Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery

  • Zhuoliang Jiang
  • Hui SunEmail author
  • Wenke Shi
  • Tianhang Zhou
  • Jianyong Hu
  • Jingyang Cheng
  • Pengfei Hu
  • Shigang Sun
Research Article


Rechargeable non-aqueous Li-O2 battery is regarded as one of the most promising energy-storage technologies on account of its high energy density. It is believed that the rational design of three-dimensional (3D) architecture for catalyst is a key factor for the remarkable performance. Metal-organic frameworks (MOFs) derived materials possess excellent architecture, which is beneficial for Li-O2 batteries. In this work, ZIF-67 is used as precursor template and calcinated under different temperature to produce Co3O4 crystals. When the anneal treatment is under 350 °C, the derived Co3O4 nanocage holds the most complete skeleton, which provides better charge transfer ability as well as O2 and Li+ diffusion. Meanwhile, the Co3O4 nanocage owns more oxygen vacancies, offering more active sites. With the synergistic effect of nanocage structure and active sites, the Co3O4 nanocage stably delivers a large specific capacity of 15,500 mAh·g-1 as well as a long cycle-life of 132 cycles at limited discharge capacity of 1,000 mAh·g-1 under discharge/charge current density of 0.5 A·g-1.


Li-O2 batteries metal-organic framework (MOF)-derived Co3O4 nanocage Co3O4 polyhedron Co3O4 particle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work supported financially by the National Key R&D Program of China (No. 2016YFB0100200); Science Foundation of China University of Petroleum, Beijing (C201604, No. 2462014YJRC003) and State key laboratory of physical chemistry of solid surfaces, Xiamen University (No. 201703

Supplementary material

12274_2019_2388_MOESM1_ESM.pdf (2.6 mb)
Supplementary material, approximately 228 KB.


  1. [1]
    Huang, H. B.; Luo, S. H.; Liu, C. L.; Yi, T. F.; Zhai, Y. C. High-surface-area and porous Co2P nanosheets as cost-effective cathode catalysts for Li-O2 batteries. ACS. Appl. Mater. Interfaces 2018, 10, 21281–21290.CrossRefGoogle Scholar
  2. [2]
    Liu, T.; Frith, J. T.; Kim, G.; Kerber, R. N.; Dubouis, N.; Shao, Y. L.; Liu, Z. G.; Magusin, P. C. M. M.; Casford, M. T. L.; Garcia-Araez, N. et al. The effect of water on quinone redox mediators in nonaqueous Li-O2 batteries. J. Am. Chem. Soc. 2018, 140, 1428–1437.CrossRefGoogle Scholar
  3. [3]
    Yu, W.; Wang, H. W.; Hu, J.; Yang, W.; Qin, L.; Liu, R. L.; Li, B. H.; Zhai, D. Y.; Kang, F. Y. Molecular sieve induced solution growth of Li2O2 in the Li-O2 battery with largely enhanced discharge capacity. ACS. Appl. Mater. Interfaces 2018, 10, 7989–7995.CrossRefGoogle Scholar
  4. [4]
    Xu, C. Y.; Dai, J. C.; Teng, X. G.; Zhu, Y. M. Preparation of a new carbon nanofiber as a high-capacity air electrode for nonaqueous lithium-oxygen batteries. ChemCatChem 2016, 8, 3725–3731.CrossRefGoogle Scholar
  5. [5]
    Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Redox mediators for Li-O2 batteries: Status and perspectives. Adv. Mater. 2018, 30, 1704162.CrossRefGoogle Scholar
  6. [6]
    Lyu, Z. Y.; Zhou, Y.; Dai, W. R.; Cui, X. H.; Lai, M.; Wang, L.; Huo, F. W.; Huang, W.; Hu, Z.; Chen, W. Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries. Chem. Soc. Rev. 2017, 46, 6046–6072.CrossRefGoogle Scholar
  7. [7]
    Xing, Y.; Yang, Y.; Chen, R. J.; Luo, M. C.; Chen, N.; Ye, Y. S.; Qian, J.; Li, L.; Wu, F.; Guo, S. J. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O2 battery. Small 2018, 14, 1704366.CrossRefGoogle Scholar
  8. [8]
    Lin, X. D.; Yuan, R. M.; Cai, S. R.; Jiang, Y. H.; Lei, J.; Liu, S. G.; Wu, Q. H.; Liao, H. G.; Zheng, M. S.; Dong, Q. F. An open-structured matrix as oxygen cathode with high catalytic activity and large Li2O2 accommodations for lithium-oxygen batteries. Adv. Energy Mater. 2018, 8, 1800089.CrossRefGoogle Scholar
  9. [9]
    Lee, Y. J.; Kim, D. H.; Kang, T. G.; Ko, Y.; Kang, K.; Lee, Y. J. Bifunctional MnO2-coated Co3O4 hetero-structured catalysts for reversible Li-O2 batteries. Chem. Mater. 2017, 29, 10542–10550.CrossRefGoogle Scholar
  10. [10]
    Balaish, M.; Ein-Eli, Y. The role of air-electrode structure on the incorporation of immiscible PFCs in nonaqueous Li-O2 battery. ACS. Appl. Mater. Interfaces 2017, 9, 9726–9737.CrossRefGoogle Scholar
  11. [11]
    Wang, L. K.; Tang, Z. H.; Yan, W.; Wang, Q. N.; Yang, H. Y.; Chen, S. W. Co@Pt core@shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. J. Power. Sources. 2017, 343, 458–466.CrossRefGoogle Scholar
  12. [12]
    Ren, X. Z.; Huang, M. J.; Luo, S.; Li, Y. L.; Deng, L. B.; Mi, H. W.; Sun, L. N.; Zhang, P. X. PdNi alloy decorated 3D hierarchically N, S co-doped macro-mesoporous carbon composites as efficient free-standing and binder-free catalysts for Li-O2 batteries. J. Mater. Chem. A 2018, 6, 10856–10867.CrossRefGoogle Scholar
  13. [13]
    Xiang, J.; Song, T.; Paik, U. Rational design of Au dotted Co3O4 nanosheets as an efficient bifunctional catalyst for Li-oxygen batteries. RSC Adv. 2017, 7, 51652–51657.CrossRefGoogle Scholar
  14. [14]
    Huang, H. B.; Luo, S. H.; Liu, C. L.; Wang, Q.; Wang, Z. Y.; Zhang, Y. H.; Hao, A. M.; Liu, Y. G.; Li, J. Z.; Zhai, Y. C. et al. Ag-decorated highly mesoporous Co3O4 nanosheets on nickel foam as an efficient free-standing cathode for Li-O2 batteries. J. Alloy. Compd. 2017, 726, 939–946.CrossRefGoogle Scholar
  15. [15]
    Kim, Y.; Park, J. H.; Kim, J. G.; Noh, Y.; Kim, Y.; Han, H.; Kim, W. B. Ruthenium oxide incorporated one-dimensional cobalt oxide composite nanowires as lithium-oxygen battery cathode catalysts. ChemCatChem 2017, 9, 3554–3562.CrossRefGoogle Scholar
  16. [16]
    Huang, L. L.; Mao, Y. J.; Wang, G. Q.; Xia, X. K.; Xie, J.; Zhang, S. C.; Du, G. H.; Cao, G. S.; Zhao, X. B. Ru-decorated knitted Co3O4 nanowires as a robust carbon/binder-free catalytic cathode for lithium-oxygen batteries. New. J. Chem. 2016, 40, 6812–6818.CrossRefGoogle Scholar
  17. [17]
    Liao, K. M.; Zhang, T.; Wang, Y. Q.; Li, F. J.; Jian, Z. L.; Yu, H. J.; Zhou, H. S. Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries. Chemsuschem 2015, 8, 1429–1434.CrossRefGoogle Scholar
  18. [18]
    Tang, C.; Sun, P.C.; Xie, J.; Tang, Z. C.; Yang, Z. X.; Dong, Z. X.; Cao, G. S.; Zhang, S. C.; Braun, P. V.; Zhao, X. B. Two-dimensional IrO2/MnO2 enabling conformal growth of amorphous Li2O2 for high-performance Li-O2 batteries. Energy Storage Mater. 2017, 9, 206–213.CrossRefGoogle Scholar
  19. [19]
    Luo, C. S.; Sun, H.; Jiang, Z. L.; Guo, H. L.; Gao, M. Y.; Wei, M. H.; Jiang, Z. M.; Zhou, H. J.; Sun, S. G. Electrocatalysts of Mn and Ru oxides loaded on MWCNTS with 3D structure and synergistic effect for rechargeable Li-O2 battery. Electrochim. Acta 2018, 282, 56–63.CrossRefGoogle Scholar
  20. [20]
    Wu, H. T.; Sun, W.; Shen, J. R.; Rooney, D. W.; Wang, Z. H.; Sun, K. N. Role of flower-like ultrathin Co3O4 nanosheets in water splitting and non-aqueous Li-O2 batteries. Nanoscale 2018, 10, 10221–10231.CrossRefGoogle Scholar
  21. [21]
    Zhou, Y.; Lyu, Z. Y.; Wang, L. J.; Dong, W. H.; Dai, W. R.; Cui, X. H.; Hao, Z. K.; Lai, M.; Chen, W. Co3O4 functionalized porous carbon nanotube oxygen-cathodes to promote Li2O2 surface growth for improved cycling stability of Li-O2 batteries. J. Mater. Chem. A 2017, 5, 25501–25508.CrossRefGoogle Scholar
  22. [22]
    Tong, S. F.; Zheng, M. B.; Lu, Y.; Lin, Z. X.; Li, J.; Zhang, X. P.; Shi, Y.; He, P.; Zhou, H. S. Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li-O2 batteries. J. Mater. Chem. A 2015, 3, 16177–16182.CrossRefGoogle Scholar
  23. [23]
    Liu, H. F.; Gao, X. Q.; Yao, X. L.; Chen, M. X.; Zhou, G. J.; Qi, J.; Zhao, X. L.; Wang, W. C.; Zhang, W.; Cao, R. Manganese(II) phosphate nanosheet assembly with native out-of-plane Mn centres for electrocatalytic water oxidation. Chem. Sci. 2019, 10, 191–197.CrossRefGoogle Scholar
  24. [24]
    Cai, Z.; Zhou, D. J.; Wang, M. Y.; Bak, S. M.; Wu, Y. S.; Wu, Z. S.; Tian, Y.; Xiong, X. Y.; Li, Y. P.; Liu, W. et al. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity. Angew. Chem., Int. Ed. 2018, 57, 9392–9396.CrossRefGoogle Scholar
  25. [25]
    Zhang, X.; Zhang, X.; Xu, H. M.; Wu, Z. S.; Wang, H. L.; Liang, Y. Y. Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater. 2017, 27, 1606635.CrossRefGoogle Scholar
  26. [26]
    Wan, S. H.; Qi, J.; Zhang, W.; Wang, W. N.; Zhang, S. K.; Liu, K. Q.; Zheng, H. Q.; Sun, J. L.; Wang, S. Y.; Cao, R. Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 2017, 29, 1700286.CrossRefGoogle Scholar
  27. [27]
    Jiang, Z. L.; Xie, J.; Luo, C. S.; Gao, M. Y.; Guo, H. L.; Wei, M. H.; Zhou, H. J.; Sun, H. 3D web freestanding RuO2-Co3O4 nanowires on Ni foam as highly efficient cathode catalysts for Li-O2 batteries. RSC Adv. 2018, 8, 23397–23403.CrossRefGoogle Scholar
  28. [28]
    Yu, Q. Y.; Yu, Q. L.; Sun, W.; Wu, H. T.; Wang, Z. H.; Rooney, D.; Sun, K. N. Novel Ni@Co3O4 web-like nanofiber arrays as highly effective cathodes for rechargeable Li-O2 batteries. Electrochim. Acta 2016, 220, 654–663.CrossRefGoogle Scholar
  29. [29]
    Zheng, S. S.; Li, X. R.; Yan, B. Y.; Hu, Q.; Xu, Y. X.; Xiao, X.; Xue, H. G.; Pang, H. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 2017, 7, 1602733.CrossRefGoogle Scholar
  30. [30]
    Zheng, F. C.; Yin, Z. C.; Xia, H. Y.; Zhang, Y. G. MOF-derived porous Co3O4 cuboids with excellent performance as anode materials for lithiumion batteries. Mater. Lett. 2017, 197, 188–191.CrossRefGoogle Scholar
  31. [31]
    Xiong, Y.; Xu, W. W.; Zhu, Z. Y.; Xue, Q. Z.; Lu, W. B.; Ding, D. G.; Zhu, L. ZIF-derived porous ZnO-Co3O4 hollow polyhedrons heterostructure with highly enhanced ethanol detection performance. Sens. Actuators B: Chem. 2017, 253, 523–532.CrossRefGoogle Scholar
  32. [32]
    Yan, W. J.; Guo, Z. Y.; Xu, H. S.; Lou, Y. B.; Chen, J. X.; Li, Q. W. Downsizing metal-organic frameworks with distinct morphologies as cathode materials for high-capacity Li-O2 batteries. Mater. Chem. Front. 2017, 1, 1324–1330.CrossRefGoogle Scholar
  33. [33]
    Yin, W.; Shen, Y.; Zou, F.; Hu, X. L.; Chi, B.; Huang, Y. H. Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries. ACS. Appl. Mater. Interfaces. 2015, 7, 4947–4954.CrossRefGoogle Scholar
  34. [34]
    Kim, S. H.; Lee, Y. J.; Kim, D. H.; Lee, Y. J. Bimetallic metal-organic frameworks as efficient cathode catalysts for Li-O2 batteries. ACS. Appl. Mater. Interfaces 2018, 10, 660–667.CrossRefGoogle Scholar
  35. [35]
    Tan, G. Q.; Chong, L. N.; Amine, R.; Lu, J.; Liu, C.; Yuan, Y. F.; Wen, J. G.; He, K.; Bi, X. X.; Guo, Y. Y. et al. Toward highly efficient electrocatalyst for Li-O2 batteries using biphasic N-doping cobalt@graphene multiplecapsule heterostructures. Nano Lett. 2017, 17, 2959–2966.CrossRefGoogle Scholar
  36. [36]
    Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 2018, 140, 1812–1823.CrossRefGoogle Scholar
  37. [37]
    Su, D. W.; Dou, S. X.; Wang, G. X. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries. Sci. Rep. 2014, 4, 5767.CrossRefGoogle Scholar
  38. [38]
    Wu, R. B.; Qian, X. K.; Rui, X. H.; Liu, H.; Yadian, B. L.; Zhou, K.; Wei, J.; Yan, Q. Y.; Feng, X. Q.; Long, Y. et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 2014, 10, 1932–1938.CrossRefGoogle Scholar
  39. [39]
    Jiang, M.; He, H.; Yi, W. J.; Huang, W.; Pan, X.; Wang, M. Y.; Chao, Z. S. ZIF-67 derived Ag-Co3O4@N-doped carbon/carbon nanotubes composite and its application in Mg-air fuel cell. Electrochem. Commun. 2017, 77, 5–9.CrossRefGoogle Scholar
  40. [40]
    Wang, J. K.; Gao, R.; Zhou, D.; Chen, Z. J.; Wu, Z. H.; Schumacher, G.; Hu, Z. B.; Liu, X. F. Boosting the electrocatalytic activity of Co3O4 nanosheets for a Li-O2 battery through modulating inner oxygen vacancy and exterior Co3+/Co2+ ratio. ACS Catal. 2017, 7, 6533–6541.CrossRefGoogle Scholar
  41. [41]
    Cao, J. Y.; Liu, S. Y.; Xie, J.; Zhang, S. C.; Cao, G. S.; Zhao, X. B. Tips-bundled Pt/Co3O4 nanowires with directed peripheral growth of Li2O2 as efficient binder/carbon-free catalytic cathode for lithium-oxygen battery. ACS Catal. 2015, 5, 241–245.CrossRefGoogle Scholar
  42. [42]
    Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.CrossRefGoogle Scholar
  43. [43]
    Mu, X. W.; Wen, Q. H.; Ou, G.; Du, Y. M.; He, P.; Zhong, M. L.; Zhu, H.; Wu, H.; Yang, S. X.; Liu, Y. J. et al. A current collector covering nanostructured villous oxygen-deficient NiO fabricated by rapid laser-scan for Li-O2 batteries. Nano Energy 2018, 51, 83–90.CrossRefGoogle Scholar
  44. [44]
    Lee, S.; Lee, G. H.; Lee, H. J.; Dar, M. A.; Kim, D. W. Fe-based hybrid electrocatalysts for nonaqueous lithium-oxygen batteries. Sci. Rep. 2017, 7, 9495.CrossRefGoogle Scholar
  45. [45]
    Liu, X. H.; Si, W. P.; Zhang, J.; Sun, X. L.; Deng, J. W.; Baunack, S.; Oswald, S.; Liu, L. F.; Yan, C. L.; Schmidt, O. G. Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries. Sci. Rep. 2014, 4, 7452.CrossRefGoogle Scholar
  46. [46]
    Feng, M. Y.; Du, Q. H.; Su, L.; Zhang, G. W.; Wang, G. L.; Ma, Z. P.; Gao, W. M.; Qin, X. J.; Shao, G. J. Manganese oxide electrode with excellent electrochemical performance for sodium ion batteries by pre-intercalation of K and Na ions. Sci. Rep. 2017, 7, 2219.CrossRefGoogle Scholar
  47. [47]
    Wang, L.; Bi, X. F.; Yang, S. B. Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv. Mater. 2016, 28, 7672–7679.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhuoliang Jiang
    • 1
  • Hui Sun
    • 1
    Email author
  • Wenke Shi
    • 1
  • Tianhang Zhou
    • 3
  • Jianyong Hu
    • 1
  • Jingyang Cheng
    • 1
  • Pengfei Hu
    • 1
  • Shigang Sun
    • 2
  1. 1.State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of biogas upgrading utilization, College of New Energy and MaterialsChina University of Petroleum-BeijingBeijingChina
  2. 2.State Key Lab of PCOSSXiamen UniversityXiamenChina
  3. 3.Eduard-Zintl-Institut für Anorganische und Physikalische ChemieTechnische Universität, DarmstadtDarmstadtGermany

Personalised recommendations