Nano Research

, Volume 12, Issue 9, pp 2164–2171 | Cite as

Plasmon-exciton interaction in colloidally fabricated metal nanoparticle-quantum emitter nanostructures

  • Yi Luo
  • Jing ZhaoEmail author
Review Article


When quantum emitters and plasmonic nanoparticles are in close vicinity, the energy exchange, termed as plasmon-exciton coupling, can make the absorption and emission behavior of the hybrid structure very different from those of the two constituents alone. The coupling strength between the two constituents highly depends on how the hybrid structure is constructed. As a result, a diverse range of coupling effect arise including plasmon induced fluorescence quenching/enhancing (weak coupling), Fano interference (intermediate coupling), Rabi-splitting and lasing (strong coupling). The emergence of different coupling behavior can be controlled by the different combinations of quantum emitters and plasmonic nanoparticles as well as the spatial arrangement of the individual components. Colloidal assembly/synthesis methods are essentially delicate strategies that can build the hybrid nanostructures with nanometer precision and allow for large-scale processing. In this review, we discuss the theoretical models that apply to different coupling behaviors, the optical properties of the hybrid systems, and the advancement of colloidal methods to manipulate the plasmon-exciton in the hybrid structures. We also provide perspectives on the challenges and future directions of the research in coupled plasmon-exciton nanosystems.


quantum emitter metal nanoparticles plasmon-exciton coupling colloidal assembly Purcell effect Rabi-splitting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the financial supported by NSF CAREER Grant (CHE 1554800).


  1. [1]
    Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768.CrossRefGoogle Scholar
  2. [2]
    Li, M.; Cushing, S. K.; Wu, N. Q. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406.CrossRefGoogle Scholar
  3. [3]
    West, J. L.; Halas, N. J. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Ann. Rev. Biomed. Eng. 2003, 5, 285–292.CrossRefGoogle Scholar
  4. [4]
    Yang, A. K.; Odom, T. W. Breakthroughs in photonics 2014: Advances in plasmonic nanolasers. IEEE Photonics J. 2015, 7, 0700606.Google Scholar
  5. [5]
    Nabika, H.; Takase, M.; Nagasawa, F.; Murakoshi, K. Toward plasmon-induced photoexcitation of molecules. J. Phys. Chem. Lett. 2010, 1, 2470–2487.CrossRefGoogle Scholar
  6. [6]
    Giannini, V.; Fernández-Domínguez, A. I.; Heck, S. C.; Maier, S. A. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 2011, 111, 3888–3912.CrossRefGoogle Scholar
  7. [7]
    Zhang, P.; Protsenko, I.; Sandoghdar, V.; Chen, X. W. A single-emitter gain medium for bright coherent radiation from a plasmonic nanoresonator. ACS Photonics. 2017, 4, 2738–2744.CrossRefGoogle Scholar
  8. [8]
    Ming, T.; Chen, H. J.; Jiang, R. B.; Li, Q.; Wang, J. F. Plasmon-controlled fluorescence: Beyond the intensity enhancement. J. Phys. Chem. Lett. 2012, 3, 191–202.CrossRefGoogle Scholar
  9. [9]
    Achermann, M. Exciton–plasmon interactions in metal–semiconductor nanostructures. J. Phys. Chem. Lett. 2010, 1, 2837–2843.CrossRefGoogle Scholar
  10. [10]
    Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006, 96, 113002.CrossRefGoogle Scholar
  11. [11]
    Tam, F.; Goodrich, G. P.; Johnson, B. R.; Halas, N. J. Plasmonic enhancement of molecular fluorescence. Nano Lett. 2007, 7, 496–501.CrossRefGoogle Scholar
  12. [12]
    Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O. M.; Iati, M. A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter. 2017, 29, 203002.CrossRefGoogle Scholar
  13. [13]
    Tame, M. S.; McEnery, K. R.; Özdemir, Ş. K.; Lee, J.; Maier, S. A.; Kim, M. S. Quantum plasmonics. Nat. Phys. 2013, 9, 329–340.CrossRefGoogle Scholar
  14. [14]
    Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 2015, 10, 2–6.CrossRefGoogle Scholar
  15. [15]
    Kulakovich, O.; Strekal, N.; Yaroshevich, A.; Maskevich, S.; Gaponenko, S.; Nabiev, I.; Woggon, U.; Artemyev, M. Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2002, 2, 1449–1452.CrossRefGoogle Scholar
  16. [16]
    Purcell, E. M.; Torrey, H. C.; Pound, R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 1946, 69, 37–38.CrossRefGoogle Scholar
  17. [17]
    Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photonics. 2015, 9, 427–435.CrossRefGoogle Scholar
  18. [18]
    Rodriguez, S. R. K.; Feist, J.; Verschuuren, M. A.; Vidal, F. J. G.; Rivas, J. G. Thermalization and cooling of plasmon-exciton polaritons: Towards quantum condensation. Phys. Rev. Lett. 2013, 111, 166802.CrossRefGoogle Scholar
  19. [19]
    Nan, F.; Ding, S. J.; Ma, L.; Cheng, Z. Q.; Zhong, Y. T.; Zhang, Y. F.; Qiu, Y. H.; Li, X. G.; Zhou, L.; Wang, Q. Q. Plasmon resonance energy transfer and plexcitonic solar cell. Nanoscale 2016, 8, 15071–15078.CrossRefGoogle Scholar
  20. [20]
    Harris, S. E.; Field, J. E.; Imamoğlu, A. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 1990, 64, 1107–1110.CrossRefGoogle Scholar
  21. [21]
    Khitrova, G.; Gibbs, H. M.; Kira, M.; Koch, S. W.; Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2006, 2, 81–90.CrossRefGoogle Scholar
  22. [22]
    Christopoulos, S.; Von Högersthal G. B. H.; Grundy, A. J. D.; Lagoudakis, P. G.; Kavokin, A. V.; Baumberg, J. J.; Christmann, G.; Butté, R.; Feltin, E.; Carlin, J. F. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 2007, 98, 126405.CrossRefGoogle Scholar
  23. [23]
    Kolaric, B.; Maes, B.; Clays, K.; Durt, T.; Caudano, Y. Molding molecular and material properties by strong light-matter coupling. arXiv preprint arXiv1802.06029, 2018.Google Scholar
  24. [24]
    Hoang, T. B.; Akselrod, G. M.; Mikkelsen, M. H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 2015, 16, 270–275.CrossRefGoogle Scholar
  25. [25]
    Groß, H.; Hamm, J. M.; Tufarelli, T.; Hess, O.; Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 2018, 4, eaar4906.CrossRefGoogle Scholar
  26. [26]
    Mundoor, H.; Sheetah, G. H.; Park, S.; Ackerman, P. J.; Smalyukh, I. I.; van de Lagemaat, J. Tuning and switching a plasmonic quantum dot “sandwich” in a nematic line defect. ACS Nano. 2018, 12, 2580–2590.CrossRefGoogle Scholar
  27. [27]
    Liu, N. G.; Prall, B. S.; Klimov, V. I. Hybrid gold/silica/nanocrystal-quantum-dot superstructures: Synthesis and analysis of semiconductor-metal interactions. J. Am. Chem. Soc. 2006, 128, 15362–15363.CrossRefGoogle Scholar
  28. [28]
    Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Chem. Rev. 2011, 111, 3736–3827.CrossRefGoogle Scholar
  29. [29]
    Wang, Y.; Chen, G.; Yang, M. X.; Silber, G.; Xing, S. X.; Tan, L. H.; Wang, F.; Feng, Y. H; Liu, X. G; Li, S. Z. et al. A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles. Nat. Commun. 2010, 1, 87.CrossRefGoogle Scholar
  30. [30]
    Baranov, D. G.; Wersäll, M.; Cuadra, J.; Antosiewicz, T. J.; Shegai, T. Novel nanostructures and materials for strong light-matter interactions. ACS Photonics 2017, 5, 24–42.CrossRefGoogle Scholar
  31. [31]
    Hümmer, T.; García-Vidal, F. J.; Martín-Moreno, L.; Zueco, D. Weak and strong coupling regimes in plasmonic QED. Phys. Rev. B 2013, 87, 115419.CrossRefGoogle Scholar
  32. [32]
    Hartsfield, T.; Chang, W. S.; Yang, S. C.; Ma, T.; Shi, J. W.; Sun, L. Y.; Shvets, G.; Link, S.; Li, X. Q. Single quantum dot controls a plasmonic cavity’s scattering and anisotropy. Proc. Natl. Acad. Sci. USA 2015, 112, 12288–12292.CrossRefGoogle Scholar
  33. [33]
    Luk’yanchuk, B.; Zheludev, N. I.; Maier, S. A.; Halas, N. J.; Nordlander, P.; Giessen, H.; Chong, C. T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715.CrossRefGoogle Scholar
  34. [34]
    Faucheaux, J. A.; Fu, J. Y.; Jain, P. K. Unified theoretical framework for realizing diverse regimes of strong coupling between plasmons and electronic transitions. J. Phys. Chem. C 2014, 118, 2710–2717.CrossRefGoogle Scholar
  35. [35]
    Yang, Z. J.; Antosiewicz, T. J.; Shegai, T. Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions. Opt. Exp. 2016, 24, 20373–20381.CrossRefGoogle Scholar
  36. [36]
    Zengin, G; Wersäll, M.; Nilsson, S.; Antosiewicz, T. J.; Käll, M.; Shegai, T. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett. 2015, 114, 157401.CrossRefGoogle Scholar
  37. [37]
    Leng, H. X.; Szychowski, B.; Daniel, M. C.; Pelton, M. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nat. Commun. 2018, 9, 4012.CrossRefGoogle Scholar
  38. [38]
    Li, X. G.; Zhou, L.; Hao, Z. H.; Wang, Q. Q. Plasmon–exciton coupling in complex systems. Adv. Opt. Mater. 2018, 6, 1800275.CrossRefGoogle Scholar
  39. [39]
    Jennings, T. L.; Singh, M. P.; Strouse, G. F. Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: Probing NSET validity. J. Am. Chem. Soc. 2006, 128, 5462–5467.CrossRefGoogle Scholar
  40. [40]
    Breshike, C. J.; Riskowski, R. A.; Strouse, G. F. Leaving Förster resonance energy transfer behind: Nanometal surface energy transfer predicts the size-enhanced energy coupling between a metal nanoparticle and an emitting dipole. J. Phys. Chem. C 2013, 117, 23942–23949.CrossRefGoogle Scholar
  41. [41]
    Sen, T.; Patra, A. Recent advances in energy transfer processes in gold-nanoparticle-based assemblies. J. Phys. Chem. C 2012, 116, 17307–17317.CrossRefGoogle Scholar
  42. [42]
    Li, M.; Cushing, S. K.; Wang, Q. Y.; Shi, X. D.; Hornak, L. A.; Hong, Z. L.; Wu, N. Q. Size-dependent energy transfer between CdSe/ZnS quantum dots and gold nanoparticles. J. Phys. Chem. Lett. 2011, 2, 2125–2129.CrossRefGoogle Scholar
  43. [43]
    Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870–1901.CrossRefGoogle Scholar
  44. [44]
    Abadeer, N. S.; Brennan, M. R.; Wilson, W. L.; Murphy, C. J. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. ACS Nano. 2014, 8, 8392–8406.CrossRefGoogle Scholar
  45. [45]
    Bardhan, R.; Grady, N. K.; Cole, J. R.; Joshi, A.; Halas, N. J. Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods. ACS Nano. 2009, 3, 744–752.CrossRefGoogle Scholar
  46. [46]
    Ayala-Orozco, C., Liu, J. G.; Knight, M. W.; Wang, Y. M.; Day, J. K.; Nordlander, P.; Halas, N. J. Fluorescence enhancement of molecules inside a gold nanomatryoshka. Nano Lett. 2014, 14, 2926–2933.CrossRefGoogle Scholar
  47. [47]
    Dey, S.; Zhou, Y. D.; Sun, Y. L.; Jenkins, J. A.; Kriz, D.; Suib, S. L.; Chen, O.; Zou, S. L.; Zhao, J. Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures. Nanoscale 2018, 10, 1038–1046.CrossRefGoogle Scholar
  48. [48]
    Wax, T. J.; Dey, S.; Chen, S. T.; Luo, Y.; Zou, S. L.; Zhao, J. Excitation wavelength-dependent photoluminescence decay of hybrid gold/quantum dot nanostructures. ACS Omega 2018, 3, 14151–14156.CrossRefGoogle Scholar
  49. [49]
    Santhosh, K.; Bitton, O.; Chuntonov, L.; Haran, G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 2016, 7, ncomms11823.CrossRefGoogle Scholar
  50. [50]
    Würthner, F.; Kaiser, T. E.; Saha-Möller, C. R. Chemlnform abstract: J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem., Int. Ed. 2011, 50, 3376–3410.CrossRefGoogle Scholar
  51. [51]
    Stockman, M. I. Nanoplasmonics: Past, present, and glimpse into future. Opt. Express 2011, 19, 22029–22106.CrossRefGoogle Scholar
  52. [52]
    Balci, S.; Kucukoz, B.; Balci, O.; Karatay, A.; Kocabas, C.; Yaglioglu, G. Tunable plexcitonic nanoparticles: A model system for studying plasmon-exciton interaction from the weak to the ultrastrong coupling regime. ACS Photonics 2016, 3, 2010–2016.CrossRefGoogle Scholar
  53. [53]
    Wersall, M.; Cuadra, J.; Antosiewicz, T. J.; Balci, S.; Shegai, T. Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons. Nano Lett. 2017, 17, 551–558.CrossRefGoogle Scholar
  54. [54]
    Liu, R. M.; Zhou, Z. K.; Yu, Y. C.; Zhang, T. W.; Wang, H.; Liu, G. H.; Wei, Y. M.; Chen, H. J.; Wang, X. H. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys. Rev. Lett. 2017, 118, 237401.CrossRefGoogle Scholar
  55. [55]
    Zengin, G.; Johansson, G.; Johansson, P.; Antosiewicz, T. J.; Käll, M.; Shegai, T. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Sci. Rep. 2013, 3, 3074.CrossRefGoogle Scholar
  56. [56]
    Schlather, A. E.; Large, N.; Urban, A. S.; Nordlander, P.; Halas, N. J. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett. 2013, 13, 3281–3286.CrossRefGoogle Scholar
  57. [57]
    Ming, T.; Zhao, L.; Yang, Z.; Chen, H. J.; Sun, L. D.; Wang, J. F.; Yan, C. H. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett. 2009, 9, 3896–3903.CrossRefGoogle Scholar
  58. [58]
    Nepal, D.; Drummy, L. F.; Biswas, S.; Park, K.; Vaia, R. A. Large scale solution assembly of quantum dot-gold nanorod architectures with plasmon enhanced fluorescence. ACS Nano. 2013, 7, 9064–9074.CrossRefGoogle Scholar
  59. [59]
    Cohen-Hoshen, E.; Bryant, G. W.; Pinkas, I.; Sperling, J.; Bar-Joseph, I. Exciton-plasmon interactions in quantum dot-gold nanoparticle structures. Nano Lett. 2012, 12, 4260–4264.CrossRefGoogle Scholar
  60. [60]
    Samanta, A.; Zhou, Y. D.; Zou, S. L.; Yan, H.; Liu, Y. Fluorescence quenching of quantum dots by gold nanoparticles: A potential long range spectroscopic ruler. Nano Lett. 2014, 14, 5052–5057.CrossRefGoogle Scholar
  61. [61]
    Zhang, T. S.; Gao, N. Y.; Li, S.; Lang, M. J.; Xu, Q. H. Single-particle spectroscopic study on fluorescence enhancement by plasmon coupled gold nanorod dimers assembled on DNA origami. J. Phys. Chem. Lett. 2015, 6, 2043–2049.CrossRefGoogle Scholar
  62. [62]
    Roller, E. M.; Argyropoulos, C.; Högele, A.; Liedl, T.; Pilo-Pais, M. Plasmon-exciton coupling using DNA templates. Nano Lett. 2016, 16, 5962–5966.CrossRefGoogle Scholar
  63. [63]
    Ma, X. D.; Tan, H.; Kipp, T.; Mews, A. Fluorescence enhancement, blinking suppression, and gray states of individual semiconductor nanocrystals close to gold nanoparticles. Nano Lett. 2010, 10, 4166–4174.CrossRefGoogle Scholar
  64. [64]
    Ji, B. T.; Giovanelli, E.; Habert, B.; Spinicelli, P.; Nasilowski, M.; Xu, X. Z.; Lequeux, N.; Hugonin, J. P.; Marquier, F.; Greffet, J. J. et al. Non-blinking quantum dot with a plasmonic nanoshell resonator. Nat. Nanotechnol. 2015, 10, 170–175.CrossRefGoogle Scholar
  65. [65]
    Jin, Y. D.; Gao, X. H. Plasmonic fluorescent quantum dots. Nat. Nanotechnol. 2009, 4, 571–576.CrossRefGoogle Scholar
  66. [66]
    Karan, N. S.; Keller, A. M.; Sampat, S.; Roslyak, O.; Arefin, A.; Hanson, C. J.; Casson, J. L.; Desireddy, A.; Ghosh, Y.; Piryatinski, A. et al. Plasmonic giant quantum dots: Hybrid nanostructures for truly simultaneous optical imaging, photothermal effect and thermometry. Chem. Sci. 2015, 6, 2224–2236.CrossRefGoogle Scholar
  67. [67]
    Lakowicz, J. R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 2006, 1, 5–33.CrossRefGoogle Scholar
  68. [68]
    Geddes, C. D.; Cao, H. S.; Gryczynski, I.; Gryczynski, Z.; Fang, J. Y.; Lakowicz, J. R. Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging. J. Phys. Chem. A 2003, 107, 3443–3449.CrossRefGoogle Scholar
  69. [69]
    Bauch, M.; Toma, K.; Toma, M.; Zhang, Q. W.; Dostalek, J. Plasmonenhanced fluorescence biosensors: A review. Plasmonics. 2014, 9, 781–799.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ConnecticutStorrsUSA
  2. 2.Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations