Skip to main content
Log in

Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lead halide perovskites have received tremendous attentions recently for their excellent properties such as high light absorption coefficient and long charge carrier diffusion length. However, the stability issues and the existence of toxic lead cations have largely limited their applications in optoelectronic area. Herein, we report the synthesis and investigation of highly stable and lead-free Cs3Bi2I9 perovskite nanoplates for visible light photodetection applications. The Cs3Bi2I9 nanoplates were synthesized through a facile solution-processed method, which is also applicable to various substrates. The achieved nanoplates present very good crystal quality and exhibit excellent long-term stability even exposed in moist air for several months. Photodetectors were constructed based on these high-quality perovskite nanoplates for the first time, and display a maximum photoresponsivity of 33.1 mA/W under the illumination of 450 nm laser, which is six times higher than the solution-synthesized CH3NH3Pbl3 nanowire photodetectors. The specific detectivity of these devices can reach up to 1010 Jones. Additionally, the devices exhibit fast rise and decay time of 10.2 and 37.2 ms, respectively, and highly stable photoswitching behavior with their photoresponse well retaining under alternating light and darkness. This work opens up a new opportunity for stable and low-toxic perovskite-based optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng, Y. H.; Zheng, X. P.; Bai, Y.; Wang, Q.; Zhao, J. J.; Huang, J. S. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3, 560–566.

    Article  Google Scholar 

  2. Guo, Z.; Wan, Y.; Yang, M. J.; Snaider, J.; Zhu, K.; Huang, L. B. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 2017, 356, 59–62.

    Article  Google Scholar 

  3. Liu, X. F.; Niu, L.; Wu, C. Y.; Cong, C. X.; Wang, H.; Zeng, Q. S.; He, H. Y.; Fu, Q. D.; Fu, W.; Yu, T. et al. Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv. Sci. 2016, 3, 1600137.

    Article  Google Scholar 

  4. Lai, M. L.; Kong, Q.; Bischak, C. G.; Yu, Y.; Dou, L. T.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nana Res. 2017, 10, 1107–1114.

    Article  Google Scholar 

  5. Lan, C. Y.; Zhou, Z. Y.; Wei, R. J.; Ho, J. C. Two-dimensional perovskite materials: From synthesis to energy-related applications. Mater. Today Energy 2019, 11, 61–82.

    Article  Google Scholar 

  6. Mao, W. X.; Zheng, J. L.; Zhang, Y. P.; Chesman, A. S. R.; Ou, Q. D.; Hicks, J.; Li, E.; Wang, Z. Y.; Graystone, B.; Bell, T. D. M. et al. Controlled growth of monocrystalline organo-lead halide perovskite and its application in photonic devices. Angew. Chem., Int. Ed. 2017, 56, 12486–12491.

    Article  Google Scholar 

  7. Li, Y. T.; Han, L.; Liu, Q.; Wang, W.; Chen, Y. G.; Lyu, M.; Li, X. M.; Sun, H.; Wang, H.; Wang, S. F. et al. Confined-solution process for high-quality CH3NH3PbBr3 single crystals with controllable morphologies. Nana Res. 2018, 77, 3306–3312.

    Article  Google Scholar 

  8. Zhao, X. G.; Yang, D. W.; Ren, J. C.; Sun, Y. H.; Xiao, Z. W.; Zhang, L. J. Rational design of halide double perovskites for optoelectronic applications. Joule 2018, 2, 1662–1673.

    Article  Google Scholar 

  9. Peng, W. B.; Yu, R. M.; Wang, X. E.; Wang, Z. N.; Zou, H. Y.; He, Y. N.; Wang, Z. L. Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors. Nana Res. 2016, 9, 3695–3704.

    Article  Google Scholar 

  10. Cao, F. R.; Tian, W.; Gu, B. K.; Ma, Y. L.; Lu, H.; Li, L. High-performance UV-vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures. Nana Res. 2017, 10, 2244–2256.

    Article  Google Scholar 

  11. Bao, C. X.; Yang, J.; Bai, S.; Xu, W. D.; Yan, Z. B.; Xu, Q. Y.; Liu, J. M.; Zhang, W. J.; Gao, F. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 2018, 30, 1803422.

    Article  Google Scholar 

  12. Dong, R. T.; Lan, C. Y.; Xu, X. W.; Liang, X. G.; Hu, X. Y.; Li, D. P.; Zhou, Z. Y.; Shu, L.; Yip, S.; Li, C. et al. Novel series of quasi-2D Ruddlesden-Popper perovskites based on short-chained spacer cation for enhanced photodetection. ACS Appl. Mater. Interfaces 2018, 10, 19019–19026.

    Article  Google Scholar 

  13. Yang, Z.; Xu, Q.; Wang, X. D.; Lu, J. E; Wang, H.; Li, F. T.; Zhang, L.; Hu, G F.; Pan, C. F. Large and ultrastable all-inorganic CsPbBr3 mono-crystalline films: Low-temperature growth and application for high-performance photodetectors. Adv. Mater. 2018, 30, 1802110.

    Article  Google Scholar 

  14. Qi, X.; Zhang, Y. P.; Ou, Q. D.; Ha, S. T.; Qiu, C. W.; Zhang, H.; Cheng, Y. B.; Xiong, Q. H.; Bao, Q. L. Photonics and optoelectronics of 2D metal-halide perovskites. Small 2018, 14, 1800682.

    Article  Google Scholar 

  15. Zhao, X. G.; Yang, J. H.; Fu, Y. H.; Yang, D. W.; Xu, Q. L.; Yu, L. P.; Wei, S. H.; Zhang, L. J. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 2017, 139, 2630–2638.

    Article  Google Scholar 

  16. Wang, X. X.; Shoaib, M.; Wang, X.; Zhang, X. H.; He, M.; Luo, Z. Y.; Zheng, W. H.; Li, H. L.; Yang, T. E; Zhu, X. L. et al. High-quality in-plane aligned CsPbX3 perovskite nanowire lasers with composition-dependent strong exciton-photon coupling. ACS Nana 2018, 12, 6170–6178.

    Article  Google Scholar 

  17. Zhong, Y. G.; Wei, Q.; Liu, Z.; Shang, Q. Y.; Zhao, L. Y.; Shao, R. W.; Zhang, Z. P.; Chen, J.; Du, W. N.; Shen, C. et al. Low threshold fabry-perot mode lasing from lead iodide trapezoidal nanoplatelets. Small 2018, 14, 1801938.

    Article  Google Scholar 

  18. Hu, W.; Huang, W.; Yang, S. Z.; Wang, X.; Jiang, Z. Y.; Zhu, X. L.; Zhou, H.; Liu, H. J.; Zhang, Q. L.; Zhuang, X. J. et al. High-performance flexible photodetectors based on high-quality perovskite thin films by a vapor-solution method. Adv. Mater. 2017, 29, 1703256.

    Article  Google Scholar 

  19. Song, J. Z.; Xu, L. M.; Li, J. H.; Xue, J.; Dong, Y. H.; Li, X. M.; Zeng, H. B. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 2016, 28, 4861–4869.

    Article  Google Scholar 

  20. Zhang, H. J.; Xu, Y. D.; Sun, Q. H.; Dong, J. P.; Lu, Y. E.; Zhang, B. B.; Jie, W. Q. Lead free halide perovskite Cs3Bi2I9 bulk crystals grown by a low temperature solution method. CrystEngComm 2018, 20, 4935–4941.

    Article  Google Scholar 

  21. Park, B. W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806–6813.

    Article  Google Scholar 

  22. Cuhadar, C.; Kim, S. G.; Yang, J. M.; Seo, J. Y.; Lee, D.; Park, N. G. All-inorganic bismuth halide perovskite-like materials A3Bi2I9 and A3B1.8Na0.2I8.6 (A = Rb and Cs) for low-voltage switching resistive memory. ACS Appl. Mater. Interfaces 2018, 10, 29741–29749.

    Article  Google Scholar 

  23. Saparov, B.; Hong, F.; Sun, J. P.; Duan, H. S.; Meng, W. W.; Cameron, S.; Hill, I. G.; Yan, Y. F.; Mitzi, D. B. Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chem. Mater. 2015, 27, 5622–5632.

    Article  Google Scholar 

  24. Jiang, F. Y.; Yang, D. W.; Jiang, Y. Y.; Liu, T. F; Zhao, X. G.; Ming, Y.; Luo, B. W.; Qin, F.; Fan, J. C.; Han, H. W. et al. Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells. J. Am. Chem. Soc. 2018, 140, 1019–1027.

    Article  Google Scholar 

  25. Yang, B.; Chen, J. S.; Hong, F.; Mao, X.; Zheng, K. B.; Yang, S. Q.; Li, Y. J.; Pullerits, T.; Deng, W. Q.; Han, K. L. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 12471–12475.

    Article  Google Scholar 

  26. Tsivion, D.; Schvartzman, M.; Popovitz-Biro, R.; Von Huth, P.; Joselevich, E. Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 2011, 333, 1003–1007.

    Article  Google Scholar 

  27. Leguy, A. M. A.; Hu, Y. H.; Campoy-Quiles, M.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.; Van Schilfgaarde, M.; Weller, M. T.; Bein, T.; Nelson, J. et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 2015, 27, 3397–3407.

    Article  Google Scholar 

  28. Qian, M.; Li, M.; Shi, X. B.; Ma, H.; Wang, Z. K.; Liao, L. S. Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification. J. Mater. Chem. A 2015, 3, 13533–13539.

    Article  Google Scholar 

  29. Zhang, Z.; Li, X. W.; Xia, X. H.; Wang, Z.; Huang, Z. B.; Lei, B. L.; Gao, Y. High-quality (CH3NH3)3Bi2I9 film-based solar cells: Pushing efficiency up to 1.64%. J. Phys. Chem. Lett. 2017, 8, 4300–4307.

    Article  Google Scholar 

  30. Phuyal, D.; Jain, S. M.; Philippe, B.; Johansson, M. B.; Pazoki, M.; Kullgren, J.; Kvashnina, K. O.; Klintenberg, M.; Johansson, E. M. J.; Butorin, S. M. et al. The electronic structure and band interface of cesium bismuth iodide on a titania heterostructure using hard X-ray spectroscopy. J. Mater. Chem. A 2018, 6, 9498–9505.

    Article  Google Scholar 

  31. Pal, J.; Bhunia, A.; Chakraborty, S.; Manna, S.; Das, S.; Dewan, A.; Datta, S.; Nag, A. Synthesis and optical properties of colloidal M3Bi2I9 (M = Cs, Rb) perovskite nanocrystals. J. Phys. Chem. C 2018, 722, 10643–10649.

    Article  Google Scholar 

  32. Ghosh, B.; Wu, B.; Mulmudi, H. K.; Guet, C.; Weber, K.; Sum, T. C.; Mhaisalkar, S.; Mathews, N. Limitations of Cs3Bi2I9 as lead-free photovoltaic absorber materials. ACS Appl. Mater. Interfaces 2018, 10, 35000–35007.

    Article  Google Scholar 

  33. Rajamanickam, N.; Kumari, S.; Vendra, V. K.; Lavery, B. W.; Spurgeon, J.; Druffel, T.; Sunkara, M. K. Stable and durable CH3NH3PbI3 perovskite solar cells at ambient conditions. Nanotechnology 2016, 27, 235404.

    Article  Google Scholar 

  34. Khazaee, M.; Sardashti, K.; Sun, J. P.; Zhou, H. H.; Clegg, C.; Hill, I. G.; Jones, J. L.; Lupascu, D. C.; Mitzi, D. B. A versatile thin-film deposition method for multidimensional semiconducting bismuth halides. Chem. Mater. 2018, 30, 3538–3544.

    Article  Google Scholar 

  35. Hong, K. H.; Kim, J.; Debbichi, L.; Kim, H.; Im, S. H. Band gap engineering of Cs3Bi2I9 perovskites with trivalent atoms using a dual metal cation. J. Phys. Chem. C 2017, 727, 969–974.

    Article  Google Scholar 

  36. Gu, J. Y.; Yan, G. B.; Lian, Y. B.; Mu, Q. Q.; Jin, H. D.; Zhang, Z. C.; Deng, Z.; Peng, Y. Bandgap engineering of a lead-free defect perovskite Cs3Bi2I9 through trivalent doping of Ru3. RSC Adv. 2018, 8, 25802–25807.

    Article  Google Scholar 

  37. McCall, K. M.; Stoumpos, C. C.; Kostina, S. S.; Kanatzidis, M. G.; Wessels, B. W. Strong electron-phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chem. Mater. 2017, 29, 4129–4145.

    Article  Google Scholar 

  38. Zhang, Q. L.; Zhu, X. L.; Li, Y. Y.; Liang, J. W.; Chen, T. R.; Fan, P.; Zhou, H.; Hu, W.; Zhuang, X. J.; Pan, A. L. Nanolaser arrays based on individual waved CdS nanoribbons. Laser Photonics Rev. 2016, 10, 458–464.

    Article  Google Scholar 

  39. Wang, X. X.; Zhou, H.; Yuan, S. P.; Zheng, W. H.; Jiang, Y.; Zhuang, X. J.; Liu, H. J.; Zhang, Q. L.; Zhu, X. L.; Wang, X. et al. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nana Res. 2017, 10, 3385–3395.

    Article  Google Scholar 

  40. Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

    Article  Google Scholar 

  41. Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 2017, 13, 1700894.

    Article  Google Scholar 

  42. Wang, Y. S.; Zhang, Y. P.; Lu, Y.; Xu, W. D.; Mu, H. R.; Chen, C. Y.; Qiao, H.; Song, J. C.; Li, S. J.; Sun, B. Q. et al. Hybrid graphene-perovskite phototransistors with ultrahigh responsivity and gain. Adv. Opt. Mater. 2015, 3, 1389–1396.

    Article  Google Scholar 

  43. Xu, J. Y.; Rechav, K.; Popovitz-Biro, R.; Nevo, I.; Feldman, Y.; Joselevich, E. High-gain 200 ns photodetectors from self-aligned CdS-CdSe core-shell nanowalls. Adv. Mater. 2018, 30, 1800413.

    Article  Google Scholar 

  44. Horvath, E.; Spina, M.; Szekrenyes, Z.; Kamaras, K.; Gaal, R.; Gachet, D.; Forro, L. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nana Lett. 2014, 14, 6761–6766.

    Article  Google Scholar 

  45. Dong, Y. H.; Gu, Y.; Zou, Y. S.; Song, J. Z.; Xu, L. M.; Li, J. H.; Xue, J.; Li, X. M.; Zeng, H. B. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small 2016, 72, 5622–5632.

    Article  Google Scholar 

  46. Dou, L. T.; Yang, Y. M.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.

    Article  Google Scholar 

  47. Ding, J. X.; Du, S. J.; Zuo, Z. Y.; Zhao, Y.; Cui, H. Z.; Zhan, X. Y. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector. J. Phys. Chem. C 2017, 727, 4917–4923.

    Article  Google Scholar 

  48. Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H. High-performance perovskite-graphene hybrid photodetector. Adv. Mater. 2015, 27, 41–46.

    Article  Google Scholar 

  49. Feng, W.; Wu, J. B.; Li, X. L.; Zheng, W.; Zhou, X.; Xiao, K; Cao, W. W.; Yang, B.; Idrobo, J. C.; Basile, L. et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J. Mater. Chem. C 2015, 3, 7022–7028.

    Article  Google Scholar 

  50. Wang, H.; Kim, D. H. Perovskite-based photodetectors: Materials and devices. Chem. Soc. Rev. 2017, 46, 5204–5236.

    Article  Google Scholar 

  51. Cao, M.; Tian, J. Y.; Cai, Z.; Peng, L.; Yang, L.; Wei, D. C. Perovskite heterojunction based on CH3NH3PbBr3 single crystal for high-sensitive self-powered photodetector. Appl. Phys. Lett. 2016, 709, 233303.

    Article  Google Scholar 

  52. Luo, W. G.; Cao, Y. F.; Hu, P. A.; Cai, K. M.; Feng, Q.; Yan, F. G.; Yan, T. R.; Zhang, X. H.; Wang, K. Y. Gate tuning of high-performance inse-based photodetectors using graphene electrodes. Adv. Opt. Mater. 2015, 3, 1418–1423.

    Article  Google Scholar 

  53. Cao, Y. F.; Cai, K. M.; Hu, P. A.; Zhao, L. X.; Yan, T. F.; Luo, W. G.; Zhang, X. H.; Wu, X. G.; Wang, K. Y.; Zheng, H. Z. Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors. Sci. Rep. 2015, 5, 8130.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Nos. 51525202, 51772084, 61574054, 61635001, and 51802089), Innovation platform and talent plan of Hunan Province (No. 2017RS3027), the Program for Youth Leading Talent and Science and Technology Innovation of Ministry of Science and Technology of China, and the Foundation for Innovative Research Groups of NSFC (No. 21521063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anlian Pan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Z., Fu, X., Yang, T. et al. Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Res. 12, 1894–1899 (2019). https://doi.org/10.1007/s12274-019-2454-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2454-0

Keywords

Navigation