Weakened interlayer coupling in two-dimensional MoSe2 flakes with screw dislocations

Abstract

The screw dislocations are intriguing defects that are often observed in natural and artificial materials. The dislocation spirals break the reflection and inversion symmetries of the lattices and modify the interlayer coupling in layer-structured materials, inducing additional complexity in layer stacking and thus novel properties in materials. Here, we report on the interlayer coupling of two-dimensional (2D) MoSe2 flakes with screw dislocations by atomic force microscopy (AFM), Raman spectra and photoluminescence (PL) spectra. By controlling the supersaturation conditions, 2D MoSe2 flakes with screw dislocations are grown on amorphous SiO2 substrates by chemical vapor deposition (CVD). AFM measurements reveal that the interlayer spacing in such 2D MoSe2 flakes with screw dislocation is slightly widened with respect to the normal AA- or AB-stacked ones due to the presence of the screw dislocations. Raman and PL spectra show that the interlayer coupling is weaker and thus the band gap is wider than that in the normal AA- or AB-stacked ones. Our work demonstrates that the interlayer coupling of 2D transition metal dichalcogenides (TMDCs) flakes can be tuned by the induction of screw dislocations, which is very helpful for developing novel catalysts and electronic devices.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Jie, W. J.; Yang, Z. B.; Zhang, F.; Bai, G. X.; Leung, C. W.; Hao, J. H. Observation of room-temperature magnetoresistance in monolayer MoS2 by ferromagnetic gating. ACS Nano 2017, 11, 6950–6958.

    Article  Google Scholar 

  2. [2]

    Du, L. J.; Jia, Z. Y.; Zhang, Q.; Zhang, A. M.; Zhang, T. T.; He, R.; Yang, R.; Shi, D. X.; Yao, Y. G.; Xiang, J. Y. et al. Electronic structure-dependent magneto-optical Raman effect in atomically thin WS2. 2D Mater. 2018, 5, 035028.

    Article  Google Scholar 

  3. [3]

    Ma, Y. Q.; Liu, B. L.; Zhang, A. Y.; Chen, L.; Fathi, M.; Shen, C. F.; Abbas, A. N.; Ge, M. Y.; Mecklenburg, M.; Zhou, C. W. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 2015, 9, 7383–7391.

    Article  Google Scholar 

  4. [4]

    Huang, J.; Yang, L.; Liu, D.; Chen, J. J.; Fu, Q.; Xiong, Y. J.; Lin, F.; Xiang, B. Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications. Nanoscale 2015, 7, 4193–4198.

    Article  Google Scholar 

  5. [5]

    Zhang, E. Z.; Chen, R.; Huang, C.; Yu, J. H.; Zhang, K. T.; Wang, W. Y.; Liu, S. S.; Ling, J. W.; Wan, X. G.; Lu, H. Z. et al. Tunable positive to negative magnetoresistance in atomically thin WTe2. Nano Lett. 2017, 17, 878–885.

    Article  Google Scholar 

  6. [6]

    Zhang, L. M.; Liu, K. H.; Wong, A. B.; Kim, J.; Hong, X. P.; Liu, C.; Cao, T.; Louie, S. G.; Wang, F.; Yang, P. D. Three-dimensional spirals of atomic layered MoS2. Nano Lett. 2014, 14, 6418–6423.

    Article  Google Scholar 

  7. [7]

    Kumar, P.; Viswanath, B. Effect of sulfur evaporation rate on screw dislocation driven growth of MoS2 with high atomic step density. Cryst. Growth Des. 2016, 16, 7145–7154.

    Article  Google Scholar 

  8. [8]

    Fan, X. P.; Zhao, Y. Z.; Zheng, W. H.; Li, H. L.; Wu, X. P.; Hu, X. L.; Zhang, X. H.; Zhu, X. L.; Zhang, Q. L.; Wang, X. et al. Controllable growth and formation mechanisms of dislocated WS2 spirals. Nano Lett. 2018, 18, 3885–3892.

    Article  Google Scholar 

  9. [9]

    Fan, X. P.; Jiang, Y.; Zhuang, X. J.; Liu, H. J.; Xu, T.; Zheng, W. H.; Fan, P.; Li, H. L.; Wu, X. P.; Zhu, X. L. et al. Broken symmetry induced strong nonlinear optical effects in spiral WS2 nanosheets. ACS Nano 2017, 11, 4892–4898.

    Article  Google Scholar 

  10. [10]

    Shearer, M. J.; Samad, L.; Zhang, Y.; Zhao, Y. Z.; Puretzky, A.; Eliceiri, K. W.; Wright, J. C.; Hamers, R. J.; Jin, S. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations. J. Am. Chem. Soc. 2017, 139, 3496–3504.

    Article  Google Scholar 

  11. [11]

    Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. A.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

    Article  Google Scholar 

  12. [12]

    Lu, X.; Utama, M. I. B.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S. T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett. 2014, 14, 2419–2425.

    Article  Google Scholar 

  13. [13]

    Xia, J.; Huang, X.; Liu, L. Z.; Wang, M.; Wang, L.; Huang, B.; Zhu, D. D.; Li, J. J.; Gu, C. Z.; Meng, X. M. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 2014, 6, 8949–8955.

    Article  Google Scholar 

  14. [14]

    Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.

    Article  Google Scholar 

  15. [15]

    Wang, X. L.; Gong, Y. J.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G. L.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125–5131.

    Article  Google Scholar 

  16. [16]

    Chang, Y. H.; Zhang, W. J.; Zhu, Y. H.; Han, Y.; Pu, J.; Chang, J. K.; Hsu, W. T.; Huang, J. K.; Hsu, C. L.; Chiu, M. H. et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8, 8582–8590.

    Article  Google Scholar 

  17. [17]

    Zheng, B. J.; Chen, Y. F.; Qi, F.; Wang, X. Q.; Zhang, W. L.; Li, Y. R.; Li, X. S. 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution. 2D Mater. 2017, 4, 025092.

    Article  Google Scholar 

  18. [18]

    Chen, M. W.; Ovchinnikov, D.; Lazar, S.; Pizzochero, M.; Whitwick, M. B.; Surrente, A.; Baranowski, M.; Sanchez, O. L.; Gillet, P.; Plochocka, P. et al. Highly oriented atomically thin ambipolar MoSe2 grown by molecular beam epitaxy. ACS Nano 2017, 11, 6355–6361.

    Article  Google Scholar 

  19. [19]

    Yang, Y. C.; Li, X.; Wen, M. R.; Hacopian, E.; Chen, W. B.; Gong, Y. J.; Zhang, J.; Li, B.; Zhou, W.; Ajayan, P. M. et al. Brittle fracture of 2D MoSe2. Adv. Mater. 2017, 29, 1604201.

    Article  Google Scholar 

  20. [20]

    Baek, J.; Yin, D. M.; Liu, N.; Omkaram, I.; Jung, C.; Im, H.; Hong, S.; Kim, S. M.; Hong, Y. K.; Hur, J. et al. A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films. Nano Res. 2017, 10, 1861–1871.

    Article  Google Scholar 

  21. [21]

    Zhu, C. Y.; Huang, Y.; Xu, F.; Gao, P.; Ge, B. H.; Chen, J.; Zeng, H. B.; Sutter, E.; Sutter, P.; Sun, L. T. Defect-laden MoSe2 quantum dots made by turbulent shear mixing as enhanced electrocatalysts. Small 2017, 13, 1700565.

    Article  Google Scholar 

  22. [22]

    Dai, T. J.; Liu, Y. C.; Fan, X. D.; Liu, X. Z.; Xie, D.; Li, Y. R. Synthesis of few-layer 2H-MoSe2 thin films with wafer-level homogeneity for high-performance photodetector. Nanophotonics 2018, 7, 1959–1969.

    Article  Google Scholar 

  23. [23]

    Masurkar, N.; Thangavel, N. K.; Arava, L. M. R. CVD-grown MoSe2 nanoflowers with dual active sites for efficient electrochemical hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2018, 10, 27771–27779.

    Article  Google Scholar 

  24. [24]

    Hu, S.; Jiang, Q. Q.; Ding, S. P.; Liu, Y.; Wu, Z. Z.; Huang, Z. X.; Zhou, T. F.; Guo, Z. P.; Hu, J. C. Construction of hierarchical MoSe2 hollow structures and its effect on electrochemical energy storage and conversion. ACS Appl. Mater. Interfaces 2018, 10, 25483–25492.

    Article  Google Scholar 

  25. [25]

    Huang, S. X.; Ling, X.; Liang, L. B.; Kong, J.; Terrones, H.; Meunier, V.; Dresselhaus, M. S. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett. 2014, 14, 5500–5508.

    Article  Google Scholar 

  26. [26]

    Huang, S. X.; Liang, L. B.; Ling, X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2. Nano Lett. 2016, 16, 1435–1444.

    Article  Google Scholar 

  27. [27]

    Puretzky, A. A.; Liang, L. B.; Li, X. F.; Xiao, K.; Sumpter, B. G.; Meunier, V.; Geohegan, D. B. Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy. ACS Nano 2016, 10, 2736–2744.

    Article  Google Scholar 

  28. [28]

    Nayak, P. K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J. U.; Ma, K. Y.; Jang, A. R.; Lim, H.; Kim, D.; Ryu, S. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 2017, 11, 4041–4050.

    Article  Google Scholar 

  29. [29]

    Shaw, J. C.; Zhou, H. L.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y.; Duan, X. F. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511–517.

    Article  Google Scholar 

  30. [30]

    Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

    Article  Google Scholar 

  31. [31]

    Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  Google Scholar 

  32. [32]

    Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133.

    Article  Google Scholar 

  33. [33]

    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  34. [34]

    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  35. [35]

    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  36. [36]

    Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate swab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 11574029, 51661135026, 21773008, 11704027, 11574361, and 11834017), the National Key R&D Program of China (Nos. 2016YFA0300600 and 2016YFA0300904), the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDB30000000), the Key Research Program of Frontier Sciences (No. QYZDB-SSW-SLH004) and the Youth Innovation Promotion Association CAS (No. 2018013).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Junfeng Han or Wende Xiao.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yang, H., Yang, R. et al. Weakened interlayer coupling in two-dimensional MoSe2 flakes with screw dislocations. Nano Res. 12, 1900–1905 (2019). https://doi.org/10.1007/s12274-019-2456-y

Download citation

Keywords

  • transition-metal dichalcogenides
  • molybdenum selenide
  • screw dislocations
  • interlayer coupling
  • band gap