Skip to main content

Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction

Abstract

Ag-based nanoparticles (NPs) catalysts have recently attracted increasing attention in NaBH4-assisted nitrophenol reduction, especially in 4-nitrophenol (4-NP) reduction. Moreover, Ag-based NPs catalysts are considered to be very promising for practical applications because of their fascinating advantages, e.g., easy preparation, relatively low cost and less toxicity, high activity and good stability. Basically, the size and shape of Ag NPs are well known as the key factors for achieving highly efficient catalytic reduction of 4-NP. In this review, three highly efficient Ag-based NPs catalysts (supported Ag NPs, anisotropic Ag NPs and bimetallic Ag NPs) are highlighted for the 4-NP reduction, including the catalytic mechanism and reaction rate caused by their adjustments in size and shape. Although high catalytic activity has been demonstrated by several Ag-based NPs catalysts, further improvement in the catalytic performance is still desired. In terms of the most recent progress in Ag-based NPs catalysts for 4-NP reduction, this review provides a comprehensive assessment on the material selection, synthesis and catalytic characterizations of these catalysts. Moreover, this review aims to correlate the catalytic performance of Ag-based NPs catalysts with their size and shape, guiding the development of novel cost-effective and high-performance catalysts.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Mika, L. T.; Cséfalvay, E.; Németh, Á. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability. Chem. Rev. 2018, 118, 505–613.

    CAS  Google Scholar 

  2. [2]

    Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811.

    CAS  Google Scholar 

  3. [3]

    Gao, D. W.; Zhang, X.; Dai, X. P.; Qin, Y. C.; Duan, A. J.; Yu, Y. B.; Zhuo, H. Y.; Zhao, H. R.; Zhang, P. F.; Jiang, Y. et al. Morphology-selective synthesis of active and durable gold catalysts with high catalytic performance in the reduction of 4-nitrophenol. Nano Res. 2016, 9, 3099–3115.

    CAS  Google Scholar 

  4. [4]

    Xiong, W.; Sikdar, D.; Yap, L. W.; Guo, P. Z.; Premaratne, M.; Li, X. Y.; Cheng, W. L. Matryoshka-caged gold nanorods: Synthesis, plasmonic properties, and catalytic activity. Nano Res. 2016, 9, 415–423.

    CAS  Google Scholar 

  5. [5]

    Ai, Y. J.; Hu, Z. N.; Shao, Z. X.; Qi, L.; Liu, L.; Zhou, J. J.; Sun, H. B.; Liang, Q. L. Egg-like magnetically immobilized nanospheres: A long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor. Nano Res. 2017, 11, 287–299.

    Google Scholar 

  6. [6]

    Liao, G. F.; Fang, J. S.; Li, Q.; Li, S. H.; Xu, Z. S.; Fang, B. Z. Ag-based nanocomposites: Synthesis and applications in catalysis. Nanoscale 2019, 11, 7062–7096.

    CAS  Google Scholar 

  7. [7]

    Cheng, T. Y.; Zhang, D. C.; Li, H. X.; Liu, G. H. Magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous medium. Green Chem. 2014, 16, 3401–3427.

    CAS  Google Scholar 

  8. [8]

    Saran, S.; Manjari, G.; Devipriya, S. P. Synergistic eminently active catalytic and recyclable Ag, Cu and Ag-Cu alloy nanoparticles supported on TiO2 for sustainable and cleaner environmental applications: A phytogenic mediated synthesis. J. Clean. Prod. 2018, 177, 134–143.

    CAS  Google Scholar 

  9. [9]

    Gangula, A.; Podila, R.; Ramakrishna, M.; Karanam, L.; Janardhana, C.; Rao, A. M. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 2011, 27, 15268–15274.

    Google Scholar 

  10. [10]

    Aswathy Aromal, S.; Philip, D. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim. Acta A 2012, 97, 1–5.

    CAS  Google Scholar 

  11. [11]

    Coccia, F.; Tonucci, L.; Bosco, D.; Bressan, M.; d’Alessandro, N. One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions. Green Chem. 2012, 14, 1073–1078.

    CAS  Google Scholar 

  12. [12]

    Mourdikoudis, S.; Altantzis, T.; Liz-Marzan, L. M.; Bals, S.; Pastoriza-Santos, I.; Pérez-Juste, J. Hydrophilic Pt nanoflowers: Synthesis, crystallographic analysis and catalytic performance. CrystEngComm 2016, 18, 3422–3427.

    CAS  Google Scholar 

  13. [13]

    Kästner, C.; Thünemann, A. F. Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir 2016, 32, 7383–7391.

    Google Scholar 

  14. [14]

    Zhao, P. X.; Feng, X. W.; Huang, D. S.; Yang, G. Y.; Astruc, D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coordin. Chem. Rev. 2015, 287, 114–136.

    CAS  Google Scholar 

  15. [15]

    Cheng, Y. J.; Luo, G. F.; Zhu, J. Y.; Xu, X. D.; Zeng, X.; Cheng, D. B.; Li, Y. M.; Wu, Y.; Zhang, X. Z.; Zhuo, R. X. et al. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 9078–9087.

    CAS  Google Scholar 

  16. [16]

    Tolaymat, T. M.; El Badawy, A. M.; Genaidy, A.; Scheckel, K. G.; Luxton, T. P.; Suidan, M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Sci. Total Environ. 2010, 408, 999–1006.

    CAS  Google Scholar 

  17. [17]

    Liao, G. F.; Zhao, W. Z.; Li, Q.; Pang, Q. H.; Xu, Z. S. Novel poly(acrylic acid)-modified tourmaline/silver composites for adsorption removal of Cu(II) ions and catalytic reduction of methylene blue in water. Chem. Lett. 2017, 46, 1631–1634.

    CAS  Google Scholar 

  18. [18]

    Mudassir, M. A.; Hussain, S. Z.; Rehman, A.; Zaheer, W.; Asma, S. T.; Jilani, A.; Aslam, M.; Zhang, H. F.; Ansari, T. M.; Hussain, I. Development of silver-nanoparticle-decorated emulsion-templated hierarchically porous poly(1-vinylimidazole) beads for water treatment. ACS Appl. Mater. Interfaces 2017, 9, 24190–24197.

    CAS  Google Scholar 

  19. [19]

    Wu, Z. L.; Liu, Q. G; Yang, X. F.; Ye, X.; Duan, H. M.; Zhang, J.; Zhao, B.; Huang, Y. Q. Knitting aryl network polymers-incorporated Ag nanoparticles: A mild and efficient catalyst for the fixation of CO2 as carboxylic acid. ACS Sustainable Chem. Eng. 2017, 5, 9634–9639.

    CAS  Google Scholar 

  20. [20]

    Li, N.; Zhao, P. X.; Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem., Int. Ed. 2014, 53, 1756–1789.

    CAS  Google Scholar 

  21. [21]

    Mathew, A.; Pradeep, T. Noble metal clusters: Applications in energy, environment, and biology. Part. Part. Syst. Char. 2014, 31, 1017–1053.

    CAS  Google Scholar 

  22. [22]

    Dang-Bao, T.; Pla, D.; Favier, I.; Gómez, M. Bimetallic nanoparticles in alternative solvents for catalytic purposes. Catalysts 2017, 7, 207.

    Google Scholar 

  23. [23]

    Pradhan, N.; Pal, A.; Pal, T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir 2001, 17, 1800–1802.

    CAS  Google Scholar 

  24. [24]

    Pradhan, N.; Pal, A.; Pal, T. Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf. A 2002, 196, 247–257.

    CAS  Google Scholar 

  25. [25]

    Fang, G C.; Bi, X. H. Silver-catalysed reactions of alkynes: Recent advances. Chem. Soc. Rev. 2015, 44, 8124–8173.

    CAS  Google Scholar 

  26. [26]

    Martin, D. J.; Liu, G. G.; Moniz, S. J. A.; Bi, Y. P.; Beale, A. M.; Ye, J. H.; Tang, J. W. Efficient visible driven photocatalyst, silver phosphate: Performance, understanding and perspective. Chem. Soc. Rev. 2015, 44, 7808–7828.

    CAS  Google Scholar 

  27. [27]

    Li, G. P.; Wang, Y. X.; Mao, L. Q. Recent progress in highly efficient Ag-based visible-light photocatalysts. RSC Adv. 2014, 4, 53649–53661.

    CAS  Google Scholar 

  28. [28]

    Wen, C.; Yin, A. Y.; Dai, W. L. Recent advances in silver-based heterogeneous catalysts for green chemistry processes. Appl. Catal. B Environ. 2014, 160–161, 730–741.

    Google Scholar 

  29. [29]

    Zheng, Q. Z.; Jiao, N. Ag-catalyzed C-H/C-C bond functionalization. Chem. Soc. Rev. 2016, 45, 4590–4627.

    CAS  Google Scholar 

  30. [30]

    Gu, S.; Wunder, S.; Lu, Y.; Ballauff, M.; Fenger, R.; Rademann, K.; Jaquet, B.; Zaccone, A. Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J. Phys. Chem. C 2014, 118, 18618–18625.

    CAS  Google Scholar 

  31. [31]

    Hervés, P.; Pérez-Lorenzo, M.; Liz-Marzán, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Catalysis by metallic nanoparticles in aqueous solution: Model reactions. Chem. Soc. Rev. 2012, 41, 5577–5587.

    Google Scholar 

  32. [32]

    Wunder, S.; Lu, Y.; Albrecht, M.; Ballauff, M. Catalytic activity of faceted gold nanoparticles studied by a model reaction: Evidence for substrate-induced surface restructuring. ACS Catal. 2011, 1, 908–916.

    CAS  Google Scholar 

  33. [33]

    Xu, W. L.; Kong, J. S.; Yeh, Y. T.; Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 2008, 7, 992–996.

    CAS  Google Scholar 

  34. [34]

    Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 2010, 114, 8814–8820.

    CAS  Google Scholar 

  35. [35]

    Zhang, L.; Liu, Z.; Liu, L. Y.; Ju, X. J.; Wang, W.; Xie, R.; Chu, L. Y. Novel smart microreactors equipped with responsive catalytic nanoparticles on microchannels. ACS Appl. Mater. Interfaces 2017, 9, 33137–33148.

    CAS  Google Scholar 

  36. [36]

    Mei, Y.; Sharma, G; Lu, Y.; Ballauff, M.; Drechsler, M.; Irrgang, T.; Kempe, R. High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir 2005, 21, 12229–12234.

    CAS  Google Scholar 

  37. [37]

    Choi, H.; Lee, J. P.; Ko, S. J.; Jung, J. W.; Park, H.; Yoo, S.; Park, O.; Jeong, J. R.; Park, S.; Kim, J. Y. Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells. Nano Lett. 2013, 13, 2204–2208.

    CAS  Google Scholar 

  38. [38]

    Murugan, E.; Rangasamy, R. Synthesis, characterization, and heterogeneous catalysis of polymer-supported poly(propyleneimine) dendrimer stabilized gold nanoparticle catalyst. J. Polym. Sci. A Polym. Chem. 2010, 48, 2525–2532.

    CAS  Google Scholar 

  39. [39]

    Li, Y. X.; Wu, Y.; Gao, Y.; Sha, S. S.; Hao, J. F.; Cao, G Q.; Yang, C. A facile method to fabricate polystyrene/silver composite particles and their catalytic properties. RSC Adv. 2013, 3, 26361–26366.

    CAS  Google Scholar 

  40. [40]

    Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

    CAS  Google Scholar 

  41. [41]

    Deng, Z. W.; Zhu, H. B.; Peng, B.; Chen, H.; Sun, Y. F.; Gang, X. D.; Jin, P. J.; Wang, J. L. Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl. Mater. Interfaces 2012, 4, 5625–5632.

    CAS  Google Scholar 

  42. [42]

    Cong, Y.; Xia, T.; Zou, M.; Li, Z. N.; Peng, B.; Guo, D. Z.; Deng, Z. W. Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities. J. Mater. Chem. B 2014, 2, 3450–3461.

    CAS  Google Scholar 

  43. [43]

    Liao, G. F.; Li, Q.; Zhao, W. Z.; Pang, Q. H.; Gao, H. Y.; Xu, Z. S. In-situ construction of novel silver nanoparticle decorated polymeric spheres as highly active and stable catalysts for reduction of methylene blue dye. Appl. Catal. A Gen. 2018, 549, 102–111.

    CAS  Google Scholar 

  44. [44]

    Liao, G. F.; Chen, J.; Zeng, W. G.; Yu, C. H.; Yi, C. F.; Xu, Z. S. Facile preparation of uniform nanocomposite spheres with loading silver nano-particles on polystyrene-methyl acrylic acid spheres for catalytic reduction of 4-nitrophenol. J. Phys. Chem. C 2016, 120, 25935–25944.

    CAS  Google Scholar 

  45. [45]

    Peng, F.; Wang, Q.; Shi, R. J.; Wang, Z. Y.; You, X.; Liu, Y. H.; Wang, F. H.; Gao, J.; Mao, C. Fabrication of sesame sticks-like silver nanoparticles/polystyrene hybridnanotubes and their catalytic effects. Sci. Rep. 2016, 6, 39502.

    CAS  Google Scholar 

  46. [46]

    Xu, P. P.; Liao, G. F. A novel fluorescent biosensor for adenosine triphosphate detection based on a metal—organic framework coating polydopamine Layer. Materials 2018, 11, 1616.

    Google Scholar 

  47. [47]

    Zou, Y. B.; Jin, H. L.; Sun, F.; Dai, X. M.; Xu, Z. S.; Yang, S. L.; Liao, G. F. Design and synthesis of a lead sulfide based nanotheranostic agent for computer tomography/magnetic resonance dual-mode-bioimaging-guided photothermal therapy. ACS Appl. Nano Mater. 2018, 1, 2294–2305.

    CAS  Google Scholar 

  48. [48]

    Zhang, H.; Zhao, T. Y.; Newland, B.; Liu, W. G.; Wang, W.; Wang, W. X. Catechol functionalized hyperbranched polymers as biomedical materials. Prog. Polym. Sci. 2018, 78, 47–55.

    CAS  Google Scholar 

  49. [49]

    Li, Q.; Liao, G. F.; Tian, J.; Xu, Z. S. Preparation of novel fluorinated copolyimide/amine-functionalized Sepia eumelanin nanocomposites with enhanced mechanical, thermal, and UV-shielding properties. Macromol. Mater. Eng. 2018, 303, 1700407.

    Google Scholar 

  50. [50]

    Zou, Y. B.; Sun, F.; Liu, C. M.; Yu, C. H.; Zhang, M. J.; He, Q. Y.; Xiong, Y. X.; Xu, Z. S.; Yang, S. L.; Liao, G. F. A novel nanotheranostic agent for dual-mode imaging-guided cancer therapy based on europium complexes-grafted-oxidative dopamine. Chem. Eng. J. 2019, 357, 237–247.

    CAS  Google Scholar 

  51. [51]

    Zhang, M. J.; Zou, Y. B.; Zhong, Y. P.; Liao, G. F.; Yu, C. H.; Xu, Z. S. Polydopamine-based tumor-targeted multifunctional reagents for computer tomography/fluorescence dual-mode bioimaging-guided photothermal therapy. ACS Appl. Bio Mater. 2019, 2, 630–637.

    CAS  Google Scholar 

  52. [52]

    Liao, G. F.; Li, Q.; Xu, Z. S. The chemical modification of polyaniline with enhanced properties: A review. Prog. Org. Coat. 2019, 126, 35–43.

    CAS  Google Scholar 

  53. [53]

    Wang, B. W.; Zhang, J. J.; Xia, Z. G.; Fan, M. Q.; Lv, C. J.; Tian, G. L.; Li, X. N. Polyaniline-coated selenium/carbon composites encapsulated in graphene as efficient cathodes for Li-Se batteries. Nano Res. 2018, 11, 2460–2469.

    CAS  Google Scholar 

  54. [54]

    Liao, G. F.; Gong, Y.; Yi, C. F.; Xu, Z. S. Soluble, antibaterial, and anticorrosion studies of sulfonated polystyrene/polyaniline/silver nano-composites prepared with the sulfonated polystyrene template. Chin. J. Chem. 2017, 35, 1157–1164.

    CAS  Google Scholar 

  55. [55]

    Tian, X. C.; Xiao, B.; Xu, X.; Xu, L.; Liu, Z. H.; Wang, Z. Y.; Yan, M. Y.; Wei, Q. L.; Mai, L. Q. Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors. Nano Res. 2016, 9, 1012–1021.

    CAS  Google Scholar 

  56. [56]

    Liao, G. F.; Gong, Y.; Zhang, L.; Gao, H. Y.; Yang, G. J.; Fang, B. Z. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019, DOI: https://doi.org/10.1039/c9ee00717b.

    CAS  Google Scholar 

  57. [57]

    Tian, G Y.; Wang, W. B.; Mu, B.; Kang, Y. R.; Wang, A. Q. Ag(I)-triggered one-pot synthesis of Ag nanoparticles onto natural nanorods as a multifunctional nanocomposite for efficient catalysis and adsorption. J. Colloid Interface Sci. 2016, 473, 84–92.

    CAS  Google Scholar 

  58. [58]

    Bogdanović, U.; Pašti, I.; Ćirić-Marjanović, G.; Mitrić, M.; Ahrenkiel, S. P.; Vodnik, V. Interfacial synthesis of gold-polyaniline nanocomposite and its electrocatalytic application. ACS Appl. Mater. Interfaces 2015, 7, 28393–28403.

    Google Scholar 

  59. [59]

    Hien, H. T.; Giang, H. T.; van Hieu, N.; Trung, T.; van Tuan, C. Elaboration of Pd-nanoparticle decorated polyaniline films for room temperature NH3 gas sensors. Sens. Actuat. B Chem. 2017, 249, 348–356.

    CAS  Google Scholar 

  60. [60]

    Guo, S. J.; Dong, S. J.; Wang, E. K. Polyaniline/Pt hybrid nanofibers: High-efficiency nanoelectrocatalysts for electrochemical devices. Small 2009, 5, 1869–1876.

    CAS  Google Scholar 

  61. [61]

    Han, J.; Liu, Y.; Guo, R. Reactive template method to synthesize gold nanoparticles with controllable size and morphology supported on shells of polymer hollow microspheres and their application for aerobic alcohol oxidation in water. Adv. Funct. Mater. 2009, 19, 1112–1117.

    CAS  Google Scholar 

  62. [62]

    Wang, H. Y.; Jiang, X. X.; Lee, S. T.; He, Y. Silicon nanohybrid-based surface-enhanced Raman scattering sensors. Small 2014, 10, 4455–4468.

    CAS  Google Scholar 

  63. [63]

    Stejskal, J. Conducting polymer-silver composites. Chem. Papers 2013, 67, 814–848.

    CAS  Google Scholar 

  64. [64]

    Han, J.; Wang, M. G.; Hu, Y. M.; Zhou, C. Q.; Guo, R. Conducting polymernoble metal nanoparticle hybrids: Synthesis mechanism application. Prog. Polym. Sci. 2017, 70, 52–91.

    CAS  Google Scholar 

  65. [65]

    Yuan, C. H.; Xu, Y. T.; Zhong, L. N.; Zhang, L.; Yang, C. J.; Jiang, B. J.; Deng, Y. M.; Zeng, B. R.; He, N.; Luo, W. A. et al. Heterogeneous silver-polyaniline nanocomposites with tunable morphology and controllable catalytic properties. Nanotechnology 2013, 24, 185602.

    Google Scholar 

  66. [66]

    Mondal, S.; Rana, U.; Malik, S. Facile decoration of polyaniline fiber with Ag nanoparticles for recyclable SERS substrate. ACS Appl. Mater. Interfaces 2015, 7, 10457–10465.

    CAS  Google Scholar 

  67. [67]

    Zhang, L.; Liu, X. C.; Wang, Y. H.; Xing, S. X. Controllable silver embedding into polypyrrole. J. Alloys Compd. 2017, 709, 431–437.

    CAS  Google Scholar 

  68. [68]

    Balamurugan, A.; Ho, K. C.; Chen, S. M. One-pot synthesis of highly stable silver nanoparticles-conducting polymer nanocomposite and its catalytic application. Synth. Met. 2009, 159, 2544–2549.

    CAS  Google Scholar 

  69. [69]

    Xia, Y. Y.; Xu, L. Fabrication and catalytic property of an Ag@poly(3, 4-ethylenedioxythiophene) yolk/shell structure. Synth. Met. 2010, 160, 545–548.

    CAS  Google Scholar 

  70. [70]

    Seo, E.; Kim, J.; Hong, Y.; Kim, Y. S.; Lee, D.; Kim, B. S. Double hydrophilic block copolymer templated Au nanoparticles with enhanced catalytic activity toward nitroarene reduction. J. Phys. Chem. C 2013, 117, 11686–11693.

    CAS  Google Scholar 

  71. [71]

    Huang, X. J.; Xiao, Y.; Zhang, W.; Lang, M. D. In-situ formation of silver nanoparticles stabilized by amphiphilic star-shaped copolymer and their catalytic application. Appl. Surf. Sci. 2012, 258, 2655–2660.

    CAS  Google Scholar 

  72. [72]

    Zhang, Z. T.; Zhao, B.; Hu, L. M. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J. Solid State Chem. 1996, 121, 105–110.

    CAS  Google Scholar 

  73. [73]

    Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015, 44, 17883–17905.

    CAS  Google Scholar 

  74. [74]

    Cloud, J. E.; Taylor, L. W.; Yang, Y. A. A simple and effective method for controllable synthesis of silver and silver oxide nanocrystals. RSC Adv. 2014, 4, 24551–24559.

    CAS  Google Scholar 

  75. [75]

    Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M. Valorization of biomass: Deriving more value from waste. Science 2012, 337, 695–699.

    CAS  Google Scholar 

  76. [76]

    Song, J. L.; Birbach, N. L.; Hinestroza, J. P. Deposition of silver nano-particles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose 2012, 19, 411–424.

    CAS  Google Scholar 

  77. [77]

    Ngo, Y. H.; Li, D.; Simon, G. P.; Garnier, G. Paper surfaces functionalized by nanoparticles. Adv. Colloid Interface Sci. 2011, 163, 23–38.

    CAS  Google Scholar 

  78. [78]

    Wu, J. J.; Zhao, N.; Zhang, X. L.; Xu, J. Cellulose/silver nanoparticles composite microspheres: Eco-friendly synthesis and catalytic application. Cellulose 2012, 19, 1239–1249.

    CAS  Google Scholar 

  79. [79]

    Kaushik, M.; Moores, A. Review: Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem. 2016, 18, 622–637.

    CAS  Google Scholar 

  80. [80]

    Wu, X. Y.; Shi, Z. Q.; Fu, S. D.; Chen, J. L.; Berry, R. M.; Tam, K. C. Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts. ACS Sustainable Chem. Eng. 2016, 4, 5929–5935.

    CAS  Google Scholar 

  81. [81]

    Jiang, F.; Hsieh, Y. L. Synthesis of cellulose nanofibril bound silver nanoprism for surface enhanced Raman scattering. Biomacromolecules 2014, 15, 3608–3616.

    CAS  Google Scholar 

  82. [82]

    Wei, H. R.; Rodriguez, K.; Renneckar, S.; Vikesland, P. J. Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ. Sci.: Nano 2014, 1, 302–316.

    CAS  Google Scholar 

  83. [83]

    Tang, J. T.; Shi, Z. Q.; Berry, R. M.; Tam, K. C. Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind. Eng. Chem. Res. 2015, 54, 3299–3308.

    CAS  Google Scholar 

  84. [84]

    Zhu, Y. J.; Chen, F. Microwave-assisted preparation of inorganic nano-structures in liquid phase. Chem. Rev. 2014, 114, 6462–6555.

    CAS  Google Scholar 

  85. [85]

    Yalçın, G; Elmas, B.; Tuncel, M.; Tuncel, A. A low, particle-sized, nonporous support for enzyme immobilization: Uniform poly(glycidyl methacrylate) latex particles. J. Appl. Polym. Sci. 2006, 101, 818–824.

    Google Scholar 

  86. [86]

    Deng, Y. M.; Li, J. F.; Pu, Y. T.; Chen, Y. M.; Zhao, J. L.; Tang, J. N. Ultra-fine silver nanoparticles dispersed in mono-dispersed amino functionalized poly glycidyl methacrylate based microspheres as an effective anti-bacterial agent. React. Funct. Polym. 2016, 103, 92–98.

    CAS  Google Scholar 

  87. [87]

    Macková, H.; Oukacine, F.; Plichta, Z.; Hrubý, M.; Kučka, J.; Taverna, M.; Horák, D. Poly(glycidyl methacrylate)/silver nanocomposite microspheres as a radioiodine scavenger: Electrophoretic characterisation of carboxyl-and amine-modified particles. J. Colloid Interface Sci. 2014, 421, 146–153.

    Google Scholar 

  88. [88]

    Zhang, W. C.; Sun, Y.; Zhang, L. In situ synthesis of monodisperse silver nanoparticles on sulfhydryl-functionalized poly(glycidyl methacrylate) microspheres for catalytic reduction of 4-nitrophenol. Ind. Eng. Chem. Res. 2015, 54, 6480–6488.

    CAS  Google Scholar 

  89. [89]

    Zhang, W. C.; Sun, Y.; Zhang, L. Fabrication of high efficient silver nanoparticle catalyst supported on poly(glycidyl methacrylate)—polyacrylamide. Ind. Eng. Chem. Res. 2016, 55, 12398–12406.

    CAS  Google Scholar 

  90. [90]

    Panigrahi, R.; Srivastava, S. K. Ultrasound assisted synthesis of a polyaniline hollow microsphere/Ag core/shell structure for sensing and catalytic applications. RSC Adv. 2013, 3, 7808–7815.

    CAS  Google Scholar 

  91. [91]

    Dang, G. F.; Shi, Y.; Fu, Z. F.; Yang, W. T. Polymer nanoparticles with dendrimer-Ag shell and its application in catalysis. Particuology 2013, 11, 346–352.

    CAS  Google Scholar 

  92. [92]

    Rajesh, R.; Venkatesan, R. Encapsulation of silver nanoparticles into graphite grafted with hyperbranched poly(amidoamine) dendrimer and their catalytic activity towards reduction of nitro aromatics. J. Mol. Catal. A Chem 2012, 359, 88–96.

    CAS  Google Scholar 

  93. [93]

    Murugadoss, A.; Chattopadhyay, A. A ‘green’ chitosan-silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology 2008, 19, 015603.

    CAS  Google Scholar 

  94. [94]

    Baruah, B.; Gabriel, G. J.; Akbashev, M. J.; Booher, M. E. Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Langmuir 2013, 29, 4225–4234.

    CAS  Google Scholar 

  95. [95]

    Nemanashi, M.; Meijboom, R. Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. J. Colloid Interface Sci. 2013, 389, 260–267.

    CAS  Google Scholar 

  96. [96]

    Crooks, R. M.; Zhao, M. Dendrimer-encapsulated Pt nanoparticles: Synthesis, characterization, and applications to catalysis. Adv. Mater. 1999, 11, 217–220.

    Google Scholar 

  97. [97]

    Chechik, V.; Crooks, R. M. Dendrimer-encapsulated Pd nanoparticles as fluorous phase-soluble catalysts. J. Am. Chem. Soc. 2000, 122, 1243–1244.

    CAS  Google Scholar 

  98. [98]

    Chechik, V.; Zhao, M. Q.; Crooks, R. M. Self-assembled inverted micelles prepared from a dendrimer template: Phase transfer of encapsulated guests. J. Am. Chem. Soc. 1999, 121, 4910–4911.

    CAS  Google Scholar 

  99. [99]

    Balogh, L.; Swanson, D. R.; Tomalia, D. A.; Hagnauer, G. L.; McManus, A. T. Dendrimer—silver complexes and nanocomposites as antimicrobial agents. Nano Lett. 2001, 1, 18–21.

    CAS  Google Scholar 

  100. [100]

    Rodríguez-reinoso, F. The role of carbon materials in heterogeneous catalysis. Carbon 1998, 36, 159–175.

    Google Scholar 

  101. [101]

    Zhang, J. T.; Dai, L. M. Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction. ACS Catal. 2015, 5, 7244–7253.

    CAS  Google Scholar 

  102. [102]

    Cao, Y. L.; Mao, S. J.; Li, M. M.; Chen, Y. Q.; Wang, Y. Metal/porous carbon composites for heterogeneous catalysis: Old catalysts with improved performance promoted by N-doping. ACS Catal. 2017, 7, 8090–8112.

    CAS  Google Scholar 

  103. [103]

    Jiang, C. L.; Nie, J.; Ma, G. P. A polymer/metal core—shell nanofiber membrane by electrospinning with an electric field, and its application for catalyst support. RSC Adv. 2016, 6, 22996–23007.

    CAS  Google Scholar 

  104. [104]

    Cao, C.; Wei, L. L.; Su, M.; Wang, G.; Shen, J. Q. Template-free and one-pot synthesis of N-doped hollow carbon tube @ hierarchically porous carbon supporting homogeneous AgNPs for robust oxygen reduction catalyst. Carbon 2017, 112, 27–36.

    CAS  Google Scholar 

  105. [105]

    Ma, S. C.; Luo, R.; Gold, J. I.; Yu, A. Z.; Kim, B.; Kenis, P. J. A. Carbon nanotube containing Ag catalyst layers for efficient and selective reduction of carbon dioxide. J. Mater. Chem. A 2016, 4, 8573–8578.

    CAS  Google Scholar 

  106. [106]

    Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

    CAS  Google Scholar 

  107. [107]

    Wei, Y.; Zuo, X.; Li, X. Q.; Song, S. S.; Chen, L. W.; Shen, J.; Meng, Y. D.; Zhao, Y.; Fang, S. D. Dry plasma synthesis of graphene oxide-Ag nanocomposites: A simple and green approach. Mater. Res. Bull. 2014, 53, 145–150.

    CAS  Google Scholar 

  108. [108]

    Mao, A. Q.; Zhang, D. H.; Jin, X.; Gu, X. L.; Wei, X. Q.; Yang, G. J.; Liu, X. H. Synthesis of graphene oxide sheets decorated by silver nanoparticles in organic phase and their catalytic activity. J. Phys. Chem. Solids 2012, 73, 982–986.

    CAS  Google Scholar 

  109. [109]

    Li, Y. Z.; Cao, Y. L.; Xie, J.; Jia, D. Z.; Qin, H. Y.; Liang, Z. T. Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol. Catal. Commun. 2015, 58, 21–25.

    CAS  Google Scholar 

  110. [110]

    Kamat, P. V. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 2010, 1, 520–527.

    CAS  Google Scholar 

  111. [111]

    Bai, W. S.; Nie, F.; Zheng, J. B.; Sheng, Q. L. Novel silver nanoparticle-manganese oxyhydroxide-graphene oxide nanocomposite prepared by modified silver mirror reaction and its application for electrochemical sensing. ACS Appl. Mater. Interfaces 2014, 6, 5439–5449.

    CAS  Google Scholar 

  112. [112]

    Wang, Z. M.; Xu, C. L.; Li, X.; Liu, Z. H. In situ green synthesis of Ag nanoparticles on tea polyphenols-modified graphene and their catalytic reduction activity of 4-nitrophenol. Colloids Surf. A 2015, 485, 102–110.

    CAS  Google Scholar 

  113. [113]

    Jeon, E. K.; Seo, E.; Lee, E.; Lee, W.; Um, M. K.; Kim, B. S. Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications. Chem. Commun. 2013, 49, 3392–3394.

    CAS  Google Scholar 

  114. [114]

    Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 2009, 21, 4726–4730.

    CAS  Google Scholar 

  115. [115]

    Duan, J. J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 2015, 5, 5207–5234.

    CAS  Google Scholar 

  116. [116]

    Zhang, L. S.; Liang, X. Q.; Song, W. G.; Wu, Z. Y. Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys. Chem. Chem. Phys. 2010, 12, 12055–12059.

    CAS  Google Scholar 

  117. [117]

    Cheng, C.; Li, S.; Thomas, A.; Kotov, N. A.; Haag, R. Functional graphene nanomaterials based architectures: Biointeractions, fabrications, and emerging biological applications. Chem. Rev. 2017, 117, 1826–1914.

    CAS  Google Scholar 

  118. [118]

    Nair, A. K.; Elizabeth, I.; Gopukumar, S.; Thomas, S.; Kala, M. S.; Kalarikkal, N. Nitrogen doped graphene—silver nanowire hybrids: An excellent anode material for lithium ion batteries. Appl. Surf. Sci. 2018, 428, 1119–1129.

    CAS  Google Scholar 

  119. [119]

    Zhang, J. S.; Chen, Y.; Wang, X. C. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092–3108.

    CAS  Google Scholar 

  120. [120]

    Tian, Y.; Cao, Y. Y.; Pang, F.; Chen, G.-Q.; Zhang, X. Ag nanoparticles supported on N-doped graphene hybrids for catalytic reduction of 4-nitrophenol. RSC Adv. 2014, 4, 43204–43211.

    CAS  Google Scholar 

  121. [121]

    John, J.; Gravel, E.; Namboothiri, I. N. N.; Doris, E. Advances in carbon nanotube-noble metal catalyzed organic transformations. Nanotechnol. Rev. 2012, 1, 515–539.

    CAS  Google Scholar 

  122. [122]

    Pérez-Mayoral, E.; Calvino-Casilda, V.; Soriano, E. Metal-supported carbon-based materials: Opportunities and challenges in the synthesis of valuable products. Catal. Sci. Technol. 2016, 6, 1265–1291.

    Google Scholar 

  123. [123]

    Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105–1136.

    CAS  Google Scholar 

  124. [124]

    Sun, Y. P.; Fu, K. F.; Lin, Y.; Huang, W. J. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 2002, 35, 1096–1104.

    CAS  Google Scholar 

  125. [125]

    Li, H. Q.; Jo, J. K.; Zhang, L. D.; Ha, C. S.; Suh, H.; Kim, I. A general and efficient route to fabricate carbon nanotube-metal nanoparticles and carbon nanotube-inorganic oxides hybrids. Adv. Funct. Mater. 2010, 20, 3864–3873.

    CAS  Google Scholar 

  126. [126]

    Li, H. Q.; Jo, J. K.; Zhang, L. D.; Ha, C. S.; Suh, H.; Kim, I. Hyperbranched polyglycidol assisted green synthetic protocols for the preparation of multifunctional metal nanoparticles. Langmuir 2010, 26, 18442–18453.

    CAS  Google Scholar 

  127. [127]

    Li, H. Q.; Cooper-White, J. J. Hyperbranched polymer mediated fabrication of water soluble carbon nanotube-metal nanoparticle hybrids. Nanoscale 2013, 5, 2915–2920.

    CAS  Google Scholar 

  128. [128]

    Sahoo, N. G.; Rana, S.; Cho, J. W.; Li, L.; Chan, S. H. Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 2010, 35, 837–867.

    CAS  Google Scholar 

  129. [129]

    Alshehri, S. M.; Almuqati, T.; Almuqati, N.; Al-Farraj, E.; Alhokbany, N.; Ahamad, T. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol. Carbohyd. Polym. 2016, 151, 135–143.

    CAS  Google Scholar 

  130. [130]

    Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

    CAS  Google Scholar 

  131. [131]

    Zheng, H. Z.; Wang, Q. L.; Long, Y. J.; Zhang, H. J.; Huang, X. X.; Zhu, R. Enhancing the luminescence of carbon dots with a reduction pathway. Chem. Commun. 2011, 47, 10650–10652.

    CAS  Google Scholar 

  132. [132]

    Bhattacharyya, S.; Ehrat, F.; Urban, P.; Teves, R.; Wyrwich, R.; Doblinger, M.; Feldmann, J.; Urban, A. S.; Stolarczyk, J. K. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots. Nat. Commun. 2017, 8, 1401.

    Google Scholar 

  133. [133]

    Ehrat, F.; Bhattacharyya, S.; Schneider, J.; Löf, A.; Wyrwich, R.; Rogach, A. L.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Tracking the source of carbon dot photoluminescence: Aromatic domains versus molecular fluorophores. Nano Lett. 2017, 17, 7710–7716.

    CAS  Google Scholar 

  134. [134]

    Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

    CAS  Google Scholar 

  135. [135]

    Essner, J. B.; Laber, C. H.; Baker, G. A. Carbon dot reduced bimetallic nanoparticles: Size and surface plasmon resonance tunability for enhanced catalytic applications. J. Mater. Chem. A 2015, 3, 16354–16360.

    CAS  Google Scholar 

  136. [136]

    Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Rouzaud, J. N.; Martínez-Alonso, A.; Tascón, J. M. D. Discovery of effective solvents for platelet-type graphite nanofibers. Carbon 2013, 53, 222–230.

    CAS  Google Scholar 

  137. [137]

    Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Developing green photochemical approaches towards the synthesis of carbon nanofiber- and graphene-supported silver nanoparticles and their use in the catalytic reduction of 4-nitrophenol. RSC Adv. 2013, 3, 18323–18331.

    Google Scholar 

  138. [138]

    Tang, S.; Vongehr, S.; Meng, X. K. Carbon spheres with controllable silver nanoparticle doping. J. Phys. Chem. C 2009, 114, 977–982.

    Google Scholar 

  139. [139]

    Kao, L. H.; Chang, Y. C.; Hung, P. W.; Lee, H. T.; Chi, P. H. Coupled synthesis and encapsulation in one-pot method for fabricating size-tunable hollow carbon spheres containing encapsulated Ag microparticles. Colloids Surf. A 2012, 410, 170–177.

    CAS  Google Scholar 

  140. [140]

    Ji, T.; Chen, L.; Schmitz, M.; Bao, F. S.; Zhu, J. H. Hierarchical macrotube/mesopore carbon decorated with mono-dispersed Ag nano-particles as a highly active catalyst. Green Chem. 2015, 17, 2515–2523.

    CAS  Google Scholar 

  141. [141]

    Ji, T.; Chen, L.; Mu, L. W.; Yuan, R. X.; Knoblauch, M.; Bao, F. S.; Zhu, J. H. In-situ reduction of Ag nanoparticles on oxygenated mesoporous carbon fabric: Exceptional catalyst for nitroaromatics reduction. Appl. Catal. B Environ. 2016, 182, 306–315.

    CAS  Google Scholar 

  142. [142]

    Bulushev, D. A.; Zacharska, M.; Lisitsyn, A. S.; Podyacheva, O. Y.; Hage, F. S.; Ramasse, Q. M.; Bangert, U.; Bulusheva, L. G. Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal. 2016, 6, 3442–3451.

    CAS  Google Scholar 

  143. [143]

    Cui, X. L.; Li, H.; Yuan, M.; Yang, J.; Xu, D.; Li, Z. Y.; Yu, G. Q.; Hou, Y. M.; Dong, Z. P. Facile preparation of fluffy N-doped carbon modified with Ag nanoparticles as a highly active and reusable catalyst for catalytic reduction of nitroarenes. J. Colloid Interface Sci. 2017, 506, 524–531.

    CAS  Google Scholar 

  144. [144]

    Tzounis, L.; Contreras-Caceres, R.; Schellkopf, L.; Jehnichen, D.; Fischer, D.; Cai, C. Z.; Uhlmann, P.; Stamm, M. Controlled growth of Ag nanoparticles decorated onto the surface of SiO2 spheres: A nanohybrid system with combined SERS and catalytic properties. RSC Adv. 2014, 4, 17846–17855.

    CAS  Google Scholar 

  145. [145]

    Pérez-Lorenzo, M.; Vaz, B.; Salgueiriño, V.; Correa-Duarte, M. A. Hollow-shelled nanoreactors endowed with high catalytic activity. Chem.-Eur. J. 2013, 19, 12196–12211.

    Google Scholar 

  146. [146]

    Jiang, S. D.; Song, L.; Zeng, W. R.; Huang, Z. Q.; Zhan, J.; Stec, A. A.; Hull, T. R.; Hu, Y.; Hu, W. Z. Self-assembly fabrication of hollow mesoporous silica@Co-Al layered double hydroxide@graphene and application in toxic effluents elimination. ACS Appl. Mater. Interfaces 2015, 7, 8506–8514.

    CAS  Google Scholar 

  147. [147]

    Li, W. Q.; Wang, G Z.; Li, G. H.; Zhang, Y. X. “Ship-in-a-bottle” approach to synthesize Ag@hm-SiO2 yolk/shell nanospheres. Chin. J. Chem. Phys. 2015, 28, 611–616.

    CAS  Google Scholar 

  148. [148]

    Li, W. Q.; Ge, X.; Zhang, H.; Ding, Q. Q.; Ding, H. L.; Zhang, Y. X.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Hollow mesoporous SiO2 sphere nanoarchitectures with encapsulated silver nanoparticles for catalytic reduction of 4-nitrophenol. Inorg. Chem. Front. 2016, 3, 663–670.

    CAS  Google Scholar 

  149. [149]

    Sun, Z. B.; Cui, G. J.; Li, H. Z.; Tian, Y. X.; Yan, S. Q. Multifunctional dendritic mesoporous silica nanospheres loaded with silver nanoparticles as a highly active and recyclable heterogeneous catalyst. Colloids Surf. A 2016, 489, 142–153.

    CAS  Google Scholar 

  150. [150]

    Dong, Z.; Le, X.; Li, X.; Zhang, W.; Dong, C.; Ma, J. Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl. Catal. B Environ. 2014, 158–159, 129–135.

    Google Scholar 

  151. [151]

    Xing, Z.; Tay, S. W.; Ng, Y. H.; Hong, L. Porous SiO2 hollow spheres as a solar reflective pigment for coatings. ACS Appl. Mater. Interfaces 2017, 9, 15103–15113.

    CAS  Google Scholar 

  152. [152]

    Rodrigues, T. S.; da Silva, A. G. M.; Gonçalves, M. C.; Fajardo, H. V.; Balzer, R.; Probst, L. F. D.; Camargo, P. H. C. AgPt hollow nanodendrites: Synthesis and uniform dispersion over SiO2 support for catalytic applications. ChemNanoMat 2015, 1, 46–51.

    CAS  Google Scholar 

  153. [153]

    Shajkumar, A.; Nandan, B.; Sanwaria, S.; Albrecht, V.; Libera, M.; Lee, M. H.; Auffermann, G.; Stamm, M.; Horechyy, A. Silica-supported Au@hollow-SiO2 particles with outstanding catalytic activity prepared via block copolymer template approach. J. Colloid Interface Sci. 2017, 491, 246–254.

    CAS  Google Scholar 

  154. [154]

    Xu, C. X.; Su, J. X.; Xu, X. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007, 129, 42–43.

    CAS  Google Scholar 

  155. [155]

    Wu, L.; Wang, Z. Y.; Zong, S. F.; Huang, Z.; Zhang, P. Y.; Cui, Y. P. A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods. Biosensor. Bioelectron. 2012, 38, 94–99.

    CAS  Google Scholar 

  156. [156]

    Xiao, Z. Y.; Huang, S. X.; Zhai, S. R.; Zhai, B.; Zhang, F.; An, Q. D. PMHS-reduced fabrication of hollow Ag-SiO2 composite spheres with developed porosity. J. Sol-Gel Sci. Technol. 2015, 75, 82–89.

    CAS  Google Scholar 

  157. [157]

    Zhu, C. Z.; Du, D.; Eychmüller, A.; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896–8943.

    CAS  Google Scholar 

  158. [158]

    Liong, M.; France, B.; Bradley, K. A.; Zink, J. I. Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv. Mater. 2009, 21, 1684–1689.

    CAS  Google Scholar 

  159. [159]

    Song, Y. Y.; Jiang, H. J.; Wang, B. B.; Kong, Y.; Chen, J. Silver-incorporated mussel-inspired polydopamine coatings on mesoporous silica as an efficient nanocatalyst and antimicrobial agent. ACS Appl. Mater. Interfaces 2018, 10, 1792–1801.

    CAS  Google Scholar 

  160. [160]

    Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H. B.; Bouhrara, M.; Basset, J. M. Magnetically recoverable nanocatalysts. Chem. Rev. 2011, 111, 3036–3075.

    CAS  Google Scholar 

  161. [161]

    Zeng, H.; Sun, S. H. Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv. Funct. Mater. 2008, 18, 391–400.

    CAS  Google Scholar 

  162. [162]

    Shen, M.; Chen, S. Q.; Jia, W. P.; Fan, G D.; Jin, Y. X.; Liang, H. D. Facile synthesis of Ag@Fe3O4@C-Au core-shell microspheres for surface-enhanced Raman scattering. Gold Bull. 2016, 49, 103–109.

    CAS  Google Scholar 

  163. [163]

    Lin, T. R.; Wang, J.; Guo, L. Q.; Fu, F. F. Fe3O4@MoS2 core-shell composites: Preparation, characterization, and catalytic application. J. Phys. Chem. C 2015, 119, 13658–13664.

    CAS  Google Scholar 

  164. [164]

    Sharma, G.; Jeevanandam, P. A facile synthesis of multifunctional iron oxide@Ag core-shell nanoparticles and their catalytic applications. Eur. J. Inorg. Chem. 2013, 2013, 6126–6136.

    CAS  Google Scholar 

  165. [165]

    Zhu, M. Y.; Wang, C. J.; Meng, D. H.; Diao, G. W. In situ synthesis of silver nanostructures on magnetic Fe3O4@C core-shell nanocomposites and their application in catalytic reduction reactions. J. Mater. Chem. A 2013, 1, 2118–2125.

    CAS  Google Scholar 

  166. [166]

    Karki, H. P.; Ojha, D. P.; Joshi, M. K.; Kim, H. J. Effective reduction of p-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite. Appl. Surf. Sci. 2018, 435, 599–608.

    CAS  Google Scholar 

  167. [167]

    Kaloti, M.; Kumar, A.; Navani, N. K. Synthesis of glucose-mediated Ag—γ-Fe2O3 multifunctional nanocomposites in aqueous medium—a kinetic analysis of their catalytic activity for 4-nitrophenol reduction. Green Chem. 2015, 17, 4786–4799.

    CAS  Google Scholar 

  168. [168]

    Yamazaki, K.; Kayama, T.; Dong, F.; Shinjoh, H. A mechanistic study on soot oxidation over CeO2—Ag catalyst with ‘rice-ball’ morphology. J. Catal. 2011, 282, 289–298.

    CAS  Google Scholar 

  169. [169]

    Mitsudome, T.; Matoba, M.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Core-shell AgNP@CeO2 nanocomposite catalyst for highly chemoselective reductions of unsaturated aldehydes. Chem. -Eur. J. 2013, 19, 5255–5258.

    CAS  Google Scholar 

  170. [170]

    Evangelista, V.; Acosta, B.; Miridonov, S.; Smolentseva, E.; Fuentes, S.; Simakov, A. Highly active Au-CeO2@ZrO2 yolk—shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol. Appl. Catal. B Environ. 2015, 166–167, 518–528.

    Google Scholar 

  171. [171]

    Zhang, J.; Li, L. P.; Huang, X. S.; Li, G. S. Fabrication of Ag—CeO2 core—shell nanospheres with enhanced catalytic performance due to strengthening of the interfacial interactions. J. Mater. Chem. 2012, 22, 10480–10487.

    CAS  Google Scholar 

  172. [172]

    Wang, Y. Y.; Shu, Y.; Xu, J.; Pang, H. Facile one-step synthesis of Ag@CeO2 core-shell nanospheres with efficient catalytic activity for the reduction of 4-nitrophenol. CrystEngComm 2017, 19, 684–689.

    Google Scholar 

  173. [173]

    Shi, Y.; Zhang, X. L.; Zhu, Y. M.; Tan, H. L.; Chen, X. S.; Lu, Z. H. Core—shell structured nanocomposites Ag@CeO2 as catalysts for hydrogenation of 4-nitrophenol and 2-nitroaniline. RSC Adv. 2016, 6, 47966–47973.

    CAS  Google Scholar 

  174. [174]

    Ji, Z. Y.; Shen, X. P.; Yang, J. L.; Zhu, G. X.; Chen, K. M. A novel reduced graphene oxide/Ag/CeO2 ternary nanocomposite: Green synthesis and catalytic properties. Appl. Catal. B Environ. 2014, 144, 454–461.

    CAS  Google Scholar 

  175. [175]

    Liu, Q.; Wang, A. Q.; Wang, X. H.; Gao, P.; Wang, X. D.; Zhang, T. Synthesis, characterization and catalytic applications of mesoporous y-alumina from boehmite sol. Micropor. Mesopor. Mater. 2008, 111, 323–333.

    CAS  Google Scholar 

  176. [176]

    Lesaint, C.; Kleppa, G.; Arla, D.; Glomm, W. R.; Øye, G. Synthesis and characterization of mesoporous alumina materials with large pore size prepared by a double hydrolysis route. Micropor. Mesopor. Mater. 2009, 119, 245–251.

    CAS  Google Scholar 

  177. [177]

    Naik, B.; Prasad, V. S.; Ghosh, N. N. Preparation of Ag nanoparticle loaded mesoporous γ-alumina catalyst and its catalytic activity for reduction of 4-nitrophenol. Powder Technol. 2012, 232, 1–6.

    CAS  Google Scholar 

  178. [178]

    Solanki, J. N.; Murthy, Z. V. P. Reduction of nitro aromatic compounds over Ag/Al2O3 nanocatalyst prepared in water-in-oil microemulsion: Effects of water-to-surfactant mole ratio and type of reducing agent. Ind. Eng. Chem. Res. 2011, 50, 7338–7344.

    CAS  Google Scholar 

  179. [179]

    Mori, K.; Kumami, A.; Tomonari, M.; Yamashita, H. A pH-induced size controlled deposition of colloidal Ag nanoparticles on alumina support for catalytic application. J. Phys. Chem. C 2009, 113, 16850–16854.

    CAS  Google Scholar 

  180. [180]

    Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc. 2011, 133, 15830–15833.

    CAS  Google Scholar 

  181. [181]

    Hu, M.; Zhang, Z. W.; Luo, C. K.; Qiao, X. Q. One-pot green synthesis of Ag-decorated SnO2 microsphere: An efficient and reusable catalyst for reduction of 4-nitrophenol. Nanoscale Res. Lett. 2017, 12, 435.

    Google Scholar 

  182. [182]

    Lei, M.; Wu, W.; Yang, S. L.; Zhang, X. G.; Xing, Z.; Ren, F.; Xiao, X. H.; Jiang, C. Z. Design of enhanced catalysts by coupling of noble metals (Au, Ag) with semiconductor SnO2 for catalytic reduction of 4-nitrophenol. Part. Part. Syst. Char. 2016, 33, 212–220.

    CAS  Google Scholar 

  183. [183]

    Ma, J. Q.; Guo, X. H.; Zhang, Y. Y.; Ge, H. G. Catalytic performance of TiO2@Ag composites prepared by modified photodeposition method. Chem. Eng. J. 2014, 258, 247–253.

    CAS  Google Scholar 

  184. [184]

    Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 2016, 9, 1763–1774.

    CAS  Google Scholar 

  185. [185]

    Bao, Z. H.; Yuan, Y.; Leng, C. B.; Li, L.; Zhao, K.; Sun, Z. H. One-pot synthesis of noble metal/zinc oxide composites with controllable morphology and high catalytic performance. ACS Appl. Mater. Interfaces 2017, 9, 16417–16425.

    CAS  Google Scholar 

  186. [186]

    Zhang, Y. Y.; Guo, S. B.; Ma, J. Q.; Ge, H. G. Preparation, characterization, catalytic performance and antibacterial activity of Ag photodeposited on monodisperse ZnO submicron spheres. J. Sol-Gel Sci. Technol. 2014, 72, 171–178.

    CAS  Google Scholar 

  187. [187]

    Xu, Y.; Yan, X. F.; Fang, W. Z.; Daniele, S.; Zhang, J. L.; Wang, L. Z. SERS self-monitoring of Ag-catalyzed reaction by magnetically separable mesoporous Fe3O4@Ag@mSiO2. Micropor. Mesopor. Mater. 2018, 263, 113–119.

    CAS  Google Scholar 

  188. [188]

    Shen, J. H.; Zhu, Y. H.; Yang, X. L.; Zong, J.; Li, C. Z. Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling. Langmuir 2013, 29, 690–695.

    CAS  Google Scholar 

  189. [189]

    Shin, K. S.; Cho, Y. K.; Choi, J. Y.; Kim, K. Facile synthesis of silver-deposited silanized magnetite nanoparticles and their application for catalytic reduction of nitrophenols. Appl. Catal. A Gen. 2012, 413–414, 170–175.

    Google Scholar 

  190. [190]

    Abbas, M.; Torati, S. R.; Kim, C. A novel approach for the synthesis of ultrathin silica-coated iron oxide nanocubes decorated with silver nanodots (Fe3O4/SiO2/Ag) and their superior catalytic reduction of 4-nitroaniline. Nanoscale 2015, 7, 12192–12204.

    CAS  Google Scholar 

  191. [191]

    Chi, Y.; Yuan, Q.; Li, Y. J.; Tu, J. C.; Zhao, L.; Li, N.; Li, X. T. Synthesis of Fe3O4@SiO2-Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. J. Colloid Interface Sci. 2012, 383, 96–102.

    CAS  Google Scholar 

  192. [192]

    Du, X. Y.; He, J.; Zhu, J.; Sun, L. J.; An, S. S. Ag-deposited silica-coated Fe3O4 magnetic nanoparticles catalyzed reduction of p-nitrophenol. Appl. Surf. Sci. 2012, 258, 2717–2723.

    CAS  Google Scholar 

  193. [193]

    Kokate, M.; Garadkar, K.; Gole, A. Zinc-oxide-silica-silver nanocomposite: Unique one-pot synthesis and enhanced catalytic and anti-bacterial performance. J. Colloid Interface Sci. 2016, 483, 249–260.

    CAS  Google Scholar 

  194. [194]

    Moon, H. R.; Lim, D. W.; Suh, M. P. Fabrication of metal nanoparticles in metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 1807–1824.

    CAS  Google Scholar 

  195. [195]

    Rösler, C.; Fischer, R. A. Metal—organic frameworks as hosts for nanoparticles. CrystEngComm 2015, 17, 199–217.

    Google Scholar 

  196. [196]

    Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.

    CAS  Google Scholar 

  197. [197]

    Gu, X. J.; Lu, Z. H.; Jiang, H. L.; Akita, T.; Xu, Q. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J. Am. Chem. Soc. 2011, 133, 11822–11825.

    CAS  Google Scholar 

  198. [198]

    Islam, D. A.; Chakraborty, A.; Acharya, H. Fluorescent silver nanoclusters (Ag NCs) in the metal—organic framework MIL-101(Fe) for the catalytic hydrogenation of 4-nitroaniline. New J. Chem. 2016, 40, 6745–6751.

    CAS  Google Scholar 

  199. [199]

    Janiak, C.; Vieth, J. K. MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 2010, 34, 2366–2388.

    CAS  Google Scholar 

  200. [200]

    Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388–17391.

    CAS  Google Scholar 

  201. [201]

    Jiang, Z. F.; Jiang, D. L.; Showkot Hossain, A. M.; Qian, K.; Xie, J. M. In situ synthesis of silver supported nanoporous iron oxide microbox hybrids from metal-organic frameworks and their catalytic application in p-nitrophenol reduction. Phys. Chem. Chem. Phys. 2015, 17, 2550–2559.

    CAS  Google Scholar 

  202. [202]

    Rogge, S. M. J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A. I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F. et al. Metal-organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 2017, 46, 3134–3184.

    CAS  Google Scholar 

  203. [203]

    Wu, D. C.; Xu, F.; Sun, B.; Fu, R. W.; He, H. K.; Matyjaszewski, K. Design and preparation of porous polymers. Chem. Rev. 2012, 112, 3959–4015.

    CAS  Google Scholar 

  204. [204]

    Li, Q.; Liao, G. F.; Zhang, S. L.; Pang, L.; Tong, H.; Zhao, W. Z.; Xu, Z. S. Effect of adjustable molecular chain structure and pure silica zeolite nanoparticles on thermal, mechanical, dielectric, UV-shielding and hydrophobic properties of fluorinated copolyimide composites. Appl. Surf. Sci. 2018, 427, 437–450.

    CAS  Google Scholar 

  205. [205]

    Zeng, W. G.; Chen, J.; Yang, H.; Deng, L. D.; Liao, G. F.; Xu, Z. S. Robust coating with superhydrophobic and self-cleaning properties in either air or oil based on natural zeolite. Surf. Coat. Technol. 2017, 309, 1045–1051.

    CAS  Google Scholar 

  206. [206]

    Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821.

    CAS  Google Scholar 

  207. [207]

    Das, S.; Heasman, P.; Ben, T.; Qiu, S. L. Porous organic materials: Strategic design and structure-function correlation. Chem. Rev. 2017, 117, 1515–1563.

    CAS  Google Scholar 

  208. [208]

    Wang, R.; Gu, L. N.; Zhou, J. J.; Liu, X. L.; Teng, F.; Li, C. H.; Shen, Y. H.; Yuan, Y. P. Quasi-polymeric metal-organic framework UiO-66/g-C3N4 heterojunctions for enhanced photocatalytic hydrogen evolution under visible light irradiation. Adv. Mater. Interfaces 2015, 2, 1500037.

    Google Scholar 

  209. [209]

    Hasell, T.; Wood, C. D.; Clowes, R.; Jones, J. T. A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Palladium nanoparticle incorporation in conjugated microporous polymers by supercritical fluid processing. Chem. Mater. 2010, 22, 557–564.

    CAS  Google Scholar 

  210. [210]

    Cao, H. L.; Huang, H. B.; Chen, Z.; Karadeniz, B.; Lü, J.; Cao, R. Ultrafine silver nanoparticles supported on a conjugated microporous polymer as high-performance nanocatalysts for nitrophenol reduction. ACS Appl. Mater. Interfaces 2017, 9, 5231–5236.

    CAS  Google Scholar 

  211. [211]

    Waller, P. J.; Gándara, F.; Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053–3063.

    CAS  Google Scholar 

  212. [212]

    Shi, X. F.; Yao, Y. J.; Xu, Y. L.; Liu, K.; Zhu, G. S.; Chi, L. F.; Lu, G. Imparting catalytic activity to a covalent organic framework material by nanoparticle encapsulation. ACS Appl. Mater. Interfaces 2017, 9, 7481–7488.

    CAS  Google Scholar 

  213. [213]

    da Silva, A. G. M.; Rodrigues, T. S.; Wang, J. L.; Yamada, L. K.; Alves, T. V.; Ornellas, F. R.; Ando, R. A.; Camargo, P. H. C. The fault in their shapes: Investigating the surface-plasmon-resonance-mediated catalytic activities of silver quasi-spheres, cubes, triangular prisms, and wires. Langmuir 2015, 31, 10272–10278.

    CAS  Google Scholar 

  214. [214]

    Sadeghi, B.; Sadjadi, M. A. S.; Vahdati, R. A. R. Nanoplates controlled synthesis and catalytic activities of silver nanocrystals. Superlattices Microstruct. 2009, 46, 858–863.

    CAS  Google Scholar 

  215. [215]

    Maiyalagan, T. Synthesis, characterization and electrocatalytic activity of silver nanorods towards the reduction of benzyl chloride. Appl. Catal. A Gen. 2008, 340, 191–195.

    CAS  Google Scholar 

  216. [216]

    Kim, B. H.; Lee, J. S. One-pot photochemical synthesis of silver nanodisks using a conventional metal-halide lamp. Mater. Chem. Phys. 2015, 149–150, 678–685.

    Google Scholar 

  217. [217]

    Miao, Y. E.; Lee, H. K.; Chew, W. S.; Phang, I. Y.; Liu, T. X.; Ling, X. Y. Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue. Chem. Commun. 2014, 50, 5923–5926.

    CAS  Google Scholar 

  218. [218]

    Zhang, W.; Tan, F. T.; Wang, W.; Qiu, X. L.; Qiao, X. L.; Chen, J. G. Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol. J. Hazard. Mater. 2012, 217–218, 36–42.

    Google Scholar 

  219. [219]

    Wei, G. D.; Nan, C. W.; Deng, Y.; Lin, Y. H. Self-organized synthesis of silver chainlike and dendritic nanostructures via a solvothermal method. Chem. Mater. 2003, 15, 4436–4441.

    CAS  Google Scholar 

  220. [220]

    Wen, X. G.; Xie, Y. T.; Mak, M. W.; Cheung, K. Y.; Li, X. Y.; Renneberg, R.; Yang, S. H. Dendritic nanostructures of silver: Facile synthesis, structural characterizations, and sensing applications. Langmuir 2006, 22, 4836–4842.

    CAS  Google Scholar 

  221. [221]

    Rashid, M. H.; Mandal, T. K. Synthesis and catalytic application of nanostructured silver dendrites. J. Phys. Chem. C 2007, 111, 16750–16760.

    CAS  Google Scholar 

  222. [222]

    Takahashi, M.; Mohan, P.; Nakade, A.; Higashimine, K.; Mott, D.; Hamada, T.; Matsumura, K.; Taguchi, T.; Maenosono, S. Ag/FeCo/Ag core/shell/shell magnetic nanoparticles with plasmonic imaging capability. Langmuir 2015, 31, 2228–2236.

    CAS  Google Scholar 

  223. [223]

    Mahmoud, M. A.; El-Sayed, M. A. Metallic double shell hollow nanocages: The challenges of their synthetic techniques. Langmuir 2012, 28, 4051–4059.

    CAS  Google Scholar 

  224. [224]

    Weng, G. J.; Mahmoud, M. A.; El-Sayed, M. A. Nanocatalysts can change the number of electrons involved in oxidation-reduction reaction with the nanocages being the most efficient. J. Phys. Chem. C 2012, 116, 24171–24176.

    CAS  Google Scholar 

  225. [225]

    Mahmoud, M. A.; El-Sayed, M. A. Time dependence and signs of the shift of the surface plasmon resonance frequency in nanocages elucidate the nanocatalysis mechanism in hollow nanoparticles. Nano Lett. 2011, 11, 946–953.

    CAS  Google Scholar 

  226. [226]

    Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

    CAS  Google Scholar 

  227. [227]

    Mahmoud, M. A.; Narayanan, R.; El-Sayed, M. A. Enhancing colloidal metallic nanocatalysis: Sharp edges and corners for solid nanoparticles and cage effect for hollow ones. Acc. Chem. Res. 2013, 46, 1795–1805.

    CAS  Google Scholar 

  228. [228]

    Min, J. Z.; Wang, F.; Cai, Y. L.; Liang, S.; Zhang, Z. W.; Jiang, X. M. Azeotropic distillation assisted fabrication of silver nanocages and their catalytic property for reduction of 4-nitrophenol. Chem. Commun. 2015, 51, 761–764.

    CAS  Google Scholar 

  229. [229]

    Vadakkekara, R.; Chakraborty, M.; Parikh, P. A. Reduction of aromatic nitro compounds on colloidal hollow silver nanospheres. Colloids Surf. A 2012, 399, 11–17.

    CAS  Google Scholar 

  230. [230]

    Chng, L. L.; Erathodiyil, N.; Ying, J. Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825–1837.

    CAS  Google Scholar 

  231. [231]

    Liao, F. L.; Lo, T. W. B.; Tsang, S. C. E. Recent developments in palladium-based bimetallic catalysts. ChemCatChem 2015, 7, 1998–2014.

    CAS  Google Scholar 

  232. [232]

    Kaiser, J.; Leppert, L.; Welz, H.; Polzer, F.; Wunder, S.; Wanderka, N.; Albrecht, M.; Lunkenbein, T.; Breu, J.; Kümmel, S. et al. Catalytic activity of nanoalloys from gold and palladium. Phys. Chem. Chem. Phys. 2012, 14, 6487–6495.

    CAS  Google Scholar 

  233. [233]

    Jang, H. J.; Min, D. H. Spherically-clustered porous Au-Ag alloy nanoparticle prepared by partial inhibition of galvanic replacement and its application for efficient multimodal therapy. ACS Nano 2015, 9, 2696–2703.

    CAS  Google Scholar 

  234. [234]

    Zhang, J. W.; Winget, S. A.; Wu, Y. R.; Su, D.; Sun, X. J.; Xie, Z. X.; Qin, D. Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced raman spectroscopy. ACS Nano 2016, 10, 2607–2616.

    CAS  Google Scholar 

  235. [235]

    Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.

    CAS  Google Scholar 

  236. [236]

    Sun, Y. G.; Xia, Y. N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126, 3892–3901.

    CAS  Google Scholar 

  237. [237]

    Papagiannouli, I.; Aloukos, P.; Rioux, D.; Meunier, M.; Couris, S. Effect of the composition on the nonlinear optical response of Au, Ag1−x nano-alloys. J. Phys. Chem. C 2015, 119, 6861–6872.

    CAS  Google Scholar 

  238. [238]

    Mallin, M. P.; Murphy, C. J. Solution-phase synthesis of sub-10 nm Au—Ag alloy nanoparticles. Nano Lett. 2002, 2, 1235–1237.

    CAS  Google Scholar 

  239. [239]

    Cortie, M. B.; McDonagh, A. M. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 2011, 111, 3713–3735.

    CAS  Google Scholar 

  240. [240]

    Rajendra, R.; Bhatia, P.; Justin, A.; Sharma, S.; Ballav, N. Homogeneously-alloyed gold—silver nanoparticles as per feeding moles. J. Phys. Chem. C 2015, 119, 5604–5613.

    CAS  Google Scholar 

  241. [241]

    Choi, Y.; Hong, S.; Liu, L. C.; Kim, S. K.; Park, S. Galvanically replaced hollow Au-Ag nanospheres: Study of their surface plasmon resonance. Langmuir 2012, 28, 6670–6676.

    CAS  Google Scholar 

  242. [242]

    Wu, H. X.; Wang, P.; He, H. L.; Jin, Y. D. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135–144.

    CAS  Google Scholar 

  243. [243]

    Liu, R. X.; Guo, J. H.; Ma, G.; Jiang, P.; Zhang, D. H.; Li, D. X.; Chen, L.; Guo, Y. T.; Ge, G. L. Alloyed crystalline Au-Ag hollow nanostructures with high chemical stability and catalytic performance. ACS Appl. Mater. Interfaces 2016, 8, 16833–16844.

    CAS  Google Scholar 

  244. [244]

    Roh, J.; Back, S. H.; Ahn, D. J. Shape-persistent replica synthesis of gold/silver bimetallic nanoplates using tailored silica cages. Small 2016, 12, 1322–1327.

    CAS  Google Scholar 

  245. [245]

    Xia, B. H.; He, F.; Li, L. D. Preparation of bimetallic nanoparticles using a facile green synthesis method and their application. Langmuir 2013, 29, 4901–4907.

    CAS  Google Scholar 

  246. [246]

    Lee, J.; Han, K.; Jang, D. J. Silica-coated silver/gold composite nanoboxes having enhanced catalytic performances and reusability. Appl. Catal. A Gen. 2014, 469, 380–386.

    CAS  Google Scholar 

  247. [247]

    Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem., Int. Ed. 2012, 51, 68–89.

    CAS  Google Scholar 

  248. [248]

    Niknafs, Y.; Amirjani, A.; Marashi, P.; Fatmehsari, D. H. Synthesis of Ag-Cu and Ag-Cu2O alloy nanoparticles using a seed-mediated polyol process, thermodynamic and kinetic aspects. Mater. Chem. Phys. 2017, 189, 44–49.

    CAS  Google Scholar 

  249. [249]

    Wu, W.; Lei, M.; Yang, S. L.; Zhou, L.; Liu, L.; Xiao, X. H.; Jiang, C. Z.; Roy, V. A. L. A one-pot route to the synthesis of alloyed Cu/Ag bimetallic nanoparticles with different mass ratios for catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 3450–3455.

    CAS  Google Scholar 

  250. [250]

    Jin, M. S.; Zhang, H.; Wang, J. G.; Zhong, X. L.; Lu, N.; Li, Z. Y.; Xie, Z. X.; Kim, M. J.; Xia, Y. N. Copper can still be epitaxially deposited on palladium nanocrystals to generate core-shell nanocubes despite their large lattice mismatch. ACS Nano 2012, 6, 2566–2573.

    CAS  Google Scholar 

  251. [251]

    Jin, M. S.; He, G. N.; Zhang, H.; Zeng, J.; Xie, Z. X.; Xia, Y. N. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew. Chem., Int. Ed. 2011, 50, 10560–10564.

    CAS  Google Scholar 

  252. [252]

    Sevonkaev, I. V.; Herein, D.; Jeske, G.; Goia, D. V. Size control of noble metal clusters and metallic heterostructures through the reduction kinetics of metal precursors. Nanoscale 2014, 6, 9614–9617.

    CAS  Google Scholar 

  253. [253]

    Verma, A. D.; Pal, S.; Verma, P.; Srivastava, V.; Mandal, R. K.; Sinha, I. Ag-Cu bimetallic nanocatalysts for p-nitrophenol reduction using a green hydrogen source. J. Environ. Chem. Eng. 2017, 5, 6148–6155.

    CAS  Google Scholar 

  254. [254]

    Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306.

    CAS  Google Scholar 

  255. [255]

    Chuntonov, L.; Bar-Sadan, M.; Houben, L.; Haran, G. Correlating electron tomography and plasmon spectroscopy of single noble metal core-shell nanoparticles. Nano Lett. 2012, 12, 145–150.

    CAS  Google Scholar 

  256. [256]

    Liu, Y. T.; Zhou, J.; Wang, B. B.; Jiang, T.; Ho, H. P.; Petti, L.; Mormile, P. Au@Ag core-shell nanocubes: Epitaxial growth synthesis and surface-enhanced Raman scattering performance. Phys. Chem. Chem. Phys. 2015, 17, 6819–6826.

    CAS  Google Scholar 

  257. [257]

    Wang, R. J.; Yao, Y. F.; Shen, M.; Wang, X. S. Green synthesis of Au@Ag nanostructures through a seed-mediated method and their application in SERS. Colloids Surf. A 2016, 492, 263–272.

    CAS  Google Scholar 

  258. [258]

    Liu, F. K.; Huang, P. W.; Chang, Y. C.; Ko, F. H.; Chu, T. C. Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers. Langmuir 2005, 21, 2519–2525.

    CAS  Google Scholar 

  259. [259]

    Xue, C.; Millstone, J. E.; Li, S. Y.; Mirkin, C. A. Plasmon-driven synthesis of triangular core—shell nanoprisms from gold seeds. Angew. Chem., Int. Ed. 2007, 46, 8436–8439.

    CAS  Google Scholar 

  260. [260]

    Yoo, H.; Millstone, J. E.; Li, S. Z.; Jang, J. W.; Wei, W.; Wu, J. S.; Schatz, G. C.; Mirkin, C. A. Core-shell triangular bifrustums. Nano Lett. 2009, 9, 3038–3041.

    CAS  Google Scholar 

  261. [261]

    Wilson, O. M.; Scott, R. W.; Garcia-Martinez, J. C.; Crooks, R. M. Synthesis, characterization, and structure-selective extraction of 1–3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J. Am. Chem. Soc. 2005, 127, 1015–1024.

    CAS  Google Scholar 

  262. [262]

    Tsao, Y. C.; Rej, S.; Chiu, C. Y.; Huang, M. H. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties. J. Am. Chem. Soc. 2014, 136, 396–404.

    CAS  Google Scholar 

  263. [263]

    Haldar, K. K.; Kundu, S.; Patra, A. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 21946–21953.

    CAS  Google Scholar 

  264. [264]

    Li, T.; Chattopadhyay, S.; Shibata, T.; Cook, R. E.; Miller, J. T.; Suthiwangcharoen, N.; Lee, S.; Winans, R. E.; Lee, B. Synthesis and characterization of Au-core Ag-shell nanoparticles from unmodified apoferritin. J. Mater. Chem. 2012, 22, 14458–14464.

    CAS  Google Scholar 

  265. [265]

    Monga, A.; Pal, B. Improved catalytic activity and surface electro-kinetics of bimetallic Au—Ag core-shell nanocomposites. New J. Chem. 2015, 39, 304–313.

    CAS  Google Scholar 

  266. [266]

    Zhang, X.; Su, Z. H. Polyelectrolyte-multilayer-supported Au@Ag core-shell nanoparticles with high catalytic activity. Adv. Mater. 2012, 24, 4574–4577.

    CAS  Google Scholar 

  267. [267]

    Zhou, J. J.; Duan, B.; Fang, Z.; Song, J. B.; Wang, C. X.; Messersmith, P. B.; Duan, H. W. Interfacial assembly of mussel-inspired Au@Ag@ polydopamine core-shell nanoparticles for recyclable nanocatalysts. Adv. Mater. 2014, 26, 701–705.

    CAS  Google Scholar 

  268. [268]

    Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

    CAS  Google Scholar 

  269. [269]

    Huang, J. F.; Vongehr, S.; Tang, S. C.; Lu, H. M.; Shen, J. C.; Meng, X. K. Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity. Langmuir 2009, 25, 11890–11896.

    CAS  Google Scholar 

  270. [270]

    Huang, J. F.; Vongehr, S.; Tang, S. C.; Lu, H. M.; Meng, X. K. Highly catalytic Pd—Ag bimetallic dendrites. J. Phys. Chem. C 2010, 114, 15005–15010.

    CAS  Google Scholar 

  271. [271]

    Kim, M.; Lee, K. Y.; Jeong, G. H.; Jang, J.; Han, S. W. Fabrication of Au—Ag alloy nanoprisms with enhanced catalytic activity. Chem. Lett. 2007, 36, 1350–1351.

    CAS  Google Scholar 

  272. [272]

    Jing, H.; Wang, H. Structural evolution of Ag—Pd bimetallic nanoparticles through controlled galvanic replacement: Effects of mild reducing agents. Chem. Mater. 2015, 27, 2172–2180.

    CAS  Google Scholar 

  273. [273]

    Zheng, T. T.; Zhang, Q. F.; Feng, S.; Zhu, J. J.; Wang, Q.; Wang, H. Robust nonenzymatic hybrid nanoelectrocatalysts for signal amplification toward ultrasensitive electrochemical cytosensing. J. Am. Chem. Soc. 2014, 136, 2288–2291.

    CAS  Google Scholar 

  274. [274]

    Zhang, W. Q.; Yang, J. Z.; Lu, X. M. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids. ACS Nano 2012, 6, 7397–7405.

    CAS  Google Scholar 

  275. [275]

    Popa, A.; Samia, A. C. S. Effect of metal precursor on the growth and electrochemical sensing properties of Pt-Ag nanoboxes. Chem. Commun. 2014, 50, 7295–7298.

    CAS  Google Scholar 

  276. [276]

    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    CAS  Google Scholar 

  277. [277]

    Mahmoud, M. A.; Garlyyev, B.; El-Sayed, M. A. Controlling the catalytic efficiency on the surface of hollow gold nanoparticles by introducing an inner thin layer of platinum or palladium. J. Phys. Chem. Lett. 2014, 5, 4088–4094.

    CAS  Google Scholar 

  278. [278]

    Fang, Z. C.; Wang, Y. C.; Liu, C. X.; Chen, S.; Sang, W.; Wang, C.; Zeng, J. Rational design of metal nanoframes for catalysis and plasmonics. Small 2015, 11, 2593–2605.

    CAS  Google Scholar 

  279. [279]

    Snyder, J.; Livi, K.; Erlebacher, J. Oxygen reduction reaction performance of [MTBD][beti]-encapsulated nanoporous NiPt alloy nanoparticles. Adv. Funct. Mater. 2013, 23, 5494–5501.

    CAS  Google Scholar 

  280. [280]

    Xia, Y. N.; Yang, X. Toward cost-effective and sustainable use of precious metals in heterogeneous catalysts. Acc. Chem. Res. 2017, 50, 450–454.

    CAS  Google Scholar 

  281. [281]

    Li, J. M.; Liu, J. Y.; Yang, Y.; Qin, D. Bifunctional Ag@Pd-Ag nanocubes for highly sensitive monitoring of catalytic reactions by surface-enhanced raman spectroscopy. J. Am. Chem. Soc. 2015, 137, 7039–7042.

    CAS  Google Scholar 

  282. [282]

    Li, J. M.; Sun, X. J.; Qin, D. Ag-enriched Ag-Pd bimetallic nanoframes and their catalytic properties. ChemNanoMat 2016, 2, 494–499.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (Nos. 21674130, 51873234 and 51573039), the Natural Science Foundation of Guangdong Province (Nos. 2017A030313254 and 2017A030310349), the Fundamental Research Funds for the Central Universities (No. 17lgjc02), PetroChina Innovation Foundation (No. 2017D-5007-0505), and Research Start-up Funds of DGUT (No. GC300501-116). Key Laboratory Opening Fund of PCFM is also gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zushun Xu, Haiyang Gao or Baizeng Fang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, G., Gong, Y., Zhong, L. et al. Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction. Nano Res. 12, 2407–2436 (2019). https://doi.org/10.1007/s12274-019-2441-5

Download citation

Keywords

  • Ag-based nanoparticles catalysts
  • catalytic reduction
  • 4-nitrophenol
  • catalytic activity
  • stability