Nano Research

, Volume 12, Issue 9, pp 2288–2295 | Cite as

Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure

  • Michaela Burke Stevens
  • Lisa J. Enman
  • Ester Hamal Korkus
  • Jeremie Zaffran
  • Christina D. M. Trang
  • James Asbury
  • Matthew G. Kast
  • Maytal Caspary TorokerEmail author
  • Shannon W. BoettcherEmail author
Research Article


Nickel-, cobalt-, and iron-based (oxy)hydroxides comprise the most-commonly studied electrocatalysts for the oxygen-evolution reaction (OER) in alkaline solution. A fundamental understanding of composition-structure-activity relationships for mixed-metal Ni-Co and Ni-Co-Fe (oxy)hydroxides is important to guide the design of advanced OER catalysts. Here we use cyclic voltammetry, chronopotentiometry, inductively-coupled plasma-optical emission spectroscopy, and in situ electrical conductivity measurements to characterize the properties and activity of various compositions of Ni-Co-Fe (oxy)hydroxides prepared by cathodic co-electrodeposition. Consistent with previous studies, we find Fe is essential for the mixed-metal (oxy)hydroxides to achieve high OER activity. In the rigorous absence of Fe (achieved by using specially cleaned electrolytes), the most-active Ni-Co (oxy)hydroxide composition has an OER turn-over frequency only twice that of pure Co (oxy)hydroxide, suggesting minimal synergism between the two metals. The addition of Co to Ni-Fe (oxy)hydroxides shifts the onset of electrical conductivity to lower potentials, but has little effect on the intrinsic OER activity, with the most-active Ni-Co-Fe (oxy)hydroxide having an OER turn-over frequency only ~ 1.5 times that of the Ni-Fe (oxy)hydroxides. The magnitudes of the electrical conductivities are similar for all the compositions measured. Density-functional-theory-calculated projected density of states show a significant contribution of all chemical elements at the valence band edge of the mixed-metal oxyhydroxide electronic structure, demonstrating significant electronic hybridization between the elements. The calculations suggest the involvement of all the elements in modulating the electronic structure at putative Fe-based active sites that are probably located at edges or defects in the two-dimensional oxyhydroxide sheets.


electrocatalysis heterogeneous catalysis water electrolysis oxygen evolution density functional theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was primarily supported by the National Science Foundation Chemical Catalysis program under Grant CHE-1566348. The computational work was supported by the Nancy and Stephen Grand Technion Energy Program (GTEP) and a grant from the Ministry of Science and Technology (MOST), Israel. The project made use of CAMCOR facilities supported by grants from the W. M. Keck Foundation, the M. J. Murdock Charitable Trust, ONAMI, the Air Force Research Laboratory (No. FA8650-05-1-5041), the National Science Foundation (Nos. 0923577 and 0421086), and the University of Oregon. ICP-OES was performed at the W. M. Keck Collaboratory for Plasma Spectrometry at Oregon State University and we acknowledge Andy Ungerer for help with data acquisition and interpretation. S. W. B. further acknowledges support from the Sloan and Dreyfus Foundations. The students of the UO 2015 CH399 “Research Immersion” course are acknowledged for preliminary data collection. The authors thank Adam Batchellor for insightful discussion.

Supplementary material

12274_2019_2391_MOESM1_ESM.pdf (4.6 mb)
Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure


  1. [1]
    Ursua, A.; Gandia, L. M.; Sanchis, P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 2012, 100, 410–426.CrossRefGoogle Scholar
  2. [2]
    Armaroli, N.; Balzani, V. Solar electricity and solar fuels: Status and perspectives in the context of the energy transition. Chem.—Eur. J. 2016, 22, 32–57.CrossRefGoogle Scholar
  3. [3]
    Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.CrossRefGoogle Scholar
  4. [4]
    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.CrossRefGoogle Scholar
  5. [5]
    Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.CrossRefGoogle Scholar
  6. [6]
    Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solutioncast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.CrossRefGoogle Scholar
  7. [7]
    Burke, M. S.; Zou, S. H.; Enman, L. J.; Kellon, J. E.; Gabor, C. A.; Pledger, E.; Boettcher, S. W. Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media. J. Phys. Chem. Lett. 2015, 6, 3737–3742.CrossRefGoogle Scholar
  8. [8]
    Lu, X. F.; Gu, L. F.; Wang, J. W.; Wu, J. X.; Liao, P. Q.; Li, G. R. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 2017, 29, 1604437.CrossRefGoogle Scholar
  9. [9]
    Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem. 2016, 128, 3758–3762.CrossRefGoogle Scholar
  10. [10]
    Bi, Y. M.; Cai, Z.; Zhou, D. J.; Tian, Y.; Zhang, Q.; Zhang, Q.; Kuang, Y.; Li, Y. P.; Sun, X. M.; Duan, X. Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction. J. Catal. 2018, 358, 100–107.CrossRefGoogle Scholar
  11. [11]
    Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 1987, 134, 377–384.CrossRefGoogle Scholar
  12. [12]
    Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.CrossRefGoogle Scholar
  13. [13]
    Edison, T. A. Electrolyte for alkaline storage batteries. U.S. Patent 876,445, January 14, 1908.Google Scholar
  14. [14]
    Klaus, S.; Cai, Y.; Louie, M. W.; Trotochaud, L.; Bell, A. T. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity. J. Phys. Chem. C 2015, 119, 7243–7254.CrossRefGoogle Scholar
  15. [15]
    Tseung, A. C. C.; Jasem, S. Oxygen evolution on semiconducting oxides. Electrochim. Acta 1977, 22, 31–34.CrossRefGoogle Scholar
  16. [16]
    Jasem, S. M.; Tseung, A. C. C. A potentiostatic pulse study of oxygen evolution on Teflon-bonded nickel-cobalt oxide electrodes. J. Electrochem. Soc. 1979, 126, 1353–1360.CrossRefGoogle Scholar
  17. [17]
    Kreysa, G; Håkansson, B. Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution. J. Electroanal. Chem. Interfacial Electrochem. 1986, 201, 61–83.CrossRefGoogle Scholar
  18. [18]
    Wang, L.; Lin, C.; Huang, D. K.; Zhang, F. X.; Wang, M. K.; Jin, J. A comparative study of composition and morphology effect of NixCo1-x(OH)2on oxygen evolution/reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 10172–10180.CrossRefGoogle Scholar
  19. [19]
    Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y. et al. Efficient electrocatalytic water oxidation by using amorphous Ni-Co double hydroxides nanocages. Adv. Energy Mater. 2015, 5, 1401880.CrossRefGoogle Scholar
  20. [20]
    Yang, Y.; Fei, H. L.; Ruan, G. D.; Xiang, C. S.; Tour, J. M. Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers. ACS Nano 2014, 8, 9518–9523.CrossRefGoogle Scholar
  21. [21]
    Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P. Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 2013, 135, 11580–11586.CrossRefGoogle Scholar
  22. [22]
    Singh, R. N.; Pandey, J. P.; Singh, N. K.; Lal, B.; Chartier, P.; Koenig, J. F. Sol-gel derived spinel MxCo3-xO4 (M = Ni, Cu; 0 = x = 1) films and oxygen evolution. Electrochim. Acta 2000, 45, 1911–1919.CrossRefGoogle Scholar
  23. [23]
    Yan, X. D.; Li, K. X.; Lyu, L.; Song, F.; He, J.; Niu, D. M.; Liu, L.; Hu, X. L.; Chen, X. B. From water oxidation to reduction: Transformation from NixCo3-xO4 nanowires to NiCo/NiCoOx heterostructures. ACS Appl. Mater. Interfaces 2016, 8, 3208–3214.CrossRefGoogle Scholar
  24. [24]
    Wang, H. Y.; Hsu, Y. Y.; Chen, R.; Chan, T. S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500091.CrossRefGoogle Scholar
  25. [25]
    Zhu, C. Z.; Wen, D.; Leubner, S.; Oschatz, M.; Liu, W.; Holzschuh, M.; Simon, F.; Kaskel, S.; Eychmüller, A. Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction. Chem. Commun. 2015, 51, 7851–7854.CrossRefGoogle Scholar
  26. [26]
    Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.CrossRefGoogle Scholar
  27. [27]
    Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421–1427.CrossRefGoogle Scholar
  28. [28]
    Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Core-ring structured NiCo2O4 nanoplatelets: Synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 2008, 18, 1441–1447.Google Scholar
  29. [29]
    Bocca, C.; Barbucci, A.; Delucchi, M.; Cerisola, G. Nickel-cobalt-oxide-coated electrodes: Influence of the preparation technique on oxygen evolution reaction (OER) in an alkaline solution. Int. J. Hydrogen Energy 1999, 24, 21–26.CrossRefGoogle Scholar
  30. [30]
    Chen, S.; Duan, J. J.; Jaroniec, M.; Qiao, S. Z. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2013, 52, 13567–13570.CrossRefGoogle Scholar
  31. [31]
    Srivastava, M.; Elias Uddin, M.; Singh, J.; Kim, N. H.; Lee, J. H. Preparation and characterization of self-assembled layer by layer NiCo2O4-reduced graphene oxide nanocomposite with improved electrocatalytic properties. J. Alloys Compd. 2014, 590, 266–276.CrossRefGoogle Scholar
  32. [32]
    Wang, X. L.; Xiao, H.; Li, A.; Li, Z.; Liu, S. J.; Zhang, Q. H.; Gong, Y.; Zheng, L. R.; Zhu, Y. Q.; Chen, C. et al. Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions. J. Am. Chem. Soc. 2018, 140, 15336–15341.CrossRefGoogle Scholar
  33. [33]
    Xiao, C. L.; Lu, X. Y.; Zhao, C. Unusual synergistic effects upon incorporation of Fe and/or Ni into mesoporous Co3O4 for enhanced oxygen evolution. Chem. Commun. 2014, 50, 10122–10125.CrossRefGoogle Scholar
  34. [34]
    Bates, M. K.; Jia, Q. Y.; Doan, H.; Liang, W. T.; Mukerjee, S. Chargetransfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal. 2016, 6, 155–161.CrossRefGoogle Scholar
  35. [35]
    Zhao, X.; Fu, Y.; Wang, J.; Xu, Y. J.; Tian, J. H.; Yang, R. Z. Ni-doped CoFe2O4 hollow nanospheres as efficient bi-functional catalysts. Electrochim. Acta 2016, 201, 172–178.CrossRefGoogle Scholar
  36. [36]
    Wang, A. L.; Xu, H.; Li, G. R. NiCoFe layered triple hydroxides with porous structures as high-performance electrocatalysts for overall water splitting. ACS Energy Lett. 2016, 1, 445–453.CrossRefGoogle Scholar
  37. [37]
    Wang, T.; Xu, W. C.; Wang, H. X. Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction. Electrochim. Acta 2017, 257, 118–127.CrossRefGoogle Scholar
  38. [38]
    Gerken, J. B.; Shaner, S. E.; Massé, R. C.; Porubsky, N. J.; Stahl, S. S. A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni-Fe oxides containing a third metal. Energy Environ. Sci. 2014, 7, 2376–2382.CrossRefGoogle Scholar
  39. [39]
    Fan, J. Q.; Chen, Z. F.; Shi, H. J.; Zhao, G. H. In situ grown, self-supported iron-cobalt-nickel alloy amorphous oxide nanosheets with low overpotential toward water oxidation. Chem. Commun. 2016, 52, 4290–4293.CrossRefGoogle Scholar
  40. [40]
    Deng, X. H.; Öztürk, S.; Weidenthaler, C.; Tüysüz, H. Iron-induced activation of ordered mesoporous nickel cobalt oxide electrocatalyst for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 21225–21233.CrossRefGoogle Scholar
  41. [41]
    Long, X.; Xiao, S.; Wang, Z. L.; Zheng, X. L.; Yang, S. H. Co intake mediated formation of ultrathin nanosheets of transition metal LDH—An advanced electrocatalyst for oxygen evolution reaction. Chem. Commun. 2015, 51, 1120–1123.CrossRefGoogle Scholar
  42. [42]
    Zhu, X. L.; Tang, C.; Wang, H. F.; Li, B. Q.; Zhang, Q.; Li, C Y.; Yang, C. H.; Wei, F. Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A, 2016, 4, 7245–7250.CrossRefGoogle Scholar
  43. [43]
    Dong, C. Q.; Han, L. L.; Zhang, C.; Zhang, Z. H. Scalable dealloying route to mesoporous ternary CoNiFe layered double hydroxides for efficient oxygen evolution. ACS Sustainable Chem. Eng. 2018, 6, 16096–16104.CrossRefGoogle Scholar
  44. [44]
    Wu, Z. C.; Wang, X.; Huang, J. S.; Gao, F. A Co-doped Ni-Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting. J. Mater. Chem. A 2018, 6, 167–178.CrossRefGoogle Scholar
  45. [45]
    Thenuwara, A. C.; Attanayake, N. H.; Yu, J.; Perdew, J. P.; Elzinga, E. J.; Yan, Q. M.; Strongin, D. R. Cobalt intercalated layered NiFe double hydroxides for the oxygen evolution reaction. J. Phys. Chem. B 2018, 122, 847–854.CrossRefGoogle Scholar
  46. [46]
    Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957.CrossRefGoogle Scholar
  47. [47]
    Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.CrossRefGoogle Scholar
  48. [48]
    Stevens, M. B.; Enman, L. J.; Batchellor, A. S.; Cosby, M. R.; Vise, A. E.; Trang, C. D. M.; Boettcher, S. W. Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem. Mater. 2017, 29, 120–140.CrossRefGoogle Scholar
  49. [49]
    Merrill, M.; Worsley, M.; Wittstock, A.; Biener, J.; Stadermann, M. Determination of the “NiOOH” charge and discharge mechanisms at ideal activity. J. Electroanal. Chem. 2014, 717–718, 177–188.CrossRefGoogle Scholar
  50. [50]
    Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.CrossRefGoogle Scholar
  51. [51]
    Deng, J.; Nellist, M. R.; Stevens, M. B.; Dette, C.; Wang, Y.; Boettcher, S. W. Morphology dynamics of single-layered Ni(OH)2/NiOOH nanosheets and subsequent Fe incorporation studied by in situ electrochemical atomic force microscopy. Nano Lett. 2017, 17, 6922–6926.CrossRefGoogle Scholar
  52. [52]
    Dette, C.; Hurst, M. R.; Deng, J.; Nellist, M. R.; Boettcher, S. W. Structural evolution of metal (oxy)hydroxide nanosheets during the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 5590–5594.CrossRefGoogle Scholar
  53. [53]
    Ye, S. H.; Shi, Z. X.; Feng, J. X.; Tong, Y. X.; Li, G. R. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 2672–2676.CrossRefGoogle Scholar
  54. [54]
    Zou, S. H.; Burke, M. S.; Kast, M. G.; Fan, J.; Danilovic, N.; Boettcher, S. W. Fe (oxy)hydroxide oxygen evolution reaction electrocatalysis: Intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem. Mater. 2015, 27, 8011–8020.CrossRefGoogle Scholar
  55. [55]
    Batchellor, A. S.; Kwon, G.; Laskowski, F. A. L.; Tiede, D. M.; Boettcher, S. W. Domain structures of Ni and NiFe (oxy)hydroxide oxygen-evolution catalysts from X-ray pair distribution function analysis. J. Phys. Chem. C 2017, 121, 25421–25429.CrossRefGoogle Scholar
  56. [56]
    Doyle, R. L.; Godwin, I. J.; Brandon, M. P.; Lyons, M. E. G. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Phys. Chem. Chem. Phys. 2013, 15, 13737–13783.CrossRefGoogle Scholar
  57. [57]
    Hunter, B. M.; Thompson, N. B.; Müller, A. M.; Rossman, G. R.; Hill, M. G.; Winkler, J. R.; Gray, H. B. Trapping an iron(VI) water-splitting intermediate in nonaqueous media. Joule 2018, 2, 747–763.CrossRefGoogle Scholar
  58. [58]
    Enman, L. J.; Stevens, M. B.; Dahan, M. H.; Nellist, M. R.; Toroker, M. C.; Boettcher, S. W. Operando X-ray absorption spectroscopy shows iron oxidation is concurrent with oxygen evolution in cobalt-iron (oxy)hydroxide electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 12840–12844.CrossRefGoogle Scholar
  59. [59]
    Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.CrossRefGoogle Scholar
  60. [60]
    Kuznetsov, D. A.; Han, B. H.; Yu, Y.; Rao, R. R.; Hwang, J.; Román-Leshkov, Y.; Shao-Horn, Y. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2018, 2, 225–244.CrossRefGoogle Scholar
  61. [61]
    Forslund, R. P.; Hardin, W. G.; Rong, X.; Abakumov, A. M.; Filimonov, D.; Alexander, C. T.; Mefford, J. T.; Iyer, H.; Kolpak, A. M.; Johnston, K. P. et al. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1-xFexO4±δ Ruddlesden-Popper oxides. Nat. Commun. 2018, 9, 3150.CrossRefGoogle Scholar
  62. [62]
    Enman, L. J.; Burke, M. S.; Batchellor, A. S.; Boettcher, S. W. Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy)hydroxide in alkaline media. ACS Catal. 2016, 6, 2416–2423.CrossRefGoogle Scholar
  63. [63]
    Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 2017, 139, 11361–11364.CrossRefGoogle Scholar
  64. [64]
    Zhang, T.; Nellist, M. R.; Enman, L. J.; Xiang, J. H.; Boettcher, S. W. Modes of Fe incorporation in Co-Fe (oxy)hydroxide oxygen evolution electrocatalysts. ChemSusChem 2018, 11, 1–8.CrossRefGoogle Scholar
  65. [65]
    Xu, D. Y.; Stevens, M. B.; Cosby, M. R.; Oener, S. Z.; Smith, A. M.; Enman, L. J.; Ayers, K. E.; Capuano, C. B.; Renner, J. N.; Danilovic, N. et al. Earth-abundant oxygen electrocatalysts for alkaline anion-exchange-membrane water electrolysis: Effects of catalyst conductivity and comparison with performance in three-electrode cells. ACS Catal. 2019, 9, 7–15.CrossRefGoogle Scholar
  66. [66]
    Natan, M. J.; Belanger, D.; Carpenter, M. K.; Wrighton, M. S. pH-sensitive nickel(II) hydroxide-based microelectrochemical transistors. J. Phys. Chem. 1987, 91, 1834–1842.CrossRefGoogle Scholar
  67. [67]
    Zhou, H. Q.; Yu, F.; Sun, J. Y.; He, R.; Chen, S.; Chu, C. W.; Ren, Z. F. Highly active catalyst derived from a 3D foam of Fe(PO3)2/Ni2P for extremely efficient water oxidation. Proc. Natl. Acad. Sci. USA 2017, 114, 5607–5611.CrossRefGoogle Scholar
  68. [68]
    Ayers, K. E.; Anderson, E. B.; Capuano, C.; Carter, B.; Dalton, L.; Hanlon, G.; Manco, J.; Niedzwiecki, M. Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans. 2010, 33, 3–15.CrossRefGoogle Scholar
  69. [69]
    Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985.CrossRefGoogle Scholar
  70. [70]
    Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.CrossRefGoogle Scholar
  71. [71]
    Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  72. [72]
    Conesa, J. C. Electronic structure of the (undoped and Fe-doped) NiOOH O2 evolution electrocatalyst. J. Phys. Chem. C 2016, 120, 18999–19010.CrossRefGoogle Scholar
  73. [73]
    Zaffran, J.; Toroker, M. C. Metal-oxygen bond ionicity as an efficient descriptor for doped NiOOH photocatalytic activity. ChemPhysChem 2016, 17, 1630–1636.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Michaela Burke Stevens
    • 1
  • Lisa J. Enman
    • 1
  • Ester Hamal Korkus
    • 2
  • Jeremie Zaffran
    • 2
  • Christina D. M. Trang
    • 1
  • James Asbury
    • 1
  • Matthew G. Kast
    • 1
  • Maytal Caspary Toroker
    • 2
    Email author
  • Shannon W. Boettcher
    • 1
    Email author
  1. 1.Department of Chemistry & Biochemistry and the Materials Science InstituteUniversity of OregonEugeneUSA
  2. 2.Department of Materials Science & Engineering and The Nancy & Stephen Grand Technion Energy Program TechnionIsrael Institute of TechnologyHaifaIsrael

Personalised recommendations