Skip to main content

Reproducible large-scale synthesis of surface silanized nanoparticles as an enabling nanoproteomics platform: Enrichment of the human heart phosphoproteome

Abstract

A reproducible synthetic strategy was developed for facile large-scale (200 mg) synthesis of surface silanized magnetite (Fe3O4) nanoparticles (NPs) for biological applications. After further coupling a phosphate-specific affinity ligand, these functionalized magnetic NPs were used for the highly specific enrichment of phosphoproteins from a complex biological mixture. Moreover, correlating the surface silane density of the silanized magnetite NPs to their resultant enrichment performance established a simple and reliable quality assurance control to ensure reproducible synthesis of these NPs routinely in large scale and optimal phosphoprotein enrichment performance from batch-to-batch. Furthermore, by successful exploitation of a top-down phosphoproteomics strategy that integrates this high throughput nanoproteomics platform with online liquid chromatography (LC) and tandem mass spectrometry (MS/MS), we were able to specifically enrich, identify, and characterize endogenous phosphoproteins from highly complex human cardiac tissue homogenate. This nanoproteomics platform possesses a unique combination of scalability, specificity, reproducibility, and efficiency for the capture and enrichment of low abundance proteins in general, thereby enabling downstream proteomics applications.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    De, M.; Ghosh, P. S.; Rotello, V. M. Applications of nanoparticles in biology. Adv. Mater. 2008, 20, 4225–4241.

    Article  Google Scholar 

  2. [2]

    Mitragotri, S.; Anderson, D. G.; Chen, X. Y.; Chow, E. K.; Ho, D.; Kabanov, A. V; Karp, J. M.; Kataoka, K.; Mirkin, C. A.; Petrosko, S. H. et al. Accelerating the translation of nanomaterials in biomedicine. ACS Nano 2015, 9, 6644–6654.

    Article  Google Scholar 

  3. [3]

    Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

    Article  Google Scholar 

  4. [4]

    Gao, J. H.; Gu, H. W.; Xu, B. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42, 1097–1107.

    Article  Google Scholar 

  5. [5]

    Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A. Gold nanoparticles for biology and medicine. Angew. Chem., Int. Ed. 2010, 49, 3280–3294.

    Article  Google Scholar 

  6. [6]

    Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Anarjan, N.; Vaghari, H.; Sayyar, Z.; Berenjian, A. A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res. 2016, 9, 2203–2225.

    Article  Google Scholar 

  7. [7]

    Xie, J.; Liu, G.; Eden, H. S.; Ai, H.; Chen, X. Y. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc. Chem. Res. 2011, 44, 883–892.

    Article  Google Scholar 

  8. [8]

    Ho, D.; Sun, X. L.; Sun, S. H. Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 2011, 44, 875–882.

    Article  Google Scholar 

  9. [9]

    Zhang, W. Z.; Liu, L.; Chen, H. M.; Hu, K.; Delahunty, I.; Gao, S.; Xie, J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018, 8, 2521–2548.

    Article  Google Scholar 

  10. [10]

    Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

    Article  Google Scholar 

  11. [11]

    White, M. A.; Johnson, J. A.; Koberstein, J. T.; Turro, N. J. Toward the syntheses of universal ligands for metal oxide surfaces: Controlling surface functionality through click chemistry. J. Am. Chem. Soc. 2006, 128, 11356–11357.

    Article  Google Scholar 

  12. [12]

    Grancharov, S. G.; Zeng, H.; Sun, S. H.; Wang, S. X.; O’Brien, S.; Murray, C. B.; Kirtley, J. R.; Held, G. A. Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J. Phys. Chem. B 2005, 109, 13030–13035.

    Article  Google Scholar 

  13. [13]

    Hong, R.; Fischer, N. O.; Emrick, T.; Rotello, V. M. Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem. Mater. 2005, 17, 4617–4621.

    Article  Google Scholar 

  14. [14]

    Xu, C. J.; Xu, K. M.; Gu, H. W.; Zheng, R. K.; Liu, H.; Zhang, X. X.; Guo, Z. H.; Xu, B. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 9938–9939.

    Article  Google Scholar 

  15. [15]

    Lattuada, M.; Hatton, T. A. Functionalization of monodisperse magnetic nanoparticles. Langmuir 2007, 23, 2158–2168.

    Article  Google Scholar 

  16. [16]

    De Palma, R.; Peeters, S.; Van Bael, M. J.; Van Den Rul, H.; Bonroy, K.; Laureyn, W.; Mullens, J.; Borghs, G.; Maes, G. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem. Mater. 2007, 19, 1821–1831.

    Article  Google Scholar 

  17. [17]

    Plueddemann, E. P. Reminiscing on silane coupling agents. J. Adhes. Sci. Technol. 1991, 5, 261–277.

    Article  Google Scholar 

  18. [18]

    Arkles, B.; Steinmetz, J. R.; Zazyczny, J.; Mehta, P. Factors contributing to the stability of alkoxysilanes in aqueous solution. J. Adhes. Sci. Technol. 1992, 6, 193–206.

    Article  Google Scholar 

  19. [19]

    Cano, M.; Núñez-Lozano, R.; Lumbreras, R.; González-Rodríguez, V.; Delgado-García, A.; Jiménez-Hoyuela, J. M.; De La Cueva-Méndez, G. Partial PEGylation of superparamagnetic iron oxide nanoparticles thinly coated with amine-silane as a source of ultrastable tunable nanosystems for biomedical applications. Nanoscale 2017, 9, 812–822.

    Article  Google Scholar 

  20. [20]

    Jana, N. R.; Earhart, C.; Ying, J. Y. Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem. Mater. 2007, 19, 5074–5082.

    Article  Google Scholar 

  21. [21]

    Smolensky, E. D.; Park, H. Y. E.; Berquó, T. S.; Pierre, V. C. Surface functionalization of magnetic iron oxide nanoparticles for MRI applications— Effect of anchoring group and ligand exchange protocol. Contrast Media Mol. Imaging 2011, 6, 189–199.

    Google Scholar 

  22. [22]

    Aebersold, R.; Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 2016, 537, 347–355.

    Article  Google Scholar 

  23. [23]

    Cai, W. X.; Tucholski, T. M.; Gregorich, Z. R.; Ge, Y. Top-down proteomics: Technology advancements and applications to heart diseases. Expert Rev. Proteomics 2016, 13, 717–730.

    Article  Google Scholar 

  24. [24]

    Chen, B. F.; Brown, K. A.; Lin, Z. Q.; Ge, Y. Top-down proteomics: Ready for prime time? Anal. Chem. 2018, 90, 110–127.

    Article  Google Scholar 

  25. [25]

    Anderson, N. L.; Anderson, N. G. The human plasma proteome. Mol. Cell. Proteomics 2002, 1, 845–867.

    Article  Google Scholar 

  26. [26]

    Siuti, N.; Kelleher, N. L. Decoding protein modifications using top-down mass spectrometry. Nat. Methods 2007, 4, 817–821.

    Article  Google Scholar 

  27. [27]

    Brown, K. A.; Chen, B. F.; Guardado-Alvarez, T. M.; Lin, Z. Q.; Hwang, L.; Ayaz-Guner, S.; Jin, S.; Ge, Y. A photocleavable surfactant for top-down proteomics. Nat. Methods, in press, DOI: 10.1038/s41592-019-0391-1.

  28. [28]

    Xie, S. N.; Moya, C.; Bilgin, B.; Jayaraman, A.; Walton, S. P. Emerging affinity-based techniques in proteomics. Expert Rev. Proteomics 2009, 6, 573–583.

    Article  Google Scholar 

  29. [29]

    Hunter, T. Signaling—2000 and beyond. Cell 2000, 100, 113–127.

    Article  Google Scholar 

  30. [30]

    Hwang, L.; Ayaz-Guner, S.; Gregorich, Z. R.; Cai, W. X.; Valeja, S. G.; Jin, S.; Ge, Y. Specific enrichment of phosphoproteins using functionalized multivalent nanoparticles. J. Am. Chem. Soc. 2015, 137, 2432–2435.

    Article  Google Scholar 

  31. [31]

    Chen, B. F.; Hwang, L.; Ochowicz, W.; Lin, Z. Q.; Guardado-Alvarez, T. M.; Cai, W. X.; Xiu, L. C.; Dani, K.; Colah, C.; Jin, S. et al. Coupling functionalized cobalt ferrite nanoparticle enrichment with online LC/MS/MS for top-down phosphoproteomics. Chem. Sci. 2017, 8, 4306–4311.

    Article  Google Scholar 

  32. [32]

    Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.

    Article  Google Scholar 

  33. [33]

    Pan, Y.; Long, M. J. C.; Lin, H. C.; Hedstrom, L.; Xu, B. Magnetic nanoparticles for direct protein sorting inside live cells. Chem. Sci. 2012, 3, 3495–3499.

    Article  Google Scholar 

  34. [34]

    Aubin-Tam, M. E.; Hamad-Schifferli, K. Structure and function of nanoparticle-protein conjugates. Biomed. Mater. 2008, 3, 034001.

    Article  Google Scholar 

  35. [35]

    Bagwe, R. P.; Hilliard, L. R.; Tan, W. H. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006, 22, 4357–4362.

    Article  Google Scholar 

  36. [36]

    De Palma, R.; Laureyn, W.; Frederix, F.; Bonroy, K.; Pireaux, J. J.; Borghs, G.; Maes, G. Formation of dense self-assembled monolayers of (n-decyl)trichlorosilanes on Ta/Ta2O5. Langmuir 2007, 23, 443–451.

    Article  Google Scholar 

  37. [37]

    Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6, 12–21.

    Article  Google Scholar 

  38. [38]

    Scott, A. W.; Garimella, V.; Calabrese, C. M.; Mirkin, C. A. Universal biotin–PEG-linked gold nanoparticle probes for the simultaneous detection of nucleic acids and proteins. Bioconjugate Chem. 2017, 28, 203–211.

    Article  Google Scholar 

  39. [39]

    Li, Y. F.; Zhang, Y. M.; Wang, W. P. Phototriggered targeting of nanocarriers for drug delivery. Nano Res. 2018, 11, 5424–5438.

    Article  Google Scholar 

  40. [40]

    Ling, D. S.; Lee, N.; Hyeon, T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 2015, 48, 1276–1285.

    Article  Google Scholar 

  41. [41]

    Na, H. B.; Song, I. C.; Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 2009, 21, 2133–2148.

    Article  Google Scholar 

  42. [42]

    Rejeeth, C.; Pang, X. C.; Zhang, R.; Xu, W.; Sun, X. M.; Liu, B.; Lou, J. T.; Wan, J. J.; Gu, H.; Yan, W. et al. Extraction, detection, and profiling of serum biomarkers using designed Fe3O4@SiO2@HA core–shell particles. Nano Res. 2018, 11, 68–79.

    Article  Google Scholar 

  43. [43]

    Cano, M.; De La Cueva-Méndez, G. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry. Chem. Commun. 2015, 51, 3620–3622.

    Article  Google Scholar 

  44. [44]

    Jiang, J. K.; Oberdörster, G.; Biswas, P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanoparticle Res. 2009, 11, 77–89.

    Article  Google Scholar 

  45. [45]

    Gao, F. P.; Cai, Y. Y.; Zhou, J.; Xie, X. X.; Ouyang, W. W.; Zhang, Y. H.; Wang, X. F.; Zhang, X. D.; Wang, X. W.; Zhao, L. Y. et al. Pullulan acetate coated magnetite nanoparticles for hyper-thermia: Preparation, characterization and in vitro experiments. Nano Res. 2010, 3, 23–31.

    Article  Google Scholar 

  46. [46]

    Xu, L. J.; Feng, Y.; Fan, Z. K.; Yun, D. C. Research into the grading method of kiwi fruit based on volume estimation and surface defect. INMATEH - Agric. Eng. 2014, 44, 93–102.

    Google Scholar 

  47. [47]

    Li, Y. C.; Lin, Y. S.; Tsai, P. J.; Chen, C. T.; Chen, W. Y.; Chen, Y. C. Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal. Chem. 2007, 79, 7519–7525.

    Article  Google Scholar 

  48. [48]

    Panja, P.; Das, P.; Mandal, K.; Jana, N. R. Hyperbranched polyglycerol grafting on the surface of silica-coated nanoparticles for high colloidal stability and low nonspecific interaction. ACS Sustainable Chem. Eng. 2017, 5, 4879–4889.

    Article  Google Scholar 

  49. [49]

    Wang, J.; Shen, H. J.; Huang, C.; Ma, Q. Q.; Tan, Y. N.; Jiang, F. L.; Ma, C.; Yuan, Q. Highly efficient and multidimensional extraction of targets from complex matrices using aptamer-driven recognition. Nano Res. 2017, 10, 145–156.

    Article  Google Scholar 

  50. [50]

    Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.

    Article  Google Scholar 

  51. [51]

    Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

    Article  Google Scholar 

  52. [52]

    Wang, C.; Ye, Y. Q.; Hu, Q. Y.; Bellotti, A.; Gu, Z. Tailoring biomaterials for cancer immunotherapy: Emerging trends and future outlook. Adv. Mater. 2017, 29, 1606036.

    Article  Google Scholar 

  53. [53]

    Greig, F. H.; Nixon, G. F. Phosphoprotein enriched in astrocytes (PEA)-15: A potential therapeutic target in multiple disease states. Pharmacol. Ther. 2014, 143, 265–274.

    Article  Google Scholar 

  54. [54]

    Lee, J.; Bartholomeusz, C.; Krishnamurthy, S.; Liu, P.; Saso, H.; Lafortune, T. A.; Hortobagyi, G. N.; Ueno, N. T. PEA-15 unphosphorylated at both serine 104 and serine 116 inhibits ovarian cancer cell tumorigenicity and progression through blocking β-catenin. Oncogenesis 2012, 1, e22.

    Article  Google Scholar 

  55. [55]

    Xie, X. H.; Tang, H. L.; Liu, P.; Kong, Y. N.; Wu, M. Q.; Xiao, X. S.; Yang, L.; Gao, J.; Wei, W.; Lee, J. et al. Development of PEA-15 using a potent non-viral vector for therapeutic application in breast cancer. Cancer Lett. 2015, 356, 374–381.

    Article  Google Scholar 

  56. [56]

    Cai, W. X.; Guner, H.; Gregorich, Z. R.; Chen, A. J.; Ayaz-Guner, S.; Peng, Y.; Valeja, S. G.; Liu, X. W.; Ge, Y. MASH suite pro: A comprehensive software tool for top-down proteomics. Mol. Cell. Proteomics 2016, 15, 703–714.

    Article  Google Scholar 

  57. [57]

    Lee, S. H.; Seo, J.; Park, S. Y.; Jeong, M. H.; Choi, H. K.; Lee, C. J.; Kim, M. J.; Guk, G.; Lee, S.; Park, H. et al. Programmed cell death 5 suppresses AKT-mediated cytoprotection of endothelium. Proc. Natl. Acad. Sci. USA 2018, 115, 4672–4677.

    Article  Google Scholar 

  58. [58]

    Park, S. Y.; Seo, J.; Choi, H. K.; Oh, H. J.; Guk, G.; Lee, Y. H.; Lee, J.; Jun, W. J.; Choi, K. C.; Yoon, H. G. Protein serine/threonine phosphatase PPEF-1 suppresses genotoxic stress response via dephosphorylation of PDCD5. Sci. Rep. 2017, 7, 39222.

    Article  Google Scholar 

  59. [59]

    Kwak, S.; Lee, S. H.; Han, E. J.; Park, S. Y.; Jeong, M. H.; Seo, J.; Park, S. H.; Sung, G. J.; Yoo, J. Y.; Yoon, H. G. et al. Serine/threonine kinase 31 promotes PDCD5-mediated apoptosis in p53-dependent human colon cancer cells. J. Cell. Physiol. 2019, 234, 2649–2658.

    Article  Google Scholar 

  60. [60]

    Gregorich, Z. R.; Cai, W. X.; Lin, Z. Q.; Chen, A. J.; Peng, Y.; Kohmoto, T.; Ge, Y. Distinct sequences and post-translational modifications in cardiac atrial and ventricular myosin light chains revealed by top-down mass spectrometry. J. Mol. Cell. Cardiol. 2017, 107, 13–21.

    Article  Google Scholar 

  61. [61]

    Cai, W. X.; Tucholski, T.; Chen, B. F.; Alpert, A. J.; McIlwain, S.; Kohmoto, T.; Jin, S.; Ge, Y. Top-down proteomics of large proteins up to 223 kDa enabled by serial size exclusion chromatography strategy. Anal. Chem. 2017, 89, 5467–5475.

    Article  Google Scholar 

  62. [62]

    Kinoshita, E.; Kinoshita-Kikuta, E.; Koike, T. Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat. Protoc. 2009, 4, 1513–1521.

    Article  Google Scholar 

  63. [63]

    Schmidt, S. R.; Schweikart, F.; Andersson, M. E. Current methods for phosphoprotein isolation and enrichment. J. Chromatogr. B 2007, 849, 154–162.

    Article  Google Scholar 

  64. [64]

    Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258, 598–599.

    Article  Google Scholar 

  65. [65]

    Kaur-Atwal, G.; Weston, D. J.; Bonner, P. L. R.; Crosland, S.; Green, P. S.; Creaser, C. S. Immobilised metal affinity chromatography for the analysis of proteins and peptides. Curr. Anal. Chem. 2008, 4, 127–135.

    Article  Google Scholar 

  66. [66]

    Nita-Lazar, A.; Saito-Benz, H.; White, F. M. Quantitative phosphoproteomics by mass spectrometry: Past, present, and future. Proteomics 2008, 8, 4433–4443.

    Article  Google Scholar 

  67. [67]

    Regnier, F. E.; Kim, J. Proteins and proteoforms: new separation challenges. Anal. Chem. 2018, 90, 361–373.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support for this project is provided by NIH R01 GM117058 (to S. J. and Y. G.). Moreover, Y. G. would like to acknowledge the NIH R01 GM125085 and S10 OD018475. T. N. T. would like to acknowledge support from the NIH Chemistry-Biology Interface Training Program NIH T32GM008505.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ying Ge or Song Jin.

Electronic supplementary material

12274_2019_2418_MOESM1_ESM.pdf

Reproducible large-scale synthesis of surface silanized nanoparticles as an enabling nanoproteomics platform: Enrichment of the human heart phosphoproteome

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roberts, D.S., Chen, B., Tiambeng, T.N. et al. Reproducible large-scale synthesis of surface silanized nanoparticles as an enabling nanoproteomics platform: Enrichment of the human heart phosphoproteome. Nano Res. 12, 1473–1481 (2019). https://doi.org/10.1007/s12274-019-2418-4

Download citation

Keywords

  • nanoparticles
  • nanoproteomics
  • surface functionalization
  • large-scale
  • phosphoprotein enrichment
  • top-down proteomics
  • mass spectrometry