Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains

  • Zhuohao Zhang
  • Zhuoyue Chen
  • Lingyu Sun
  • Xiaoxuan Zhang
  • Yuanjin ZhaoEmail author
Research Article


Structural color materials with the property of angle-independence have attracted increasing interest in recent years because of their applications in various research fields. In this paper, inspired by the anisotropic lattice microstructure of the Parides sesostris butterfly, we present a novel angle-independent structural material by simply doping spinous pollen particles into the colloidal crystal arrays to interfere their self-assembling process. The resultant composited materials have anisotropic close-packed colloidal crystal domains around the spikes of the pollens. These differently oriented domains could reflect the light to a wide range of viewing angles, and thus imparted the composite materials with the same wide angle of structural colors. Attractively, the materials were endowed with light-controlled reversible structural color changing behavior by incorporating photothermal responsive graphene-tagged hydrogels. These features of the bioinspired angle-independent structural color materials showed their potential values in constructing intelligent sensors, anti-counterfeiting barcode labels, and so on.


structural color colloidal crystal graphene angle-independent pollen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the National Natural Science Foundation of China (Nos. 21105011 and 91227124), the Natural Science Foundation of Jiangsu (No. BK2012735), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1222). Y. J. Z. thanks the Program for New Century Excellent Talents in University and the Scientific Research Foundation of Southeast University.

Supplementary material

12274_2019_2395_MOESM1_ESM.pdf (3.2 mb)
Electronic Supplementary Material


  1. [1]
    Vukusic, P.; Sambles, J. R. Photonic structures in biology. Nature 2003, 424, 852–855.CrossRefGoogle Scholar
  2. [2]
    Kuang, M. X.; Wang, J. X.; Jiang, L. Bio-inspired photonic crystals with superwettability. Chem. Soc. Rev. 2016, 45, 6833–6854.CrossRefGoogle Scholar
  3. [3]
    Teyssier, J.; Saenko, S. V.; van Der Marel, D.; Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368.CrossRefGoogle Scholar
  4. [4]
    Kolle, M.; Salgard-Cunha, P. M.; Scherer, M. R. J.; Huang, F. M.; Vukusic, P.; Mahajan, S.; Baumberg, J. J.; Steiner, U. Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nat. Nanotechnol. 2010, 5, 511–515.CrossRefGoogle Scholar
  5. [5]
    Zhao, Y. J.; Xie, Z. Y.; Gu, H. C.; Zhu, C.; Gu, Z. Z. Bio-inspired variable structural color materials. Chem. Soc. Rev. 2012, 41, 3297–3317.CrossRefGoogle Scholar
  6. [6]
    Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Structural color materials in evolution. Mater. Today 2016, 19, 420–421.CrossRefGoogle Scholar
  7. [7]
    Wang, M. S.; Yin, Y. D. Magnetically responsive nanostructures with tunable optical properties. J. Am. Chem. Soc. 2016, 138, 6315–6323.CrossRefGoogle Scholar
  8. [8]
    Kim, J.; Song, Y.; He, L.; Kim, H.; Lee, H.; Park, W.; Yin, Y. D.; Kwon, S. Real-time optofluidic synthesis of magnetochromatic microspheres for reversible structural color patterning. Small 2011, 7, 1163–1168.CrossRefGoogle Scholar
  9. [9]
    Hou, J.; Zhang, H. C.; Yang, Q.; Li, M. Z.; Song, Y. L.; Jiang, L. Bioinspired photonic-crystal microchip for fluorescent ultratrace detection. Angew. Chem., Int. Ed. 2014, 53, 5791–5795.CrossRefGoogle Scholar
  10. [10]
    Ai, B.; Möhwald, H.; Wang, D. Y.; Zhang, G. Advanced colloidal lithography beyond surface patterning. Adv. Mater. Interfaces 2017, 4, 1600271.CrossRefGoogle Scholar
  11. [11]
    Von Freymann, G.; Kitaev, V.; Lotsch, B. V.; Ozin, G. A. Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 2013, 42, 2528–2554.CrossRefGoogle Scholar
  12. [12]
    Gallego-Gómez, F.; Blanco, A.; López, C. Exploration and exploitation of water in colloidal crystals. Adv. Mater. 2015, 27, 2686–2714.CrossRefGoogle Scholar
  13. [13]
    Wang, J. X.; Zhang, Y. Z.; Wang, S. T.; Song, Y. L.; Jiang, L. Bioinspired colloidal photonic crystals with controllable wettability. Acc. Chem. Res. 2011, 44, 405–415.CrossRefGoogle Scholar
  14. [14]
    Huang, Y. Zhou, J. M.; Su, B.; Shi, L.; Wang, J. X.; Chen, S. R.; Wang, L. B.; Zi, J.; Song, Y. L.; Jiang, L. Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates. J. Am. Chem. Soc. 2012, 134, 17053–17058.CrossRefGoogle Scholar
  15. [15]
    Fu, F. F.; Shang, L. R.; Chen, Z. Y.; Yu, Y. R.; Zhao, Y. J. Bioinspired living structural color hydrogels. Sci. Rob. 2018, 3, eaar8580.CrossRefGoogle Scholar
  16. [16]
    Mao, Z. W.; Xu, H. L.; Wang, D. Y. Molecular mimetic self-assembly of colloidal particles. Adv. Funct. Mater. 2010, 20, 1053–1074.CrossRefGoogle Scholar
  17. [17]
    Chen, Z. Y.; Mo, M.; Fu, F. F.; Shang, L. R.; Wang, H.; Liu, C. H.; Zhao, Y. J. Antibacterial structural color hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 38901–38907.CrossRefGoogle Scholar
  18. [18]
    Kim, S. Y.; Park, H. S.; Choi, J. H.; Shim, J. W.; Yang, S. M. Integration of colloidal photonic crystals toward miniaturized spectrometers. Adv. Mater. 2010, 22, 946–950.CrossRefGoogle Scholar
  19. [19]
    Fu, F. F.; Chen, Z. Y.; Zhao, Z.; Wang, H.; Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Bio-inspired self-healing structural color hydrogel. Proc. Natl. Acad. Sci. USA 2017, 114, 5900–5905.CrossRefGoogle Scholar
  20. [20]
    Wang, H.; Zhao, Z.; Liu, Y. X.; Shao, C. M.; Bian, F. K.; Zhao, Y. J. Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci. Adv. 2018, 4, eaat2816.CrossRefGoogle Scholar
  21. [21]
    Wang, Y. Q.; Low, Z, X.; Kim, S.; Zhang, H. C.; Chen, X. F.; Hou, J.; Seong, J. G.; Lee, Y. M.; Simon, G. P.; Davies, C. H. J. et al. Functionalized boron nitride nanosheets: A thermally rearranged polymer nanocomposite membrane for hydrogen separation. Angew. Chem., Int. Ed. 2018, 57, 16056–16061.CrossRefGoogle Scholar
  22. [22]
    Lee, H. S.; Kim, J. H.; Lee, J. S.; Sim, J. Y.; Seo, J. Y.; Oh, Y. K.; Yang, S. M.; Kim, S. H. Magnetoresponsive discoidal photonic crystals toward active color pigments. Adv. Mater. 2014, 26, 5801–5807.CrossRefGoogle Scholar
  23. [23]
    Kang, H.; Lee, J. S.; Chang, W. S.; Kim, S. H. Liquid-impermeable inverse opals with invariant photonic bandgap. Adv. Mater. 2015, 27, 1282–1287.CrossRefGoogle Scholar
  24. [24]
    Ge, J. P. Yin, Y. D. Responsive photonic crystals. Angew. Chem., Int. Ed. 2011, 50, 1492–1522.CrossRefGoogle Scholar
  25. [25]
    Smoukov, S. K.; Gangwal, S.; Marquez, M.; Velev, O. D. Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Mater. 2009, 5, 1285–1292.CrossRefGoogle Scholar
  26. [26]
    Ohtsuka Y.; Seki T.; Takeoka Y. Thermally tunable hydrogels displaying angle-independent structural colors. Angew. Chem., Int. Ed. 2015, 54, 15368–15373.Google Scholar
  27. [27]
    Qin, D.; Xia, Y. N.; Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502.CrossRefGoogle Scholar
  28. [28]
    Reina, A.; Son, H.; Jiao, L. Y.; Fan, B.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Transferring and identification of single- and few-layer graphene on arbitrary substrates. J. Phys. Chem. C 2008, 112, 17741–17744.CrossRefGoogle Scholar
  29. [29]
    Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science 2008, 321, 939–943.CrossRefGoogle Scholar
  30. [30]
    Kim, S.; Mitropoulos, A. N.; Spitzberg, J. D.; Hu, T.; Kaplan, D. L.; Omenetto, F. G. Silk inverse opals. Nat. Photonics 2012, 6, 818–823.CrossRefGoogle Scholar
  31. [31]
    Zhang, W. X.; Cui, J. C.; Tao, C. A.; Wu, Y. G.; Li, Z. P.; Ma, L.; Wen, Y. Q.; Li, G. T. A Strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. Angew. Chem., Int. Ed. 2009, 121, 5978–5982.CrossRefGoogle Scholar
  32. [32]
    Hou, J.; Li, M. Z.; Song, Y. L. Recent advances in colloidal photonic crystal sensors: Materials, structures and analysis methods. Nano Today 2018, 22, 132–144.CrossRefGoogle Scholar
  33. [33]
    Wang, J.; Chen, G. P.; Zhao, Z.; Sun, L. Y.; Zou, M. H.; Ren, J, A.; Zhao, Y. J. Responsive graphene oxide hydrogel microcarriers for controllable cell capture and release. Sci. China Mater. 2018, 61, 1314–1324.CrossRefGoogle Scholar
  34. [34]
    Lee, Y. J.; Braun, P. V. Tunable inverse opal hydrogel pH sensors. Adv. Mater. 2003, 15, 563–566.CrossRefGoogle Scholar
  35. [35]
    Wang, J.; Sun, L. Y.; Zou, M. H.; Gao, W.; Liu, C. H.; Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Bioinspired shape-memory graphene film with tunable wettability. Sci. Adv. 2017, 3, e1700004.CrossRefGoogle Scholar
  36. [36]
    Phillips, K. R.; England, G. T.; Sunny, S.; Shirman, E.; Shirman, T.; Vogel, N.; Aizenberg, J. A colloidoscope of colloid-based porous materials and their uses. Chem. Soc. Rev. 2016, 45, 281–322.CrossRefGoogle Scholar
  37. [37]
    Wang, J.; Gao, W.; Zhang, H.; Zou, M. H.; Chen, Y. P.; Zhao, Y. J. Programmable wettability on photocontrolled graphene film. Sci. Adv. 2018, 4, eaat7392.CrossRefGoogle Scholar
  38. [38]
    Liu, C. H.; Ding, H. B.; Wu, Z. Q.; Gao, B. B.; Fu, F. F.; Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Tunable structural color surfaces with visually self-reporting wettability. Adv. Funct. Mater. 2016, 26, 7937–7942.CrossRefGoogle Scholar
  39. [39]
    Ge, D. T.; Lee, E.; Yang, L. L.; Cho, Y.; Li, M.; Gianola, D. S.; Yang, S. A robust smart window: Reversibly switching from high transparency to angleindependent structural color display. Adv. Mater. 2015, 27, 2489–2495.CrossRefGoogle Scholar
  40. [40]
    Yue, Y. F.; Kurokawa, T.; Haque, M. A.; Nakajima, T.; Nonoyama, T.; Li, X. F.; Kajiwara, I.; Gong, J. P. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nat. Commun. 2014, 5, 4956.CrossRefGoogle Scholar
  41. [41]
    Gu, H. C.; Ye, B. F.; Ding, H. B.; Liu, C. H.; Zhao, Y. J.; Gu, Z. Z. Noniridescent structural color pigments from liquid marbles. J. Mater. Chem. C 2015, 3, 6607–6612.CrossRefGoogle Scholar
  42. [42]
    Ge, D. T; Yang, L. L.; Wu, G. X.; Yang, S. Spray coating of superhydrophobic and angle-independent coloured films. Chem. Commun. 2014, 50, 2469–2472.CrossRefGoogle Scholar
  43. [43]
    Ye, B. F.; Rong, F.; Gu, H. C.; Xie, Z. Y.; Cheng, Y.; Zhao, Y. J.; Gu, Z. Z. Bioinspired angle-independent photonic crystal colorimetric sensing. Chem. Commun. 2013, 49, 5331–5333.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhuohao Zhang
    • 1
  • Zhuoyue Chen
    • 1
  • Lingyu Sun
    • 1
  • Xiaoxuan Zhang
    • 1
  • Yuanjin Zhao
    • 1
    Email author
  1. 1.State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringNanjingChina

Personalised recommendations