X = Li, Be, B and N). Maced. J. Chem. Chem. Eng.2017, 36, 101–118.

    Google Scholar 

  408. [408]

    Kim, P. J. H.; Seo, J.; Fu, K.; Choi, J.; Liu, Z. M.; Kwon, J.; Hu, L. B.; Paik, U. Synergistic protective effect of a BN-carbon separator for highly stable lithium sulfur batteries. NPG Asia Mater.2017, 9, e375.

    CAS  Google Scholar 

  409. [409]

    Luo, W.; Zhou, L. H.; Fu, K.; Yang, Z.; Wan, J. Y.; Manno, M.; Yao, Y. G.; Zhu, H. L.; Yang, B.; Hu, L. B. A thermally conductive separator for stable li metal anodes. Nano Lett.2015, 15, 6149–6154.

    CAS  Google Scholar 

  410. [410]

    Aydın, H.; Çelik, S. Ü.; Bozkurt, A. Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application. Solid State Ionics2017, 309, 71–76.

    Google Scholar 

  411. [411]

    Rodrigues, M. T. F.; Kalaga, K.; Gullapalli, H.; Babu, G.; Reddy, A. L. M.; Ajayan, P. M. Hexagonal boron nitride-based electrolyte composite for Li-ion battery operation from room temperature to 150 °C. Adv. Energy Mater.2016, 6, 1600218.

    Google Scholar 

  412. [412]

    Pazhamalai, P.; Krishnamoorthy, K.; Manoharan, S.; Kim, S. J. High energy symmetric supercapacitor based on mechanically delaminated few-layered MoS2 sheets in organic electrolyte. J. Alloys Compd.2019, 771, 803–809.

    CAS  Google Scholar 

  413. [413]

    Islam, N.; Wang, S.; Warzywoda, J.; Fan, Z. Y. Fast supercapacitors based on vertically oriented MoS2 nanosheets on plasma pyrolyzed cellulose filter paper. J. Power Sources2018, 400, 277–283.

    CAS  Google Scholar 

  414. [414]

    Neetika; Sanger, A.; Malik, V. K.; Chandra, R. One step sputtered grown MoS2 nanoworms binder free electrodes for high performance supercapacitor application. Int. J. Hydrogen Energy2018, 43, 11141–11149.

    CAS  Google Scholar 

  415. [415]

    Joseph, N.; Muhammed Shafi, P.; Chandra Bose, A. Metallic 1T-MoS2 with defect induced additional active edges for high performance supercapacitor application. New J. Chem.2018, 42, 12082–12090.

    CAS  Google Scholar 

  416. [416]

    Nandi, D. K.; Sahoo, S.; Sinha, S.; Yeo, S.; Kim, H.; Bulakhe, R. N.; Heo, J.; Shim, J. J.; Kim, S. H. Highly uniform atomic layer-deposited MoS2@3D-Ni-foam: A novel approach to prepare an electrode for supercapacitors. ACS Appl. Mater. Interfaces2017, 9, 40252–40264.

    CAS  Google Scholar 

  417. [417]

    Saraf, M.; Natarajan, K.; Mobin, S. M. Emerging robust heterostructure of MoS2-rGO for high-performance supercapacitors. ACS Appl. Mater. Interfaces2018, 10, 16588–16595.

    CAS  Google Scholar 

  418. [418]

    Zardkhoshoui, A. M.; Davarani, S. S. H. Flexible asymmetric supercapacitors based on CuO@MnO2-rGO and MoS2-rGO with ultrahigh energy density. J. Electroanal. Chem.2018, 827, 221–229.

    CAS  Google Scholar 

  419. [419]

    Liu, M. C.; Xu, Y.; Hu, Y. X.; Yang, Q. Q.; Kong, L. B.; Liu, W. W.; Niu, W. J.; Chueh, Y. L. Electrostatically charged MoS2/graphene oxide hybrid composites for excellent electrochemical energy storage devices. ACS Appl. Mater. Interfaces2018, 10, 35571–35579.

    CAS  Google Scholar 

  420. [420]

    Kamila, S.; Mohanty, B.; Samantara, A. K.; Guha, P.; Ghosh, A.; Jena, B.; Satyam, P. V.; Mishra, B. K.; Jena, B. K. Highly active 2D layered MoS2-rGO hybrids for energy conversion and storage applications. Sci. Rep.2017, 7, 8378.

    Google Scholar 

  421. [421]

    Sha, R.; Badhulika, S. Few layered MoS2 grown on pencil graphite: A unique single-step approach to fabricate economical, binder-free electrode for supercapacitor applications. Nanotechnology2019, 30, 035402.

    CAS  Google Scholar 

  422. [422]

    Pedico, A.; Lamberti, A.; Gigot, A.; Fontana, M.; Bella, F.; Rivolo, P.; Cocuzza, M.; Pirri, C. F. High-performing and stable wearable supercapacitor exploiting rGO aerogel decorated with copper and molybdenum sulfides on carbon fibers. ACS Appl. Energy Mater.2018, 1, 4440–4447.

    CAS  Google Scholar 

  423. [423]

    Xie, B. Q.; Chen, Y.; Yu, M. Y.; Sun, T.; Lu, L. H.; Xie, T.; Zhang, Y.; Wu, Y. C. Hydrothermal synthesis of layered molybdenum sulfide/N-doped graphene hybrid with enhanced supercapacitor performance. Carbon2016, 99, 35–42.

    CAS  Google Scholar 

  424. [424]

    Zhu, J. X.; Sun, W. P.; Yang, D.; Zhang, Y.; Hoon, H. H.; Zhang, H.; Yan, Q. Y. Multifunctional architectures constructing of PANI nanoneedle arrays on MoS2 thin nanosheets for high-energy supercapacitors. Small2015, 11, 4123–4129.

    CAS  Google Scholar 

  425. [425]

    Yang, C.; Chen, Z. X.; Shakir, I.; Xu, Y. X.; Lu, H. B. Rational synthesis of carbon shell coated polyaniline/MoS2 monolayer composites for highperformance supercapacitors. Nano Res.2016, 9, 951–962.

    CAS  Google Scholar 

  426. [426]

    Tang, H. J.; Wang, J. Y.; Yin, H. J.; Zhao, H. J.; Wang, D.; Tang, Z. Y. Growth of polypyrrole ultrathin films on MoS2 monolayers as highperformance supercapacitor electrodes. Adv. Mater.2015, 27, 1117–1123.

    CAS  Google Scholar 

  427. [427]

    Chao, J.; Yang, L. C.; Liu, J. W.; Hu, R. Z.; Zhu, M. Sandwiched MoS2/polyaniline nanosheets array vertically aligned on reduced graphene oxide for high performance supercapacitors. Electrochim. Acta2018, 270, 387–394.

    CAS  Google Scholar 

  428. [428]

    Li, X.; Zhang, C. F.; Xin, S.; Yang, Z. C.; Li, Y. T.; Zhang, D. W.; Yao, P. Facile synthesis of MoS2/reduced graphene oxide@polyaniline for highperformance supercapacitors. ACS Appl. Mater. Interfaces2016, 8, 21373–21380.

    CAS  Google Scholar 

  429. [429]

    Huang, K. J.; Wang, L.; Liu, Y. J.; Wang, H. B.; Liu, Y. M.; Wang, L. L. Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim. Acta2013, 109, 587–594.

    CAS  Google Scholar 

  430. [430]

    Palsaniya, S.; Nemade, H. B.; Dasmahapatra, A. K. Synthesis of polyaniline/graphene/MoS2 nanocomposite for high performance supercapacitor electrode. Polymer2018, 150, 150–158.

    CAS  Google Scholar 

  431. [431]

    Lin, T. W.; Sadhasivam, T.; Wang, A. Y.; Chen, T. Y.; Lin, J. Y.; Shao, L. D. Ternary composite nanosheets with MoS2/WS2/graphene heterostructures as high-performance cathode materials for supercapacitors. ChemElectroChem2018, 5, 1024–1031.

    CAS  Google Scholar 

  432. [432]

    Zhao, C. Y.; Ang, J. M.; Liu, Z. L.; Lu, X. H. Alternately stacked metallic 1T-MoS2/polyaniline heterostructure for high-performance supercapacitors. Chem. Eng. J.2017, 330, 462–469.

    CAS  Google Scholar 

  433. [433]

    Lei, X.; Yu, K.; Qi, R. J.; Zhu, Z. Q. Fabrication and theoretical investigation of MoS2-Co3S4 hybrid hollow structure as electrode material for lithiumion batteries and supercapacitors. Chem. Eng. J.2018, 347, 607–617.

    CAS  Google Scholar 

  434. [434]

    Yan, Z. S.; Long, J. Y.; Zhou, Q. F.; Gong, Y.; Lin, J. H. One-step synthesis of MnS/MoS2/C through the calcination and sulfurization of a bi-metal-organic framework for a high-performance supercapacitor and its photocurrent investigation. Dalton Trans.2018, 47, 5390–5405.

    CAS  Google Scholar 

  435. [435]

    Kandula, S.; Shrestha, K. R.; Kim, N. H.; Lee, J. H. Fabrication of a 3D hierarchical sandwich Co9S8/α-MnS@N-C@MoS2 nanowire architectures as advanced electrode material for high performance hybrid supercapacitors. Small2018, 14, 1800291.

    Google Scholar 

  436. [436]

    Hou, X. C.; Zhang, Y. Z.; Dong, Q. C.; Hong, Y.; Liu, Y. L.; Wang, W. J.; Shao, J. J.; Si, W. L.; Dong, X. C. Metal organic framework derived core-shell structured Co9S8@N-C@MoS2 nanocubes for supercapacitor. ACS Appl. Energy Mater.2018, 1, 3513–3520.

    CAS  Google Scholar 

  437. [437]

    Thakur, A. K.; Majumder, M.; Choudhary, R. B.; Singh, S. B. MoS2 flakes integrated with boron and nitrogen-doped carbon: Striking gravimetric and volumetric capacitive performance for supercapacitor applications. J. Power Sources2018, 402, 163–173.

    CAS  Google Scholar 

  438. [438]

    Tian, J. Y.; Zhang, H. Y.; Li, Z. H. Synthesis of double-layer nitrogendoped microporous hollow carbon@MoS2/MoO2 nanospheres for supercapacitors. ACS Appl. Mater. Interfaces2018, 10, 29511–29520.

    CAS  Google Scholar 

  439. [439]

    Jing, L. Y.; Lian, G.; Wang, J. R.; Zhao, M. W.; Liu, X. Z.; Wang, Q. L.; Cui, D. L.; Wong, C. P. Porous-hollow nanorods constructed from alternate intercalation of carbon and MoS2 monolayers for lithium and sodium storage. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-019-2458-9.

    CAS  Google Scholar 

  440. [440]

    Bozheyev, F.; Zhexembekova, A.; Zhumagali, S.; Molkenova, A.; Bakenov, Z. MoS2 nanopowder as anode material for lithium-ion batteries produced by self-propagating high-temperature synthesis. Mater. Today Proc.2017, 4, 4567–4571.

    Google Scholar 

  441. [441]

    Liu, Y. Y.; Zhang, L.; Wang, H. Q.; Yu, C.; Yan, X. L.; Liu, Q. N.; Xu, B.; Wang, L. M. Synthesis of severe lattice distorted MoS2 coupled with hetero-bonds as anode for superior lithium-ion batteries. Electrochim. Acta2018, 262, 162–172.

    CAS  Google Scholar 

  442. [442]

    Wang, R. X.; Gao, S.; Wang, K. L.; Zhou, M.; Cheng, S. J.; Jiang, K. MoS2@rGO nanoflakes as high performance anode materials in sodium ion batteries. Sci. Rep.2017, 7, 7963.

    Google Scholar 

  443. [443]

    David, L.; Bhandavat, R.; Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano2014, 8, 1759–1770.

    CAS  Google Scholar 

  444. [444]

    Guo, P. Q.; Liu, D. Q.; Liu, Z. J.; Shang, X. N.; Liu, Q. M.; He, D. Y. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries. Electrochim. Acta2017, 256, 28–36.

    CAS  Google Scholar 

  445. [445]

    Stolyarova, S. G.; Kanygin, M. A.; Koroteev, V. O.; Shubin, Y. V.; Smirnov, D. A.; Okotrub, A. V.; Bulusheva, L. G. High-pressure high-temperature synthesis of MoS2/holey graphene hybrids and their performance in Li-ion batteries. Phys. Status Solidi B2018, 255, 1700262.

    Google Scholar 

  446. [446]

    Dong, Y. F.; Lu, P. F.; Shi, H. D.; Qin, J. Q.; Chen, J.; Ren, W. C.; Cheng, H. M.; Wu, Z. S. 2D Hierarchical yolk-shell heterostructures as advanced host-interlayer integrated electrode for enhanced Li-S batteries. J. Energy Chem.2019, 36, 64–73.

    Google Scholar 

  447. [447]

    Li, Z. T.; Deng, S. Z.; Xu, R. F.; Wei, L. Q.; Su, X.; Wu, M. B. Combination of nitrogen-doped graphene with MoS2 nanoclusters for improved Li-S battery cathode: Synthetic effect between 2D components. Electrochim. Acta2017, 252, 200–207.

    CAS  Google Scholar 

  448. [448]

    Wang, J. G.; Zhou, R.; Jin, D. D.; Xie, K. Y.; Wei, B. Q. Uniform growth of MoS2 nanosheets on carbon nanofibers with enhanced electrochemical utilization for Li-ion batteries. Electrochim. Acta2017, 231, 396–402.

    CAS  Google Scholar 

  449. [449]

    Shan, X. Y.; Zhang, N.; Zheng, R. D.; Gao, H.; Zhang, X. T. One-pot synthesis of SL-MoS2/C/Ti3C2Tx@C hierarchical superstructures for ultralong cycle-life Li-ion batteries. Electrochim. Acta2019, 295, 286–293.

    CAS  Google Scholar 

  450. [450]

    Badam, R.; Joshi, P.; Vedarajan, R.; Natarajan, R.; Matsumi, N. Few-layered MoS2/acetylene black composite as an efficient anode material for lithium-ion batteries. Nanoscale Res. Lett.2017, 12, 555.

    Google Scholar 

  451. [451]

    Jing, L. Y.; Lian, G.; Niu, F. E.; Yang, J.; Wang, Q. L.; Cui, D. L.; Wong, C. P.; Liu, X. Z. Few-atomic-layered hollow nanospheres constructed from alternate intercalation of carbon and MoS2 monolayers for sodium and lithium storage. Nano Energy2018, 51, 546–555.

    CAS  Google Scholar 

  452. [452]

    Balasingam, S. K.; Lee, J. S.; Jun, Y. Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Trans.2015, 44, 15491–15498.

    CAS  Google Scholar 

  453. [453]

    Gao, Y. P.; Huang, K. J.; Shuai, H. L.; Liu, L. Synthesis of sphere-feature molybdenum selenide with enhanced electrochemical performance for supercapacitor. Mater. Lett.2017, 209, 319–322.

    CAS  Google Scholar 

  454. [454]

    Guo, K. L.; Yang, F. F.; Cui, S. Z.; Chen, W. H.; Mi, L. W. Controlled synthesis of 3D hierarchical NiSe microspheres for high-performance supercapacitor design. RSC Adv.2016, 6, 46523–46530.

    CAS  Google Scholar 

  455. [455]

    Jiang, S.; Wu, J. H.; Ye, B. R.; Fan, Y. Y.; Ge, J. H.; Guo, Q. Y.; Huang, M. L. Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors. J. Mater. Sci. Mater. Electron.2018, 29, 4649–4657.

    CAS  Google Scholar 

  456. [456]

    Shang, X.; Chi, J. Q.; Lu, S. S.; Gou, J. X.; Dong, B.; Li, X.; Liu, Y. R.; Yan, K. L.; Chai, Y. M.; Liu, C. G. Carbon fiber cloth supported interwoven WS2 nanosplates with highly enhanced performances for supercapacitors. Appl. Surf. Sci.2017, 392, 708–714.

    CAS  Google Scholar 

  457. [457]

    Kirubasankar, B.; Vijayan, S.; Angaiah, S. Sonochemical synthesis of a 2D-2D MoSe2/graphene nanohybrid electrode material for asymmetric supercapacitors. Sustain. Energy Fuels2019, 3, 467–477.

    CAS  Google Scholar 

  458. [458]

    Wang, C. L.; Wu, X.; Xu, H. J.; Zhu, Y. J.; Liang, F.; Luo, C.; Xia, Y.; Xie, X. Y.; Zhang, J.; Duan, C. G. VSe2/carbon-nanotube compound for all solid-state flexible in-plane supercapacitor. Appl. Phys. Lett.2019, 114, 023902.

    Google Scholar 

  459. [459]

    Wang, M.; Zhang, L.; Zhong, Y. J.; Huang, M. R.; Zhen, Z.; Zhu, H. W. In situ electrodeposition of polypyrrole onto TaSe2 nanobelts quasi-arrays for high-capacitance supercapacitor. Nanoscale2018, 10, 17341–17346.

    CAS  Google Scholar 

  460. [460]

    Li, L.; Li, Z. D.; Yoshimura, A.; Sun, C. L.; Wang, T. M.; Chen, Y. W.; Chen, Z. Z.; Littlejohn, A.; Xiang, Y.; Hundekar, P. et al. Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in lithium-ion batteries. Nat. Commun.2019, 10, 1764.

    Google Scholar 

  461. [461]

    Bellani, S.; Wang, F. X.; Longoni, G.; Najafi, L.; Oropesa-Nuñez, R.; Del Rio Castillo, A. E.; Prato, M.; Zhuang, X. D.; Pellegrini, V.; Feng, X. L. et al. WS2-graphite dual-ion batteries. Nano Lett.2018, 18, 7155–7164.

    CAS  Google Scholar 

Download references

Acknowledgements

R. K. acknowledges Japan Society for the Promotion of Science (JSPS; Standard) for international postdoctoral fellowship (P18063) and this research work was supported by JSPS KAKENHI Grant No. 18F18063. A. M. acknowledges the financial support from JSPS KAKENHI Grant JP-18H03841 and JSPS KAKENHI Grant JP-17K18985. R. K. and A. M. would like to thanks Toyohashi University of Technology, Toyohashi, Aichi, Japan for providing the necessarily support and facilities to complete this work. S. S. acknowledges DST-SERB, India for the national postdoctoral fellowship (NPDF File No. PDF/2017/000328). D. P. S. acknowledges with gratitude the financial support from Millennium Institute for Research in Optics (MIRO), CHILE. R. K. would like to dedicate this work to the memory of late Prof. Yoshiyuki Suda.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Rajesh Kumar or Atsunori Matsuda.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Sahoo, S., Joanni, E. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 12, 2655–2694 (2019). https://doi.org/10.1007/s12274-019-2467-8

Download citation

Keywords

  • graphene
  • inorganic layered materials
  • hierarchical structures
  • energy storage
  • supercapacitor
  • battery