Nano Research

, Volume 12, Issue 5, pp 1173–1179 | Cite as

Highly active zigzag-like Pt-Zn alloy nanowires with high-index facets for alcohol electrooxidation

  • Yanchao Xu
  • Xiaoqiang CuiEmail author
  • Shuting Wei
  • Qinghua Zhang
  • Lin Gu
  • Fanqi Meng
  • Jinchang Fan
  • Weitao ZhengEmail author
Research Article


The development of highly efficient Pt-based alloy nanocatalysts is important but remains challenging for fuel cells commercialization. Here, a new class of zigzag-like platinum-zinc (Pt-Zn) alloy nanowires (NWs) with rough surface and controllable composition is reported. The merits of anisotropic one-dimensional nanostructure, stable high-index facets and coordinatively unsaturated Pt sites endow the composition-optimal Pt94Zn6 NWs with a mass activity of 7.2 and 6.2 times higher than that of commercial Pt black catalysts toward methanol/ethanol oxidation, respectively. Alloying-induced d-band electron modulation and lattice strain effects weaken the adsorption strength of poisoning species, which originally enhances the catalytic activity of Pt-Zn NWs. This study provides a new perspective of Pt-Zn electrocatalysts with intrinsic mechanism for enhanced catalytic performance.


Pt-Zn nanowires zigzag-like high-index facets d-band center strain effects alcohol oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program of China (No. 2016YFA0200400), the National Natural Science Foundation of China (Nos. 51571100, 51602305, 51522212, 51421002, and 51672307), Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-09), the Fundamental Research Funds for the Central Universities and the Graduate Innovation Fund of Jilin University.

Supplementary material

12274_2019_2374_MOESM1_ESM.pdf (1 mb)
Highly active zigzag-like Pt-Zn alloy nanowires with high-index facets for alcohol electrooxidation


  1. [1]
    Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.CrossRefGoogle Scholar
  2. [2]
    Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.CrossRefGoogle Scholar
  3. [3]
    Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.CrossRefGoogle Scholar
  4. [4]
    Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon, C. H.; Dumesic, J. A.; Román-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978.CrossRefGoogle Scholar
  5. [5]
    Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.CrossRefGoogle Scholar
  6. [6]
    Li, H. H.; Fu, Q. Q.; Xu, L.; Ma, S. Y.; Zheng, Y. R.; Liu, X. J.; Yu, S. H. Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis. Energy Environ. Sci. 2017, 10, 1751–1756.CrossRefGoogle Scholar
  7. [7]
    Dai, S.; Huang, T. H.; Yan, X. X.; Yang, C. Y.; Chen, T. Y.; Wang, J. H.; Pan, X. Q.; Wang, K. W. Promotion of ternary Pt-Sn-Ag catalysts toward ethanol oxidation reaction: Revealing electronic and structural effects of additive metals. ACS Energy Lett. 2018, 3, 2550–2557.CrossRefGoogle Scholar
  8. [8]
    Song, P. P.; Cui, X. N.; Shao, Q.; Feng, Y. G.; Zhu, X.; Huang, X. Q. Networked Pt-Sn nanowires as efficient catalysts for alcohol electrooxidation. J. Mater. Chem. A 2017, 5, 24626–24630.CrossRefGoogle Scholar
  9. [9]
    Chung, D. Y.; Yoo, J. M.; Sung, Y. E. Highly durable and active Pt-based nanoscale design for fuel-cell oxygen-reduction electrocatalysts. Adv. Mater. 2018, 30, 1704123.CrossRefGoogle Scholar
  10. [10]
    Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.CrossRefGoogle Scholar
  11. [11]
    Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.CrossRefGoogle Scholar
  12. [12]
    Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352, 73–76.CrossRefGoogle Scholar
  13. [13]
    Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.CrossRefGoogle Scholar
  14. [14]
    Jiang, K. Z.; Zhao, D. D.; Guo, S. J.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Q. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Sci. Adv. 2017, 3, e1601705.CrossRefGoogle Scholar
  15. [15]
    Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.CrossRefGoogle Scholar
  16. [16]
    Pei, J. J.; Mao, J. J.; Liang, X.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Ultrathin Pt-Zn nanowires: High-performance catalysts for electrooxidation of methanol and formic acid. ACS Sustainable Chem. Eng. 2018, 6, 77–81.CrossRefGoogle Scholar
  17. [17]
    Qi, Z. Y.; Xiao, C. X.; Liu, C.; Goh, T. W.; Zhou, L.; Maligal-Ganesh, R.; Pei, Y. C.; Li, X. L.; Curtiss, L. A.; Huang, W. Y. Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J. Am. Chem. Soc. 2017, 139, 4762–4768.CrossRefGoogle Scholar
  18. [18]
    Wang, H. J.; Yu, H. J.; Yin, S. L.; Li, Y. H.; Xue, H. R.; Li, X. N.; Xu, Y.; Wang, L. One-step fabrication of bimetallic PtNi mesoporous nanospheres as an efficient catalyst for the oxygen reduction reaction. Nanoscale 2018, 10, 16087–16093.CrossRefGoogle Scholar
  19. [19]
    Huang, H. W.; Li, K.; Chen, Z.; Luo, L. H.; Gu, Y. Q.; Zhang, D. Y.; Ma, C.; Si, R.; Yang, J. L.; Peng, Z. M. et al. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. J. Am. Chem. Soc. 2017, 139, 8152–8159.CrossRefGoogle Scholar
  20. [20]
    Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.CrossRefGoogle Scholar
  21. [21]
    Lu, S. Q.; Zhuang, Z. B. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 2017, 139, 5156–5163.CrossRefGoogle Scholar
  22. [22]
    Xiao, W. P.; Cordeiro, M. A. L.; Gong, M. X.; Han, L. L.; Wang, J.; Bian, C.; Zhu, J.; Xin, H. L.; Wang, D. L. Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size. J. Mater. Chem. A 2017, 5, 9867–9872.CrossRefGoogle Scholar
  23. [23]
    Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.CrossRefGoogle Scholar
  24. [24]
    Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.CrossRefGoogle Scholar
  25. [25]
    Guo, S. J.; Zhang, S.; Su, D.; Sun, S. H. Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 13879–13884.CrossRefGoogle Scholar
  26. [26]
    Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 2018, 30, 1705515.CrossRefGoogle Scholar
  27. [27]
    Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.CrossRefGoogle Scholar
  28. [28]
    Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.CrossRefGoogle Scholar
  29. [29]
    Zhang, N.; Feng, Y. G.; Zhu, X.; Guo, S. J.; Guo, J.; Huang, X. Q. Superior bifunctional liquid fuel oxidation and oxygen reduction electrocatalysis enabled by PtNiPd core-shell nanowires. Adv. Mater. 2017, 29, 1603774.CrossRefGoogle Scholar
  30. [30]
    Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem. 2014, 126, 12730–12735.CrossRefGoogle Scholar
  31. [31]
    Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett. 2016, 16, 5037–5043.CrossRefGoogle Scholar
  32. [32]
    Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.CrossRefGoogle Scholar
  33. [33]
    Xue, L. F.; Li, Y. C.; Liu, X. F.; Liu, Q. T.; Shang, J. X.; Duan, H. P.; Dai, L. M.; Shui, J. L. Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 2018, 9, 3819.CrossRefGoogle Scholar
  34. [34]
    Chen, Q. L.; Zhang, J. W.; Jia, Y. Y.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances. Nanoscale 2014, 6, 7019–7024.CrossRefGoogle Scholar
  35. [35]
    Zhang, L.; Choi, S. I.; Tao, J.; Peng, H. C.; Xie, S. F.; Zhu, Y. M.; Xie, Z. X.; Xia, Y. N. Pd-Cu bimetallic tripods: A mechanistic understanding of the synthesis and their enhanced electrocatalytic activity for formic acid oxidation. Adv. Funct. Mater. 2014, 24, 7520–7529.CrossRefGoogle Scholar
  36. [36]
    Day, R. W.; Mankin, M. N.; Gao, R. X.; No, Y. S.; Kim, S. K.; Bell, D. C.; Park, H. G.; Lieber, C. M. Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates. Nat. Nanotechnol. 2015, 10, 345–352.CrossRefGoogle Scholar
  37. [37]
    Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.CrossRefGoogle Scholar
  38. [38]
    Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.CrossRefGoogle Scholar
  39. [39]
    Wu, Y. S.; Liu, X. J.; Han, D. D.; Song, X. Y.; Shi, L.; Song, Y.; Niu, S. W.; Xie, Y. F.; Cai, J. Y.; Wu, S. Y. et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425.CrossRefGoogle Scholar
  40. [40]
    Abe, H.; Yoshikawa, H.; Umezawa, N.; Xu, Y.; Saravanan, G.; Ramesh, G. V.; Tanabe, T.; Kodiyath, R.; Ueda, S.; Sekido, N. et al. Correlation between the surface electronic structure and CO-oxidation activity of Pt alloys. Phys. Chem. Chem. Phys. 2015, 17, 4879–4887.CrossRefGoogle Scholar
  41. [41]
    Feng, J. R.; Lv, F.; Zhang, W. Y.; Li, P. H.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J. H.; Lin, F. et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater. 2017, 29, 1703798.CrossRefGoogle Scholar
  42. [42]
    Huang, H. W.; Jia, H. H.; Liu, Z.; Gao, P. F.; Zhao, J. T.; Luo, Z. L.; Yang, J. L.; Zeng, J. Understanding of strain effects in the electrochemical reduction of CO2: Using Pd nanostructures as an ideal platform. Angew. Chem. 2017, 129, 3648–3652.CrossRefGoogle Scholar
  43. [43]
    Li, J. R.; Xi, Z.; Pan, Y. T.; Spendelow, J. S.; Duchesne, P. N.; Su, D.; Li, Q.; Yu, C.; Yin, Z. Y.; Shen, B. et al. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells. J. Am. Chem. Soc. 2018, 140, 2926–2932.CrossRefGoogle Scholar
  44. [44]
    Duchesne, P. N.; Chen, G. X.; Zheng, N. F.; Zhang, P. Local structure, electronic behavior, and electrocatalytic reactivity of CO-reduced platinum-iron oxide nanoparticles. J. Phys. Chem. C 2013, 117, 26324–26333.CrossRefGoogle Scholar
  45. [45]
    Jackson, C.; Smith, G. T.; Inwood, D. W.; Leach, A. S.; Whalley, P. S.; Callisti, M.; Polcar, T.; Russell, A. E.; Levecque, P.; Kramer, D. Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum. Nat. Commun. 2017, 8, 15802.CrossRefGoogle Scholar
  46. [46]
    Cybulskis, V. J.; Bukowski, B. C.; Tseng, H. T.; Gallagher, J. R.; Wu, Z. W.; Wegener, E.; Kropf, A. J.; Ravel, B.; Ribeiro, F. H.; Greeley, J. et al. Zinc promotion of platinum for catalytic light alkane dehydrogenation: Insights into geometric and electronic effects. ACS Catal. 2017, 7, 4173–4181.CrossRefGoogle Scholar
  47. [47]
    Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yanchao Xu
    • 1
  • Xiaoqiang Cui
    • 1
    Email author
  • Shuting Wei
    • 1
  • Qinghua Zhang
    • 2
  • Lin Gu
    • 2
  • Fanqi Meng
    • 2
  • Jinchang Fan
    • 1
  • Weitao Zheng
    • 1
    Email author
  1. 1.State Key Laboratory of Automotive Simulation and Control, School of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOE and Jilin UniversityChangchunChina
  2. 2.Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations