Skip to main content

Heterogeneous molecular catalysts for electrocatalytic CO2 reduction

Abstract

This review provides an overview of the literature regarding heterogeneous molecular catalysts for electrochemical CO2 reduction (ECR). Fundamental aspects of the science, including aggregation, electrochemical rate laws, and electrode-catalyst electronic coupling, are discussed to provide a solid foundation on which to design experiments and interpret results. Mechanistic aspects of ECR are presented based on electrokinetic and spectroscopic measurements as well as density functional theory (DFT) calculations. Consensus is improving for electrokinetic measurements, but the redox state of the metal center under reaction conditions and DFT reaction pathways lack agreement in the literature. Concerning the tunable aspects of the molecular catalyst, the impacts of the metal center, ligand substituents, and electrode support on the activity and selectivity toward ECR are presented with an emphasis on those studies that controlled for aggregation and minimized mass-transport limitations. Extended three-dimensional (3D) structures such as polymers, metal-organic frameworks (MOFs), and covalent-organic frameworks (COFs) are discussed as highly tunable architectures that begin to mimic the catalytic pockets of enzyme active sites. To achieve the full potential of these catalysts, design principles must emerge based on a combination of deconvoluting measurements to extract intrinsic catalyst properties and more reliable theoretical calculations to predict reaction pathways.

References

  1. [1]

    IPCC. Summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C. B.; Barros, V. R.; Dokken, D. J.; Mach, K. J.; Mastrandrea, M. D.; Bilir, T. E.; Chatterjee, M.; Ebi, K. L.; Estrada, Y. O.; Genova, R. C. et al., Eds.; Cambridge University Press: Cambridge, UK and New York, 2014.

    Google Scholar 

  2. [2]

    Spurgeon, J. M.; Kumar, B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 2018, 11, 1536–1551.

    Google Scholar 

  3. [3]

    Schiffer, Z. J.; Manthiram, K. Electrification and decarbonization of the chemical industry. Joule 2017, 1, 10–14.

    Google Scholar 

  4. [4]

    Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113.

    Google Scholar 

  5. [5]

    Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.

    Google Scholar 

  6. [6]

    Chen, Y. H.; Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 134, 1986–1989.

    Google Scholar 

  7. [7]

    Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

    Google Scholar 

  8. [8]

    Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

    Google Scholar 

  9. [9]

    Costentin, C.; Passard, G.; Robert, M.; Savéant, J. M. Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion. Proc. Natl. Acad. Sci. USA 2014, 111, 14990–14994.

    Google Scholar 

  10. [10]

    Costentin, C.; Robert, M.; Savéant, J. M.; Tatin, A. Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water. Proc. Natl. Acad. Sci. USA 2015, 112, 6882–6886.

    Google Scholar 

  11. [11]

    Manbeck, G. F.; Fujita, E. A review of iron and cobalt porphyrins, phthalocyanines and related complexes for electrochemical and photochemical reduction of carbon dioxide. J. Porphyr. Phthalocya. 2015, 19, 45–64.

    Google Scholar 

  12. [12]

    Varela, A. S.; Ju, W.; Strasser, P. Molecular nitrogen-carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen-doped carbon (MNC) catalysts for the electrochemical CO2 reduction. Adv. Energy Mater. 2018, 8, 1703614.

    Google Scholar 

  13. [13]

    Costamagna, J. A.; Isaacs, M.; Aguirre, M. J.; Ramirez, G.; Azocar, I. Electroreduction of CO2 catalyzed by metallomacrocyclics. In N 4-Macrocyclic Metal Complexes; Zagal, J. H.; Bedioui, F.; Dodelet, J. P., Eds.; Springer: New York, 2006; pp 191–254.

    Google Scholar 

  14. [14]

    Inglis, J. L.; MacLean, B. J.; Pryce, M. T.; Vos, J. G. Electrocatalytic pathways towards sustainable fuel production from water and CO2. Coord. Chem. Rev. 2012, 256, 2571–2600.

    Google Scholar 

  15. [15]

    Sun, C. F.; Gobetto, R.; Nervi, C. Recent advances in catalytic CO2 reduction by organometal complexes anchored on modified electrodes. New J. Chem. 2016, 40, 5656–5661.

    Google Scholar 

  16. [16]

    Hori, Y. Electrochemical CO2 reduction on metal electrodes. In Modern Aspects of Electrochemistry; Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Eds.; Springer: New York, 2008; pp 89–189.

    Google Scholar 

  17. [17]

    Li, F. W.; MacFarlane, D. R.; Zhang, J. Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 2018, 10, 6235–6260.

    Google Scholar 

  18. [18]

    Pander III, J. E.; Ren, D.; Huang, Y.; Loo, N. W. X.; Hong, S. H. L.; Yeo, B. S. Understanding the heterogeneous electrocatalytic reduction of carbon dioxide on oxide-derived catalysts. ChemElectroChem 2018, 5, 219–237.

    Google Scholar 

  19. [19]

    Strasser, P.; Gliech, M.; Kuehl, S.; Moeller, T. Electrochemical processes on solid shaped nanoparticles with defined facets. Chem. Soc. Rev. 2018, 47, 715–735.

    Google Scholar 

  20. [20]

    Wu, J. J.; Sharifi, T.; Gao, Y.; Zhang, T. Y.; Ajayan, P. M. Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv. Mater. 2019, 31, 1804257.

    Google Scholar 

  21. [21]

    Bonin, J.; Maurin, A.; Robert, M. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal based complexes. Recent advances. Coord. Chem. Rev. 2017, 334, 184–198.

    Google Scholar 

  22. [22]

    Costentin, C.; Robert, M.; Savéant, J. M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 2013, 42, 2423–2436.

    Google Scholar 

  23. [23]

    Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z.S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

    Google Scholar 

  24. [24]

    Oh, S.; Gallagher, J. R.; Miller, J. T.; Surendranath, Y. Graphite-conjugated rhenium catalysts for carbon dioxide reduction. J. Am. Chem. Soc. 2016, 138, 1820–1823.

    Google Scholar 

  25. [25]

    Hu, X. M.; Rønne, M. H.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem., Int. Ed. 2017, 56, 6468–6472.

    Google Scholar 

  26. [26]

    Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: A classification problem. ChemPhysChem 2017, 18, 3266–3273.

    Google Scholar 

  27. [27]

    Pan, F. P.; Deng, W.; Justiniano, C.; Li, Y. Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl. Catal. B Environ. 2018, 226, 463–472.

    Google Scholar 

  28. [28]

    Chen, L. J.; Guo, Z. G.; Wei, X. G.; Gallenkamp, C.; Bonin, J.; Anxolabéhère-Mallart, E.; Lau, K. C.; Lau, T. C.; Robert, M. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with earth-abundant metal complexes. Selective production of CO vs HCOOH by switching of the metal center. J. Am. Chem. Soc. 2015, 137, 10918–10921.

    Google Scholar 

  29. [29]

    Meshitsuka, S.; Ichikawa, M.; Tamaru, K. Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide. J. Chem. Soc. Chem. Commun. 1974, 158–159.

  30. [30]

    Kapusta, S.; Hackerman, N. Carbon dioxide reduction at a metal phthalocyanine catalyzed carbon electrode. J. Electrochem. Soc. 1984, 131, 1511–1514.

    Google Scholar 

  31. [31]

    Tanabe, H.; Ohno, K. Electrocatalysis of metal phthalocyanine thin film prepared by the plasma-assisted deposition on a glassy carbon in the reduction of carbon dioxide. Electrochim. Acta 1987, 32, 1121–1124.

    Google Scholar 

  32. [32]

    Furuya, N.; Matsui, K. Electroreduction of carbon dioxide on gas-diffusion electrodes modified by metal phthalocyanines. J. Electroanal. Chem. Interfacial Electrochem. 1989, 271, 181–191.

    Google Scholar 

  33. [33]

    Furuya, N.; Koide, S. Electroreduction of carbon dioxide by metal phthalocyanines. Electrochim. Acta 1991, 36, 1309–1313.

    Google Scholar 

  34. [34]

    Sonoyama, N.; Kirii, M.; Sakata, T. Electrochemical reduction of CO2 at metal-porphyrin supported gas diffusion electrodes under high pressure CO2. Electrochem. Commun. 1999, 1, 213–216.

    Google Scholar 

  35. [35]

    Birdja, Y. Y.; Shen, J.; Koper, M. T. M. Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid. Catal. Today 2017, 288, 37–47.

    Google Scholar 

  36. [36]

    Wu, Y. S.; Jiang, J. B.; Weng, Z.; Wang, M. Y.; Broere, D. L. J.; Zhong, Y. R.; Brudvig, G. W.; Feng, Z. X.; Wang, H. L. Electroreduction of CO2 catalyzed by a heterogenized Zn-porphyrin complex with a redox-innocent metal center. ACS Cent. Sci. 2017, 3, 847–852.

    Google Scholar 

  37. [37]

    Mahmood, M. N.; Masheder, D.; Harty, C. J. Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. II. Reduction at metal phthalocyanine-impregnated electrodes. J. Appl. Electrochem. 1987, 17, 1223–1227.

    Google Scholar 

  38. [38]

    Lawton, E. A. The thermal stability of copper phthalocyanine. J. Phys. Chem. 1958, 62, 384.

    Google Scholar 

  39. [39]

    Sabik, A.; Golek, F.; Antczak, G. Thermal desorption and stability of cobalt phthalocyanine on Ag(100). Appl. Surf. Sci. 2018, 435, 894–902.

    Google Scholar 

  40. [40]

    Scardamaglia, M.; Struzzi, C.; Lizzit, S.; Dalmiglio, M.; Lacovig, P.; Baraldi, A.; Mariani, C.; Betti, M. G. Energetics and hierarchical interactions of metal-phthalocyanines adsorbed on graphene/Ir(111). Langmuir 2013, 29, 10440–10447.

    Google Scholar 

  41. [41]

    Magdesieva, T. V.; Butin, K. P.; Yamamoto, T.; Tryk, D. A.; Fujishima, A. Lutetium monophthalocyanine and diphthalocyanine complexes and lithium naphthalocyanine as catalysts for electrochemical CO2 reduction. J. Electrochem. Soc. 2003, 150, E608–E612.

    Google Scholar 

  42. [42]

    Weng, Z.; Wu, Y. S.; Wang, M. Y.; Jiang, J. B.; Yang, K.; Huo, S. J.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415.

    Google Scholar 

  43. [43]

    Weng, Z.; Jiang, J. B.; Wu, Y. S.; Wu, Z. S.; Guo, X. T.; Materna, K. L.; Liu, W.; Batista, V. S.; Brudvig, G. W.; Wang, H. L. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 2016, 138, 8076–8079.

    Google Scholar 

  44. [44]

    Kusama, S.; Saito, T.; Hashiba, H.; Sakai, A.; Yotsuhashi, S. Crystalline copper(II) phthalocyanine catalysts for electrochemical reduction of carbon dioxide in aqueous media. ACS Catal. 2017, 7, 8382–8385.

    Google Scholar 

  45. [45]

    Cheng, Y.; Veder, J. P.; Thomsen, L.; Zhao, S. Y.; Saunders, M.; Demichelis, R.; Liu, C.; De Marco, R.; Jiang, S. P. Electrochemically substituted metal phthalocyanines, e-MPc (M = Co, Ni), as highly active and selective catalysts for CO2 reduction. J. Mater. Chem. A 2018, 6, 1370–1375.

    Google Scholar 

  46. [46]

    Ruan, C. Y.; Mastryukov, V.; Fink, M. Electron diffraction studies of metal phthalocyanines, MPc, where M = Sn, Mg, and Zn (reinvestigation). J. Chem. Phys. 1999, 111, 3035–3041.

    Google Scholar 

  47. [47]

    Kaeffer, N.; Chavarot-Kerlidou, M.; Artero, V. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes. Acc. Chem. Res. 2015, 48, 1286–1295.

    Google Scholar 

  48. [48]

    Lee, C. W.; Cho, N. H.; Yang, K. D.; Nam, K. T. Reaction mechanisms of the electrochemical conversion of carbon dioxide to formic acid on tin oxide electrodes. ChemElectroChem 2017, 4, 2130–2136.

    Google Scholar 

  49. [49]

    Lee, C. H.; Kanan, M. W. Controlling H+ vs. CO2 reduction selectivity on Pb electrodes. ACS Catal. 2015, 5, 465–469.

    Google Scholar 

  50. [50]

    Luo, W.; Xie, W.; Li, M.; Züttel, A. 3D hierarchical porous indium catalyst for highly efficient electroreduction of CO2. J. Mater. Chem. A 2019, 7, 4505–4515.

    Google Scholar 

  51. [51]

    Zhu, W. J.; Zhang, L.; Yang, P. P.; Hu, C. L.; Luo, Z. B.; Chang, X. X.; Zhao, Z. J.; Gong, J. L. Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance. Angew. Chem., Int. Ed. 2018, 57, 11544–11548.

    Google Scholar 

  52. [52]

    Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833–1839.

    Google Scholar 

  53. [53]

    Wallace, A. J.; Williamson, B. E.; Crittenden, D. L. CASSCF-based explicit ligand field models clarify the ground state electronic structures of transition metal phthalocyanines (MPc; M = Mn, Fe, Co, Ni, Cu, Zn). Can. J. Chem. 2016, 94, 1163–1168.

    Google Scholar 

  54. [54]

    Brumboiu, I. E.; Prokopiou, G.; Kronik, L.; Brena, B. Valence electronic structure of cobalt phthalocyanine from an optimally tuned range-separated hybrid functional. J. Chem. Phys. 2017, 147, 044301.

    Google Scholar 

  55. [55]

    Jensen, F. Introduction to Computational Chemistry; John Wiley & Sons, Ltd: Chichester, 2007.

    Google Scholar 

  56. [56]

    Zhang, Z.; Xiao, J. P.; Chen, X. J.; Yu, S.; Yu, L.; Si, R.; Wang, Y.; Wang, S.; Meng, X. G.; Wang, Y. et al. Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 16339–16342.

    Google Scholar 

  57. [57]

    Zhu, M. H.; Ye, R. Q.; Jin, K.; Lazouski, N.; Manthiram, K. Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 2018, 3, 1381–1386.

    Google Scholar 

  58. [58]

    Liu, J. H.; Yang, L. M.; Ganz, E. Efficient and selective electroreduction of CO2 by single-atom catalyst two-dimensional TM-Pc monolayers. ACS Sustainable Chem. Eng. 2018, 6, 15494–15502.

    Google Scholar 

  59. [59]

    Göttle, A. J.; Koper, M. T. M. Determinant role of electrogenerated reactive nucleophilic species on selectivity during reduction of CO2 catalyzed by metalloporphyrins. J. Am. Chem. Soc. 2018, 140, 4826–4834.

    Google Scholar 

  60. [60]

    Costentin, C.; Passard, G.; Savéant, J. M. Benchmarking of homogeneous electrocatalysts: Overpotential, turnover frequency, limiting turnover number. J. Am. Chem. Soc. 2015, 137, 5461–5467.

    Google Scholar 

  61. [61]

    Abe, T.; Imaya, H.; Yoshida, T.; Tokita, S.; Schlettwein, D.; Wöhrle, D.; Kaneko, M. Electrochemical CO2 reduction catalysed by cobalt octacyanophthalocyanine and its mechanism. J. Porphyr. Phthalocya. 1997, 1, 315–321.

    Google Scholar 

  62. [62]

    Mizuguchi, J. π-π interactions of magnesium phthalocyanine as evaluated by energy partition analysis. J. Phys. Chem. A 2001, 105, 10719–10722.

    Google Scholar 

  63. [63]

    Bottari, G.; Ballesteros, B.; Collado, J. F.; Torres, T. Hydrogen-bonding and pi-stacking induced self-assembly of picolinic acid-substituted phthalocyanine derivatives. In Proceedings of the 227th ECS Meeting, Chicago, 2015, p 996.

    Google Scholar 

  64. [64]

    Boulatov, R.; Collman, J. P.; Shiryaeva, I. M.; Sunderland, C. J. Functional analogues of the dioxygen reduction site in cytochrome oxidase: Mechanistic aspects and possible effects of CuB. J. Am. Chem. Soc. 2002, 124, 11923–11935.

    Google Scholar 

  65. [65]

    Ghani, F.; Kristen, J.; Riegler, H. Solubility properties of unsubstituted metal phthalocyanines in different types of solvents. J. Chem. Eng. Data 2012, 57, 439–449.

    Google Scholar 

  66. [66]

    Cheng, Z. H.; Cui, N.; Zhang, H. X.; Zhu, L. J.; Xia, D. H. Synthesis and dimerization behavior of five metallophthalocyanines in different solvents. Adv. Mater. Sci. Eng. 2014, 2014, 914916.

    Google Scholar 

  67. [67]

    Choi, J.; Wagner, P.; Gambhir, S.; Jalili, R.; Macfarlane, D. R.; Wallace, G. G.; Officer, D. L. Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Lett. 2019, 4, 666–672.

    Google Scholar 

  68. [68]

    Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

    Google Scholar 

  69. [69]

    Zeng, Y.; Bai, P.; Smith, R. B.; Bazant, M. Z. Simple formula for asymmetric Marcus-Hush kinetics. J. Electroanal. Chem. 2015, 748, 52–57.

    Google Scholar 

  70. [70]

    Marcus, R. A. On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 1965, 43, 679–701.

    Google Scholar 

  71. [71]

    Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons, Inc.: New York, 2001.

    Google Scholar 

  72. [72]

    Zhu, M. H.; Yang, D. T.; Ye, R. Q.; Zeng, J.; Corbin, N.; Manthiram, K. Inductive and electrostatic effects on cobalt porphyrins for heterogeneous electrocatalytic carbon dioxide reduction. Catal. Sci. Technol. 2019, 9, 974–980.

    Google Scholar 

  73. [73]

    Han, N.; Wang, Y.; Ma, L.; Wen, J. G.; Li, J.; Zheng, H. C.; Nie, K. Q.; Wang, X. X.; Zhao, F. P.; Li, Y. F. et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652–664.

    Google Scholar 

  74. [74]

    Wuttig, A.; Yoon, Y.; Ryu, J.; Surendranath, Y. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J. Am. Chem. Soc. 2017, 139, 17109–17113.

    Google Scholar 

  75. [75]

    Chlistunoff, J. RRDE and voltammetric study of ORR on pyrolyzed Fe/polyaniline catalyst. On the origins of variable tafel slopes. J. Phys. Chem. C 2011, 115, 6496–6507.

    Google Scholar 

  76. [76]

    Singh, M. R.; Clark, E. L.; Bell, A. T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys. Chem. Chem. Phys. 2015, 17, 18924–18936.

    Google Scholar 

  77. [77]

    Raciti, D.; Mao, M.; Park, J. H.; Wang, C. Mass transfer effects in CO2 reduction on Cu nanowire electrocatalysts. Catal. Sci. Technol. 2018, 8, 2364–2369.

    Google Scholar 

  78. [78]

    Dunwell, M.; Yang, X.; Setzler, B. P.; Anibal, J.; Yan, Y. S.; Xu, B. J. Examination of near-electrode concentration gradients and kinetic impacts on the electrochemical reduction of CO2 using surface-enhanced infrared spectroscopy. ACS Catal. 2018, 8, 3999–4008.

    Google Scholar 

  79. [79]

    Ryu, J.; Wuttig, A.; Surendranath, Y. Quantification of interfacial pH variation at molecular length scales using a concurrent non-faradaic reaction. Angew. Chem., Int. Ed. 2018, 57, 9300–9304.

    Google Scholar 

  80. [80]

    Harris, D. C. Quantitative Chemical Analysis, 7th ed.; W. H. Freeman and Company: New York, 2007.

    Google Scholar 

  81. [81]

    Weisenberger, S.; Schumpe, A. Estimation of gas solubilities in salt solutions at temperatures from 273 K to 363 K. AIChE J. 1996, 42, 298–300.

    Google Scholar 

  82. [82]

    Schowen, R. L. Hydrogen bonds, transition-state stabilization, and enzyme catalysis. In Isotope Effects in Chemistry and Biology; Kohen, A.; Limbach, H. H., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, Florida, USA, 2005; pp 765–792.

    Google Scholar 

  83. [83]

    Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.

    Google Scholar 

  84. [84]

    Zhu, M. H.; Chen, J. C.; Huang, L. B.; Ye, R. Q.; Xu, J.; Han, Y. F. Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew. Chem., Int. Ed., in press, DOI: https://doi.org/10.1002/ANIE.201900499.

  85. [85]

    Morlanés, N.; Takanabe, K.; Rodionov, V. Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal. 2016, 6, 3092–3095.

    Google Scholar 

  86. [86]

    Chebotareva, N.; Nyokong, T. Metallophthalocyanine catalysed electroreduction of nitrate and nitrite ions in alkaline media. J. Appl. Electrochem. 1997, 27, 975–981.

    Google Scholar 

  87. [87]

    Jackson, M. N.; Oh, S.; Kaminsky, C. J.; Chu, S. B.; Zhang, G. H.; Miller, J. T.; Surendranath, Y. Strong electronic coupling of molecular sites to graphitic electrodes via pyrazine conjugation. J. Am. Chem. Soc. 2018, 140, 1004–1010.

    Google Scholar 

  88. [88]

    Schmickler, W.; Santos, E. Interfacial Electrochemistry; Springer: Berlin, 2010.

    Google Scholar 

  89. [89]

    Lieber, C. M.; Lewis, N. S. Catalytic reduction of carbon dioxide at carbon electrodes modified with cobalt phthalocyanine. J. Am. Chem. Soc. 1984, 106, 5033–5034.

    Google Scholar 

  90. [90]

    Yoshida, T.; Kamato, K.; Tsukamoto, M.; Iida, T.; Schlettwein, D.; Wöhrle, D.; Kaneko, M. Selective electroacatalysis for CO2 reduction in the aqueous phase using cobalt phthalocyanine/poly-4-vinylpyridine modified electrodes. J. Electroanal. Chem. 1995, 385, 209–225.

    Google Scholar 

  91. [91]

    Abe, T.; Yoshida, T.; Tokita, S.; Taguchi, F.; Imaya, H.; Kaneko, M. Factors affecting selective electrocatalytic CO2 reduction with cobalt phthalocyanine incorporated in a polyvinylpyridine membrane coated on a graphite electrode. J. Electroanal. Chem. 1996, 472, 125–132.

    Google Scholar 

  92. [92]

    Aga, H.; Aramata, A.; Hisaeda, Y. The electroreduction of carbon dioxide by macrocyclic cobalt complexes chemically modified on a glassy carbon electrode. J. Electroanal. Chem. 1997, 437, 111–118.

    Google Scholar 

  93. [93]

    Christensen, P. A.; Hamnett, A.; Muir, A. V. G. An in-situ FTIR study of the electroreduction of CO2 by CoPc-coated edge graphite electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1988, 247, 361–371.

    Google Scholar 

  94. [94]

    Atoguchi, T.; Aramata, A.; Kazusaka, A.; Enyo, M. Electrocatalytic activity of CoII TPP-pyridine complex modified carbon electrode for CO2 reduction. J. Electroanal. Chem. Interfacial Electrochem. 1991, 318, 309–320.

    Google Scholar 

  95. [95]

    Atoguchi, T.; Aramata, A.; Kazusaka, A.; Enyo, M. Cobalt(II)-tetraphenylporphyrin-pyridine complex fixed on a glassy carbon electrode and its prominent catalytic activity for reduction of carbon dioxide. J. Chem. Soc. Chem. Commun. 1991, 156–157.

  96. [96]

    Tanaka, H.; Aramata, A. Aminopyridyl cation radical method for bridging between metal complex and glassy carbon: Cobalt(II) tetraphenylporphyrin bonded on glassy carbon for enhancement of CO2 electroreduction. J. Electroanal. Chem. 1997, 437, 29–35.

    Google Scholar 

  97. [97]

    Abe, T.; Taguchi, F.; Yoshida, T.; Tokita, S.; Schnurpfeil, G.; Wöhrle, D.; Kaneko, M. Electrocatalytic CO2 reduction by cobalt octabutoxyphthalocyanine coated on graphite electrode. J. Mol. Catal. A Chem. 1996, 112, 55–61.

    Google Scholar 

  98. [98]

    Kornienko, N.; Zhao, Y. B.; Kley, C. S.; Zhu, C. H.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. D. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 2015, 137, 14129–14135.

    Google Scholar 

  99. [99]

    Toray Carbon Fiber Paper “TGP-H” [Online]. https://www.fuelcellsetc.com/store/DS/Toray-Paper-TGP-H-Datasheet.pdf (accessed Feb 11, 2019).

  100. [100]

    Pander III, J. E.; Fogg, A.; Bocarsly, A. B. Utilization of electropolymerized films of cobalt porphyrin for the reduction of carbon dioxide in aqueous media. ChemCatChem 2016, 8, 3536–3545.

    Google Scholar 

  101. [101]

    Reuillard, B.; Ly, K. H.; Rosser, T. E.; Kuehnel, M. F.; Zebger, I.; Reisner, E. Tuning product selectivity for aqueous CO2 reduction with a Mn(bipyridine)-pyrene catalyst immobilized on a carbon nanotube electrode. J. Am. Chem. Soc. 2017, 139, 14425–14435.

    Google Scholar 

  102. [102]

    Rosser, T. E.; Windle, C. D.; Reisner, E. Electrocatalytic and solar-driven CO2 reduction to CO with a molecular manganese catalyst immobilized on mesoporous TiO2. Angew. Chem., Int. Ed. 2016, 55, 7388–7392.

    Google Scholar 

  103. [103]

    Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction. Catal. Today 2017, 288, 74–78.

    Google Scholar 

  104. [104]

    Zhang, Y. J.; Sethuraman, V.; Michalsky, R.; Peterson, A. A. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 2014, 4, 3742–3748.

    Google Scholar 

  105. [105]

    Wellendorff, J.; Lundgaard, K. T.; Møgelhøj, A.; Petzold, V.; Landis, D. D.; Nørskov, J. K.; Bligaard, T.; Jacobsen, K. W. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 2012, 85, 235149.

    Google Scholar 

  106. [106]

    Shen, J.; Kolb, M. J.; Göttle, A. J.; Koper, M. T. M. DFT study on the mechanism of the electrochemical reduction of CO2 catalyzed by cobalt porphyrins. J. Phys. Chem. C 2016, 120, 15714–15721.

    Google Scholar 

  107. [107]

    Nielsen, I. M. B.; Leung, K. Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 1. A density functional study of intermediates. J. Phys. Chem. A 2010, 114, 10166–10173.

    Google Scholar 

  108. [108]

    Leung, K.; Nielsen, I. M. B.; Sai, N.; Medforth, C.; Shelnutt, J. A. Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 2. Mechanism from first principles. J. Phys. Chem. A 2010, 114, 10174–10184.

    Google Scholar 

  109. [109]

    Göttle, A. J.; Koper, M. T. M. Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: Prediction of sequential vs. concerted pathways using DFT. Chem. Sci. 2017, 8, 458–465.

    Google Scholar 

  110. [110]

    Shen, J.; Kortlever, R.; Kas, R.; Birdja, Y. Y.; Diaz-Morales, O.; Kwon, Y.; Ledezma-Yanez, I.; Schouten, K. J. P.; Mul, G.; Koper, M. T. M. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 2015, 6, 8177.

    Google Scholar 

  111. [111]

    Yao, C. L.; Li, J. C.; Gao, W.; Jiang, Q. Cobalt-porphine catalyzed CO2 electro-reduction: A novel protonation mechanism. Phys. Chem. Chem. Phys. 2017, 19, 15067–15072.

    Google Scholar 

  112. [112]

    Jensen, K. P.; Ryde, U. Theoretical prediction of the Co-C bond strength in cobalamins. J. Phys. Chem. A 2003, 107, 7539–7545.

    Google Scholar 

  113. [113]

    Kusuda, K.; Ishihara, R.; Yamaguchi, H.; Izumi, I. Electrochemical investigation of thin films of cobalt phthalocyanine and cobalt-4,4′,4″,4′″-tetracarboxyphthalocyanine and the reduction of carbon monoxide, formic acid and formaldehyde mediated by the Co(I) complexes. Electrochim. Acta 1986, 31, 657–663.

    Google Scholar 

  114. [114]

    Szkaradek, K.; Buzar, K.; Pidko, E. A.; Szyja, B. M. Supported Ru metalloporphyrins for electrocatalytic CO2 conversion. ChemCatChem 2018, 10, 1814–1820.

    Google Scholar 

  115. [115]

    Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 2017, 139, 11277–11287.

    Google Scholar 

  116. [116]

    Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

    Google Scholar 

  117. [117]

    Thorson, M. R.; Siil, K. I.; Kenis, P. J. A. Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 2013, 160, F69–F74.

    Google Scholar 

  118. [118]

    Murata, A.; Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn. 1991, 64, 123–127.

    Google Scholar 

  119. [119]

    Kyriacou, G. Z.; Anagnostopoulos, A. K. Influence CO2 partial pressure and the supporting electrolyte cation on the product distribution in CO2 electroreduction. J. Appl. Electrochem. 1993, 23, 483–486.

    Google Scholar 

  120. [120]

    Schizodimou, A.; Kyriacou, G. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim. Acta 2012, 78, 171–176.

    Google Scholar 

  121. [121]

    Kaneco, S.; Iiba, K.; Katsumata, H.; Suzuki, T.; Ohta, K. Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol. J. Solid State Electrochem. 2007, 11, 490–495.

    Google Scholar 

  122. [122]

    Pérez-Gallent, E.; Marcandalli, G.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 2017, 139, 16412–16419.

    Google Scholar 

  123. [123]

    Ikemiya, N.; Natsui, K.; Nakata, K.; Einaga, Y. Effect of alkali-metal cations on the electrochemical reduction of carbon dioxide to formic acid using boron-doped diamond electrodes. RSC Adv. 2017, 7, 22510–22514.

    Google Scholar 

  124. [124]

    Chen, L. D.; Urushihara, M.; Chan, K.; Norskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 2016, 6, 7133–7139.

    Google Scholar 

  125. [125]

    Zhao, C. X.; Bu, Y. F.; Gao, W.; Jiang, Q. CO2 reduction mechanism on the Pb(111) surface: Effect of solvent and cations. J. Phys. Chem. C 2017, 121, 19767–19773.

    Google Scholar 

  126. [126]

    Hammouche, M.; Lexa, D.; Momenteau, M.; Saveant, J. M. Chemical catalysis of electrochemical reactions. Homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron(“0”) porphyrins. Role of the addition of magnesium cations. J. Am. Chem. Soc. 1991, 113, 8455–8466.

    Google Scholar 

  127. [127]

    Shen, J.; Lan, D. H.; Yang, T. J. Influence of supporting electrolyte on the electrocatalysis of CO2 reduction by cobalt protoporphyrin. Int. J. Electrochem. Sci. 2018, 13, 9847–9857.

    Google Scholar 

  128. [128]

    Miyamoto, K.; Asahi, R. Cation impact on cobalt-porphyrin catalyzed electrochemical reduction of CO2 [Online]. 2018. https://arxiv.org/pdf/1806.10285.pdf (accessed Feb 18, 2019).

    Google Scholar 

  129. [129]

    Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J. M. Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J. Am. Chem. Soc. 2016, 138, 16639–16644.

    Google Scholar 

  130. [130]

    DeLuca, E. E.; Xu, Z.; Lam, J.; Wolf, M. O. Improved electrocatalytic CO2 reduction with palladium bis(NHC) pincer complexes bearing cationic side chains. Organometallics 2019, 38, 1330–1343.

    Google Scholar 

  131. [131]

    Zahran, Z. N.; Mohamed, E. A.; Naruta, Y. Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings. Sci. Rep. 2016, 6, 24533.

    Google Scholar 

  132. [132]

    Ochoa, G.; Geraldo, D.; Linares, C.; Nyokong, T.; Bedioui, F.; Zagal, J. H. Tuning the formal potential of metallomacrocyclics for maximum catalytic activity for the oxidation of thiols and hydrazine. ECS Trans. 2009, 19, 97–112.

    Google Scholar 

  133. [133]

    Bedioui, F.; Griveau, S.; Nyokong, T.; John Appleby, A.; Caro, C. A.; Gulppi, M.; Ochoa, G.; Zagal, J. H. Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols. Phys. Chem. Chem. Phys. 2007, 9, 3383–3396.

    Google Scholar 

  134. [134]

    Villagra, E.; Bedioui, F.; Nyokong, T.; Canales, J. C.; Sancy, M.; Páez, M. A.; Costamagna, J.; Zagal, J. H. Tuning the redox properties of Co-N4 macrocyclic complexes for the catalytic electrooxidation of glucose. Electrochim. Acta 2008, 53, 4883–4888.

    Google Scholar 

  135. [135]

    Geraldo, D.; Linares, C.; Chen, Y. Y.; Ureta-Zañartu, S.; Zagal, J. H. Volcano correlations between formal potential and Hammett parameters of substituted cobalt phthalocyanines and their activity for hydrazine electro-oxidation. Electrochem. Commun. 2002, 4, 182–187.

    Google Scholar 

  136. [136]

    Aguirre, M. J.; Isaacs, M.; Armijo, F.; Basáez, L.; Zagal, J. H. Effect of the substituents on the ligand of iron phthalocyanines adsorbed on graphite electrodes on their activity for the electrooxidation of 2-mercaptoethanol. Electroanalysis 2002, 14, 356–362.

    Google Scholar 

  137. [137]

    Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z. S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

    Google Scholar 

  138. [138]

    Hansch, C.; Leo, A.; Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195.

    Google Scholar 

  139. [139]

    Magdesieva, T. V.; Yamamoto, T.; Tryk, D. A.; Fujishima, A. Electrochemical reduction of CO2 with transition metal phthalocyanine and porphyrin complexes supported on activated carbon fibers. J. Electrochem. Soc. 2002, 149, D89–D95.

    Google Scholar 

  140. [140]

    Tornow, C. E.; Thorson, M. R.; Ma, S. C.; Gewirth, A. A.; Kenis, P. J. A. Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. J. Am. Chem. Soc. 2012, 134, 19520–19523.

    Google Scholar 

  141. [141]

    Petraki, F.; Peisert, H.; Biswas, I.; Aygül, U.; Latteyer, F.; Vollmer, A.; Chassé, T. Interaction between cobalt phthalocyanine and gold studied by X-ray absorption and resonant photoemission spectroscopy. J. Phys. Chem. Lett. 2010, 1, 3380–3384.

    Google Scholar 

  142. [142]

    Petraki, F.; Peisert, H.; Biswas, I.; Chassé, T. Electronic structure of Co-phthalocyanine on gold investigated by photoexcited electron spectroscopies: Indication of Co ion-metal interaction. J. Phys. Chem. C 2010, 114, 17638–17643.

    Google Scholar 

  143. [143]

    Petraki, F.; Peisert, H.; Aygül, U.; Latteyer, F.; Uihlein, J.; Vollmer, A.; Chassé, T. Electronic structure of FePc and interface properties on Ag(111) and Au(100). J. Phys. Chem. C 2012, 116, 11110–11116.

    Google Scholar 

  144. [144]

    Uihlein, J.; Peisert, H.; Glaser, M.; Polek, M.; Adler, H.; Petraki, F.; Ovsyannikov, R.; Bauer, M.; Chassé, T. Communication: Influence of graphene interlayers on the interaction between cobalt phthalocyanine and Ni(111). J. Chem. Phys. 2013, 138, 081101.

    Google Scholar 

  145. [145]

    Duncan, D. A.; Deimel, P. S.; Wiengarten, A.; Han, R. Y.; Acres, R. G.; Auwärter, W.; Feulner, P.; Papageorgiou, A. C.; Allegretti, F.; Barth, J. V. Immobilised molecular catalysts and the role of the supporting metal substrate. Chem. Commun. 2015, 51, 9483–9486.

    Google Scholar 

  146. [146]

    Walsh, J. J.; Smith, C. L.; Neri, G.; Whitehead, G. F. S.; Robertson, C. M.; Cowan, A. J. Improving the efficiency of electrochemical CO2 reduction using immobilized manganese complexes. Faraday Discuss. 2015, 183, 147–160.

    Google Scholar 

  147. [147]

    Birdja, Y. Y.; Vos, R. E.; Wezendonk, T. A.; Jiang, L.; Kapteijn, F.; Koper, M. T. M. Effects of substrate and polymer encapsulation on CO2 electroreduction by immobilized indium(III) protoporphyrin. ACS Catal. 2018, 8, 4420–4428.

    Google Scholar 

  148. [148]

    Zhao, H. Z.; Chang, Y. Y.; Liu, C. Electrodes modified with iron porphyrin and carbon nanotubes: application to CO2 reduction and mechanism of synergistic electrocatalysis. J. Solid State Electrochem. 2013, 17, 1657–1664.

    Google Scholar 

  149. [149]

    Aoi, S.; Mase, K.; Ohkubo, K.; Fukuzumi, S. Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water. Chem. Commun. 2015, 51, 10226–10228.

    Google Scholar 

  150. [150]

    Choi, J.; Wagner, P.; Jalili, R.; Kim, J.; MacFarlane, D. R.; Wallace, G. G.; Officer, D. L. A porphyrin/graphene framework: A highly efficient and robust electrocatalyst for carbon dioxide reduction. Adv. Energy Mater. 2018, 8, 1801280.

    Google Scholar 

  151. [151]

    Yamanaka, I.; Tabata, K.; Mino, W.; Furusawa, T. Electroreduction of carbon dioxide to carbon monoxide by Co-pthalocyanine electrocatalyst under ambient conditions. ISIJ Int. 2015, 55, 399–403.

    Google Scholar 

  152. [152]

    He, L.; Sun, X. F.; Zhang, H.; Shao, F. W. G-quadruplex nanowires to direct the efficiency and selectivity of electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 12453–12457.

    Google Scholar 

  153. [153]

    Chen, C. J.; Sun, X. F.; Yang, D. X.; Lu, L.; Wu, H. H.; Zheng, L. R.; An, P. F.; Zhang, J.; Han, B. X. Enhanced CO2 electroreduction via interaction of dangling S bonds and Co sites in cobalt phthalocyanine/ZnIn2S4 hybrids. Chem. Sci. 2019, 10, 1659–1663.

    Google Scholar 

  154. [154]

    Zhao, F.; Zhang, J.; Abe, T.; Wöhrle, D.; Kaneko, M. Electrocatalytic proton reduction by phthalocyanine cobalt derivatives incorporated in poly(4-vinylpyridine-co-styrene) film. J. Mol. Catal. A Chem. 1999, 145, 245–256.

    Google Scholar 

  155. [155]

    Kramer, W. W.; McCrory, C. C. L. Polymer coordination promotes selective CO2 reduction by cobalt phthalocyanine. Chem. Sci. 2016, 7, 2506–2515.

    Google Scholar 

  156. [156]

    Buttry, D. A.; Anson, F. C. New strategies for electrocatalysis at polymer-coated electrodes. Reduction of dioxygen by cobalt porphyrins immobilized in Nafion coatings on graphite electrodes. J. Am. Chem. Soc. 1984, 106, 59–64.

    Google Scholar 

  157. [157]

    Jarzębińska, A.; Rowiński, P.; Zawisza, I.; Bilewicz, R.; Siegfried, L.; Kaden, T. Modified electrode surfaces for catalytic reduction of carbon dioxide. Anal. Chim. Acta 1999, 396, 1–12.

    Google Scholar 

  158. [158]

    Ramirez, G.; Ferraudi, G.; Chen, Y. Y.; Trollund, E.; Villagra, D. Enhanced photoelectrochemical catalysis of CO2 reduction mediated by a supramolecular electrode of packed CoII(tetrabenzoporphyrin). Inorganica Chim. Acta 2009, 362, 5–10.

    Google Scholar 

  159. [159]

    Ramirez, G.; Lucero, M.; Riquelme, A.; Villagrán, M.; Costamagna, J.; Trollund, E.; Aguirre, M. J. A supramolecular cobalt-porphyrin-modified electrode, toward the electroreduction of CO2. J. Coord. Chem. 2004, 57, 249–255.

    Google Scholar 

  160. [160]

    Elgrishi, N.; Griveau, S.; Chambers, M. B.; Bedioui, F.; Fontecave, M. Versatile functionalization of carbon electrodes with a polypyridine ligand: Metallation and electrocatalytic H+ and CO2 reduction. Chem. Commun. 2015, 51, 2995–2998.

    Google Scholar 

  161. [161]

    Maurin, A.; Robert, M. Catalytic CO2-to-CO conversion in water by covalently functionalized carbon nanotubes with a molecular iron catalyst. Chem. Commun. 2016, 52, 12084–12087.

    Google Scholar 

  162. [162]

    Yao, S. A.; Ruther, R. E.; Zhang, L. H.; Franking, R. A.; Hamers, R. J.; Berry, J. F. Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using “smart” electrodes. J. Am. Chem. Soc. 2012, 134, 15632–15635.

    Google Scholar 

  163. [163]

    Thorogood, C. A.; Wildgoose, G. G.; Crossley, A.; Jacobs, R. M. J.; Jones, J. H.; Compton, R. G. Differentiating between ortho- and para-quinone surface groups on graphite, glassy carbon, and carbon nanotubes using organic and inorganic voltammetric and X-ray photoelectron spectroscopy labels. Chem. Mater. 2007, 19, 4964–4974.

    Google Scholar 

  164. [164]

    Wang, Y.; Marquard, S. L.; Wang, D. G.; Dares, C.; Meyer, T. J. Single-site, heterogeneous electrocatalytic reduction of CO2 in water as the solvent. ACS Energy Lett. 2017, 2, 1395–1399.

    Google Scholar 

  165. [165]

    Mohamed, E. A.; Zahran, Z. N.; Naruta, Y. Efficient heterogeneous CO2 to CO conversion with a phosphonic acid fabricated cofacial iron porphyrin dimer. Chem. Mater. 2017, 29, 7140–7150.

    Google Scholar 

  166. [166]

    Maurin, A.; Robert, M. Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water. J. Am. Chem. Soc. 2016, 138, 2492–2495.

    Google Scholar 

  167. [167]

    Kang, P.; Zhang, S.; Meyer, T. J.; Brookhart, M. Rapid selective electrocatalytic reduction of carbon dioxide to formate by an iridium pincer catalyst immobilized on carbon nanotube electrodes. Angew. Chem., Int. Ed. 2014, 53, 8709–8713.

    Google Scholar 

  168. [168]

    Blakemore, J. D.; Gupta, A.; Warren, J. J.; Brunschwig, B. S.; Gray, H. B. Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production. J. Am. Chem. Soc. 2013, 135, 18288–18291.

    Google Scholar 

  169. [169]

    Fukuzumi, S.; Lee, Y. M.; Nam, W. Immobilization of molecular catalysts for enhanced redox catalysis. ChemCatChem 2018, 10, 1686–1702.

    Google Scholar 

  170. [170]

    Bullock, R. M.; Das, A. K.; Appel, A. M. Surface immobilization of molecular electrocatalysts for energy conversion. Chem.—Eur. J. 2017, 23, 7626–7641.

    Google Scholar 

  171. [171]

    Louis, M. E.; Fenton, T. G.; Rondeau, J.; Jin, T.; Li, G. H. Solar CO2 reduction using surface-immobilized molecular catalysts. Comments Inorg. Chem. 2016, 36, 38–60.

    Google Scholar 

  172. [172]

    Cai, X.; Liu, H. Y.; Wei, X.; Yin, Z. L.; Chu, J.; Tang, M. L.; Zhuang, L.; Deng, H. X. Molecularly defined interface created by porous polymeric networks on gold surface for concerted and selective CO2 reduction. ACS Sustainable Chem. Eng. 2018, 6, 17277–17283.

    Google Scholar 

  173. [173]

    Cave, E. R.; Montoya, J. H.; Kuhl, K. P.; Abram, D. N.; Hatsukade, T.; Shi, C.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Electrochemical CO2 reduction on Au surfaces: Mechanistic aspects regarding the formation of major and minor products. Phys. Chem. Chem. Phys. 2017, 19, 15856–15863.

    Google Scholar 

  174. [174]

    Hori, Y.; Murata, A.; Kikuchi, K.; Suzuki, S. Electrochemical reduction of carbon dioxides to carbon monoxide at a gold electrode in aqueous potassium hydrogen carbonate. J. Chem. Soc. Chem. Commun. 1987, 728–729.

  175. [175]

    Cao, Z.; Zacate, S. B.; Sun, X. D.; Liu, J. J.; Hale, E. M.; Carson, W. P.; Tyndall, S. B.; Xu, J.; Liu, X. W.; Liu, X. C. et al. Tuning gold nanoparticles with chelating ligands for highly efficient electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 12675–12679.

    Google Scholar 

  176. [176]

    Gong, M.; Cao, Z.; Liu, W.; Nichols, E. M.; Smith, P. T.; Derrick, J. S.; Liu, Y. S.; Liu, J. J.; Wen, X. D.; Chang, C. J. Supramolecular porphyrin cages assembled at molecular-materials interfaces for electrocatalytic CO reduction. ACS Cent. Sci. 2017, 3, 1032–1040.

    Google Scholar 

  177. [177]

    Tatin, A.; Comminges, C.; Kokoh, B.; Costentin, C.; Robert, M.; Savéant, J. M. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials. Proc. Natl. Acad. Sci. USA 2016, 113, 5526–5529.

    Google Scholar 

  178. [178]

    Marianov, A. N.; Jiang, Y. J. Covalent ligation of Co molecular catalyst to carbon cloth for efficient electroreduction of CO2 in water. Appl. Catal. B Environ. 2019, 244, 881–888.

    Google Scholar 

  179. [179]

    Kapusta, S.; Hackerman, N. The electroreduction of carbon dioxide and formic acid on tin and indium electrodes. J. Electrochem. Soc. 1983, 130, 607–613.

    Google Scholar 

  180. [180]

    Dominguez-Ramos, A.; Singh, B.; Zhang, X.; Hertwich, E. G.; Irabien, A. Global warming footprint of the electrochemical reduction of carbon dioxide to formate. J. Clean. Prod. 2015, 104, 148–155.

    Google Scholar 

  181. [181]

    Jiang, J. B.; Matula, A. J.; Swierk, J. R.; Romano, N.; Wu, Y. S.; Batista, V. S.; Crabtree, R. H.; Lindsey, J. S.; Wang, H. L.; Brudvig, G. W. Unusual stability of a bacteriochlorin electrocatalyst under reductive conditions. A case study on CO2 conversion to CO. ACS Catal. 2018, 8, 10131–10136.

    Google Scholar 

  182. [182]

    Bruhn, T.; Brückner, C. Origin of the regioselective reduction of chlorins. J. Org. Chem. 2015, 80, 4861–4868.

    Google Scholar 

  183. [183]

    Jiang, J. B.; Materna, K. L.; Hedström, S.; Yang, K. R.; Crabtree, R. H.; Batista, V. S.; Brudvig, G. W. Antimony complexes for electrocatalysis: Activity of a main-group element in proton reduction. Angew. Chem., Int. Ed. 2017, 56, 9111–9115.

    Google Scholar 

  184. [184]

    Verma, S.; Kim, B.; Jhong, H. R. M.; Ma, S. C.; Kenis, P. J. A. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 2016, 9, 1972–1979.

    Google Scholar 

  185. [185]

    Mahmood, A.; Guo, W. H.; Tabassum, H.; Zou, R. Q. Metal-organic framework-based nanomaterials for electrocatalysis. Adv. Energy Mater. 2016, 6, 1600423.

    Google Scholar 

  186. [186]

    Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 2015, 5, 6302–6309.

    Google Scholar 

  187. [187]

    Wu, J. X.; Hou, S. Z.; Zhang, X. D.; Xu, M.; Yang, H. F.; Cao, P. S.; Gu, Z. Y. Cathodized copper porphyrin metal-organic framework nanosheets for selective formate and acetate production from CO2 electroreduction. Chem. Sci. 2019, 10, 2199–2205.

    Google Scholar 

  188. [188]

    Senthil Kumar, R.; Senthil Kumar, S.; Anbu Kulandainathan, M. Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochem. Commun. 2012, 25, 70–73.

    Google Scholar 

  189. [189]

    Tu, W. G.; Xu, Y.; Yin, S. M.; Xu, R. Rational design of catalytic centers in crystalline frameworks. Adv. Mater. 2018, 30, 1707582.

    Google Scholar 

  190. [190]

    Ahrenholtz, S. R.; Epley, C. C.; Morris, A. J. Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. J. Am. Chem. Soc. 2014, 136, 2464–2472.

    Google Scholar 

  191. [191]

    Hod, I.; Bury, W.; Gardner, D. M.; Deria, P.; Roznyatovskiy, V.; Wasielewski, M. R.; Farha, O. K.; Hupp, J. T. Bias-switchable permselectivity and redox catalytic activity of a ferrocene-functionalized, thin-film metal-organic framework compound. J. Phys. Chem. Lett. 2015, 6, 586–591.

    Google Scholar 

  192. [192]

    Huang, N.; Wang, P.; Jiang, D. L. Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1, 16068.

    Google Scholar 

  193. [193]

    Feng, X.; Ding, X. S.; Jiang, D. L. Covalent organic frameworks. Chem. Soc. Rev. 2012, 41, 6010–6022.

    Google Scholar 

  194. [194]

    Diercks, C. S.; Lin, S.; Kornienko, N.; Kapustin, E. A.; Nichols, E. M.; Zhu, C. H.; Zhao, Y. B.; Chang, C. J.; Yaghi, O. M. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 1116–1122.

    Google Scholar 

  195. [195]

    Johnson, E. M.; Haiges, R.; Marinescu, S. C. Covalent-organic frameworks composed of rhenium bipyridine and metal porphyrins: Designing heterobimetallic frameworks with two distinct metal sites. ACS Appl. Mater. Interfaces 2018, 10, 37919–37927.

    Google Scholar 

  196. [196]

    Zagal, J. H. Metallophthalocyanines as catalysts in electrochemical reactions. Coord. Chem. Rev. 1992, 119, 89–136.

    Google Scholar 

  197. [197]

    Popov, D. A.; Luna, J. M.; Orchanian, N. M.; Haiges, R.; Downes, C. A.; Marinescu, S. C. A 2,2′-bipyridine-containing covalent organic framework bearing rhenium(I) tricarbonyl moieties for CO2 reduction. Dalton Trans. 2018, 47, 17450–17460.

    Google Scholar 

  198. [198]

    Liu, H. Y.; Chu, J.; Yin, Z. L.; Cai, X.; Zhuang, L.; Deng, H. X. Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem 2018, 4, 1696–1709.

    Google Scholar 

  199. [199]

    Chen, X.; Addicoat, M.; Irle, S.; Nagai, A.; Jiang, D. L. Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J. Am. Chem. Soc. 2013, 135, 546–549.

    Google Scholar 

  200. [200]

    Peng, P.; Zhou, Z. H.; Guo, J. N.; Xiang, Z. H. Well-defined 2D covalent organic polymers for energy electrocatalysis. ACS Energy Lett. 2017, 2, 1308–1314.

    Google Scholar 

  201. [201]

    Li, H. W.; Guarr, T. F. Formation of electronically conductive thin films of metal phthalocyanines via electropolymerization. J. Chem. Soc. Chem. Commun. 1989, 832–834.

  202. [202]

    Bettelheim, A.; White, B. A.; Murray, R. W. Electrocatalysis of dioxygen reduction in aqueous acid and base by multimolecular layer films of electropolymerized cobalt tetra(o-aminophenyl)porphyrin. J. Electroanal. Chem. 1987, 217, 271–286.

    Google Scholar 

  203. [203]

    Magdesieva, T. V.; Zhukov, I. V.; Kravchuk, D. N.; Semenikhin, O. A.; Tomilova, L. G.; Butin, K. P. Electrocatalytic CO2 reduction in methanol catalyzed by mono-, di-, and electropolymerized phthalocyanine complexes. Russ. Chem. Bull. 2002, 51, 805–812.

    Google Scholar 

  204. [204]

    Quezada, D.; Honores, J.; Aguirre M. J.; Isaacs, M. Electrocatalytic reduction of carbon dioxide on conducting glass electrode modified with polymeric porphyrin films containing transition metals in ionic liquid medium. J. Coord. Chem. 2014, 67, 4090–4100.

    Google Scholar 

  205. [205]

    Isaacs, M.; Armijo, F.; Ramírez, G.; Trollund, E.; Biaggio, S. R.; Costamagna, J.; Aguirre, M. J. Electrochemical reduction of CO2 mediated by poly-M-aminophthalocyanines (M = Co, Ni, Fe): Poly-Cotetraaminophthalocyanine, a selective catalyst. J. Mol. Catal. A Chem. 2005, 229, 249–257.

    Google Scholar 

  206. [206]

    Boeva, Z. A.; Sergeyev, V. G. Polyaniline: Synthesis, properties, and application. Polym. Sci. Ser. C 2014, 56, 144–153.

    Google Scholar 

  207. [207]

    Wu, H. H.; Zeng, M.; Zhu, X.; Tian, C. C.; Mei, B. B.; Song, Y.; Du, X. L.; Jiang, Z.; He, L.; Xia, C. G. et al. Defect engineering in polymeric cobalt phthalocyanine networks for enhanced electrochemical CO2 reduction. ChemElectroChem 2018, 5, 2717–2721.

    Google Scholar 

  208. [208]

    Smith, P. T.; Benke, B. P.; Cao, Z.; Kim, Y.; Nichols, E. M.; Kim, K.; Chang, C. J. Iron porphyrins embedded into a supramolecular porous organic cage for electrochemical CO2 reduction in water. Angew. Chem., Int. Ed. 2018, 57, 9684–9688.

    Google Scholar 

  209. [209]

    Choi, J.; Kim, J.; Wagner, P.; Gambhir, S.; Jalili, R.; Byun, S.; Sayyar, S.; Lee, Y. M.; MacFarlane, D. R.; Wallace, G. G. et al. Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel. Energy Environ. Sci. 2019, 12, 747–755.

    Google Scholar 

  210. [210]

    Portenkirchner, E.; Gasiorowski, J.; Oppelt, K.; Schlager, S.; Schwarzinger, C.; Neugebauer, H.; Knör, G.; Sariciftci, N. S. Electrocatalytic reduction of carbon dioxide to carbon monoxide by a polymerized film of an alkynyl-substituted rhenium(I) complex. ChemCatChem 2013, 5, 1790–1796.

    Google Scholar 

  211. [211]

    Collomb-Dunand-Sauthier, M. N.; Deronzier, A.; Ziessel, R. Electrocatalytic reduction of carbon dioxide with mono(bipyridine)carbonylruthenium complexes in solution or as polymeric thin films. Inorg. Chem. 1994, 33, 2961–2967.

    Google Scholar 

  212. [212]

    O’Toole, T. R.; Margerum, L. D.; Westmoreland, T. D.; Vining, W. J.; Murray, R. W.; Meyer, T. J. Electrocatalytic reduction of CO2 at a chemically modified electrode. J. Chem. Soc. Chem. Commun. 1985, 1416–1417.

  213. [213]

    Cabrera, C. R.; Abruña, H. D. Electrocatalysis of CO2 reduction at surface modified metallic and semiconducting electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1986, 209, 101–107.

    Google Scholar 

  214. [214]

    Mackintosh, H. J.; Budd, P. M.; McKeown, N. B. Catalysis by microporous phthalocyanine and porphyrin network polymers. J. Mater. Chem. 2008, 78, 573–578.

    Google Scholar 

  215. [215]

    McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 737, 4347–4357.

    Google Scholar 

  216. [216]

    Artero, V.; Saveant, J. M. Toward the rational benchmarking of homogeneous H2-evolving catalysts. Energy Environ. Sci. 2014, 7, 3808–3814.

    Google Scholar 

  217. [217]

    Costentin, C.; Drouet, S.; Robert, M.; Savéant, J. M. Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis. J. Am. Chem. Soc. 2012, 134, 11235–11242.

    Google Scholar 

  218. [218]

    Gupta, N.; Gattrell, M.; MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 2006, 36, 161–172.

    Google Scholar 

  219. [219]

    Weng, L. C.; Bell, A. T.; Weber, A. Z. Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 2018, 20, 16973–16984.

    Google Scholar 

  220. [220]

    Burdyny, T.; Graham, P. J.; Pang, Y. J.; Dinh, C. T.; Liu, M.; Sargent, E. H.; Sinton, D. Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry. ACS Sustainable Chem. Eng. 2017, 5, 4031–4040.

    Google Scholar 

  221. [221]

    Pidko, E. A. Toward the balance between the reductionist and systems approaches in computational catalysis: Model versus method accuracy for the description of catalytic systems. ACS Catal. 2017, 7, 4230–4234.

    Google Scholar 

  222. [222]

    Singh, M. R.; Goodpaster, J. D.; Weber, A. Z.; Head-Gordon, M.; Bell, A. T. Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models. Proc. Natl. Acad. Sci. USA 2017, 114, E8812–E8821.

    Google Scholar 

  223. [223]

    Shi, C.; Chan, K.; Yoo, J. S.; Norskov, J. K. Barriers of electrochemical CO2 reduction on transition metals. Org. Process Res. Dev. 2016, 20, 1424–1430.

    Google Scholar 

  224. [224]

    Kastlunger, G.; Lindgren, P.; Peterson, A. A. Controlled-potential simulation of elementary electrochemical reactions: Proton discharge on metal surfaces. J. Phys. Chem. C 2018, 122, 12771–12781.

    Google Scholar 

  225. [225]

    Lu, X.; Wu, Y. S.; Yuan, X. L.; Huang, L.; Wu, Z. S.; Xuan, J.; Wang, Y. F.; Wang, H. L. High-performance electrochemical CO2 reduction cells based on non-noble metal catalysts. ACS Energy Lett. 2018, 3, 2527–2532.

    Google Scholar 

  226. [226]

    Haas, T.; Krause, R.; Weber, R.; Demler, M.; Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 2018, 7, 32–39.

    Google Scholar 

  227. [227]

    Verma, S.; Lu, X.; Ma, S. C.; Masel, R. I.; Kenis, P. J. A. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 2016, 18, 7075–7084.

    Google Scholar 

  228. [228]

    Dinh, C. T.; Garcia de Arquer, F. P.; Sinton, D.; Sargent, E. H. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 2018, 3, 2835–2840.

    Google Scholar 

  229. [229]

    Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825–832.

    Google Scholar 

  230. [230]

    House, K. Z.; Baclig, A. C.; Ranjan, M.; van Nierop, E. A.; Wilcox, J.; Herzog, H. J. Economic and energetic analysis of capturing CO2 from ambient air. Proc. Natl. Acad. Sci. USA 2011, 108, 20428–20433.

    Google Scholar 

  231. [231]

    Keith, D. W.; Holmes, G.; St. Angelo, D.; Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2018, 2, 1573–1594.

    Google Scholar 

  232. [232]

    Wakerley, D. W.; Reisner, E. Oxygen-tolerant proton reduction catalysis: Much O2 about nothing? Energy Environ. Sci. 2015, 8, 2283–2295.

    Google Scholar 

  233. [233]

    Williams, K.; Corbin, N.; Zeng, J.; Lazouski, N.; Yang, D. T.; Manthiram, K. Protecting effect of mass transport during electrochemical reduction of oxygenated carbon dioxide feedstocks. Sustainable Energy Fuels, in press, DOI: https://doi.org/10.1039/C9SE00024K.

  234. [234]

    Kumagai, H.; Nishikawa, T.; Koizumi, H.; Yatsu, T.; Sahara, G.; Yamazaki, Y.; Tamaki, Y.; Ishitani, O. Electrocatalytic reduction of low concentration CO2. Chem. Sci. 2019, 10, 1597–1606.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from Cenovus Energy. N. C. was supported by a NSF Graduate Research Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karthish Manthiram.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Corbin, N., Zeng, J., Williams, K. et al. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 12, 2093–2125 (2019). https://doi.org/10.1007/s12274-019-2403-y

Download citation

Keywords

  • CO2 reduction
  • electrocatalysis
  • porphyrins
  • phthalocyanines
  • molecular complexes
  • heterogeneous catalysis