The fabrication and application of Ni-DNA nanowire-based nanoelectronic devices

  • Pang-Chia Chang
  • Chia-Yu Chang
  • Wen-Bin JianEmail author
  • Chiun-Jye Yuan
  • Yu-Chang Chen
  • Chia-Ching ChangEmail author
Review Article


DNA is a self-assembled, double stranded natural molecule that can chelate and align nickel ions between its base pairs. The fabrication of a DNA-guided nickel ion chain (Ni-DNA) device was successful, as indicated by the conducting currents exhibiting a Ni ion redox reaction-driven negative differential resistance effect, a property unique to mem-elements (1). The redox state of nickel ions in the Ni-DNA device is programmable by applying an external bias with different polarities and writing times (2). The multiple states of Ni-DNA-based memristive and memcapacitive systems were characterized (3). As such, the development of Ni-DNA nanowire device-based circuits in the near future is proposed.


DNA-guided nickel ion chain (Ni-DNA) negative differential resistance (NDR) memristive system memcapacitive system nanowire 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Ms. Ya-Hui Lin is acknowledged herein for preparing the DNA samples used in this study.


  1. [1]
    Friedman, R. S.; McAlpine, M. C.; Ricketts, D. S.; Ham, D.; Lieber, C. M. Nanotechnology: High-speed integrated nanowire circuits. Nature 2005, 434, 1085.CrossRefGoogle Scholar
  2. [2]
    Garnett, E. C.; Brongersma, M. L.; Cui, Y.; McGehee, M. D. Nanowire solar cells. Annu. Rev. Mater. Res. 2011, 41, 269–295.CrossRefGoogle Scholar
  3. [3]
    Liu, X.; He, L. C.; Zheng, J. Z.; Guo, J.; Bi, F.; Ma, X.; Zhao, K.; Liu, Y. L.; Song, R.; Tang, Z. Y. Solar-light-driven renewable butanol separation by core-shell Ag@ZIF-8 nanowires. Adv. Mater. 2015, 27, 3273–3277.CrossRefGoogle Scholar
  4. [4]
    Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on singlelayered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.CrossRefGoogle Scholar
  5. [5]
    Li, Z. T.; Zhu, Z. N.; Liu, W. J.; Zhou, Y. L.; Han, B.; Gao, Y.; Tang, Z. Y. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 2012, 134, 3322–3325.CrossRefGoogle Scholar
  6. [6]
    Hahm, J. I.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.CrossRefGoogle Scholar
  7. [7]
    Chung, S. W.; Yu, J. Y.; Heath, J. R. Silicon nanowire devices. Appl. Phys. Lett. 2000, 76, 2068–2070.CrossRefGoogle Scholar
  8. [8]
    Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.CrossRefGoogle Scholar
  9. [9]
    Zeng, X. L.; Otnes, G.; Heurlin, M.; Mourão, R. T.; Borgström, M. T. InP/GaInP nanowire tunnel diodes. Nano Res. 2018, 11, 2523–2531.CrossRefGoogle Scholar
  10. [10]
    Huang, Y.; Duan, X. F.; Cui, Y.; Lieber, C. M. Gallium nitride nanowire nanodevices. Nano Lett. 2002, 2, 101–104.CrossRefGoogle Scholar
  11. [11]
    Chèze, C.; Geelhaar, L.; Brandt, O.; Weber, W. M.; Riechert, H.; Munch, S.; Rothemund, R.; Reitzenstein, S.; Forchel, A.; Kehagias, T. et al. Direct comparison of catalyst-free and catalyst-induced GaN nanowires. Nano Res. 2010, 3, 528–536.CrossRefGoogle Scholar
  12. [12]
    Heo, Y. W.; Tien, L. C.; Kwon, Y.; Norton, D. P.; Pearton, S. J.; Kang, B. S.; Ren, F. Depletion-mode ZnO nanowire field-effect transistor. Appl. Phys. Lett. 2004, 85, 2274–2276.CrossRefGoogle Scholar
  13. [13]
    Xu, F.; Qin, Q. Q.; Mishra, A.; Gu, Y.; Zhu, Y. Mechanical properties of ZnO nanowires under different loading modes. Nano Res. 2010, 3, 271–280.CrossRefGoogle Scholar
  14. [14]
    Lai, J. J.; Li, Y. H.; Feng, B. R.; Tang, S. J.; Jian, W. B.; Fu, C. M.; Chen, J. T.; Wang, X.; Lee, P. S. Interplay of nanoscale, hybrid P3HT/ZTO interface on optoelectronics and photovoltaic cells. ACS Appl. Mater. Interfaces 2017, 9, 33212–33219.CrossRefGoogle Scholar
  15. [15]
    Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.CrossRefGoogle Scholar
  16. [16]
    Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.CrossRefGoogle Scholar
  17. [17]
    Lin, Y. F.; Chen, C. H.; Xie, W. J.; Yang, S. H.; Hsu, C. S.; Lin, M. T.; Jian, W. B. Nano approach investigation of the conduction mechanism in polyaniline nanofibers. Acs Nano 2011, 5, 1541–1548.CrossRefGoogle Scholar
  18. [18]
    Lin, Y. F.; Chiu, S. C.; Wang, S. T.; Fu, S. K.; Chen, C. H.; Xie, W. J.; Yang, S. H.; Hsu, C. S.; Chen, J. F.; Zhou, X. F. et al. Dielectrophoretic placement of quasi-zero-, one-, and two-dimensional nanomaterials into nanogap for electrical characterizations. Electrophoresis 2012, 33, 2475–2481.CrossRefGoogle Scholar
  19. [19]
    Lin, Y. F.; Jian, W. B. The impact of nanocontact on nanowire based nanoelectronics. Nano Lett. 2008, 8, 3146–3150.CrossRefGoogle Scholar
  20. [20]
    Chu, H. L.; Chiu, S. C.; Sung, C. F.; Tseng, W.; Chang, Y. C.; Jian, W. B.; Chen, Y. C.; Yuan, C. J.; Li, H. Y.; Gu, F. X. et al. Programmable redox state of the nickel ion chain in DNA. Nano Lett. 2014, 14, 1026–1031.CrossRefGoogle Scholar
  21. [21]
    Chu, H. L.; Lai, J. J.; Wu, L. Y.; Chang, S. L.; Liu, C. M.; Jian, W. B.; Chen, Y. C.; Yuan, C. J.; Wu, T. S.; Soo, Y. L. et al. Exploration and characterization of the memcapacitor and memristor properties of Ni-DNA nanowire devices. NPG Asia Mater. 2017, 9, e430.CrossRefGoogle Scholar
  22. [22]
    Song, I. K.; Barteau, M. A. Correlation of negative differential resistance (NDR) peak voltages of nanostructured heteropolyacid (HPA) monolayers with one electron reduction potentials of HPA catalysts. Langmuir 2004, 20, 1850–1855.CrossRefGoogle Scholar
  23. [23]
    Tang, Q.; Moon, H. K.; Lee, Y.; Yoon, S. M.; Song, H. J.; Lim, H.; Choi, H. C. Redox-mediated negative differential resistance behavior from metalloproteins connected through carbon nanotube nanogap electrodes. J. Am. Chem. Soc. 2007, 129, 11018–11019.CrossRefGoogle Scholar
  24. [24]
    Zheng, L.; Sun, B.; Mao, S. S.; Zhu, S. H.; Zheng, P. P.; Zhang, Y.; Lei, M.; Zhao, Y. Metal ions redox induced repeatable nonvolatile resistive switching memory behavior in biomaterials. ACS Appl. Bio Mater. 2018, 1, 496–501.CrossRefGoogle Scholar
  25. [25]
    Eigler, D. M.; Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 1990, 344, 524–526.CrossRefGoogle Scholar
  26. [26]
    Clérac, R.; Cotton, F. A.; Dunbar, K. R.; Murillo, C. A.; Pascual, I.; Wang, X. P. Further study of the linear trinickel(II) complex of dipyridylamide. Inorg. Chem. 1999, 38, 2655–2657.CrossRefGoogle Scholar
  27. [27]
    Chang, H. C.; Li, J. T.; Wang, C. C.; Lin, T. W.; Lee, H. C.; Lee, G. H.; Peng, S. M. Linear five-centred chromium multiple bonds bridged by four tpda2− ligands [tpda2− = tripyridyldiamido dianion]—Synthesis and structural studies. Eur. J. Inorg. Chem. 1999, 1999, 1243–1251.CrossRefGoogle Scholar
  28. [28]
    Berry, J. F.; Cotton, F. A.; Fewox, C. S.; Lu, T. B.; Murillo, C. A.; Wang, X. P. Extended metal atom chains (EMACs) of five chromium or cobalt atoms: Symmetrical or unsymmetrical? Dalton Trans. 2004, 2297–2302.Google Scholar
  29. [29]
    Peng, S. M.; Wang, C. C.; Jang, Y. L.; Chen, Y. H.; Li, F. Y.; Mou, C. Y.; Leung, M. K. One-dimensional metal string complexes. J. Magn. Magn. Mater. 2000, 209, 80–83.CrossRefGoogle Scholar
  30. [30]
    Ismayilov, R. H.; Wang, W. Z.; Lee, G. H.; Yeh, C. Y.; Hua, S. A.; Song, Y.; Rohmer, M. M.; Bénard, M.; Peng, S. M. Two linear undecanickel mixed-valence complexes: Increasing the size and the scope of the electronic properties of nickel metal strings. Angew. Chem., Int. Ed. 2011, 50, 2045–2048.CrossRefGoogle Scholar
  31. [31]
    Chen, I. W. P.; Fu, M. D.; Tseng, W. H.; Yu, J. Y.; Wu, S. H.; Ku, C. J.; Chen, C. H.; Peng, S. M. Conductance and stochastic switching of ligandsupported linear chains of metal atoms. Angew. Chem., Int. Ed. 2006, 45, 5814–5818.CrossRefGoogle Scholar
  32. [32]
    Pandian, S. R. K.; Yuan, C. J.; Lin, C. C.; Wang, W. H.; Chang, C. C. DNA-based nanowires and nanodevices. Adv. Phys. X 2017, 2, 22–34.Google Scholar
  33. [33]
    Keren, K.; Berman, R. S.; Buchstab, E.; Sivan, U.; Braun, E. DNA-templated carbon nanotube field-effect transistor. Science 2003, 302, 1380–1382.CrossRefGoogle Scholar
  34. [34]
    Zhang, J. P.; Liu, Y.; Ke, Y. G.; Yan, H. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 2006, 6, 248–251.CrossRefGoogle Scholar
  35. [35]
    Ke, Y. G.; Voigt, N. V.; Gothelf, K. V.; Shih, W. M. Multilayer DNA origami packed on hexagonal and hybrid lattices. J. Am. Chem. Soc. 2012, 134, 1770–1774.CrossRefGoogle Scholar
  36. [36]
    Majumder, U.; Rangnekar, A.; Gothelf, K. V.; Reif, J. H.; LaBean, T. H. Design and construction of double-decker tile as a route to three-dimensional periodic assembly of DNA. J. Am. Chem. Soc. 2011, 133, 3843–3845.CrossRefGoogle Scholar
  37. [37]
    Gates, E. P.; Dearden, A. M.; Woolley, A. T. DNA-templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry. Crit. Rev. Anal. Chem. 2014, 44, 354–370.CrossRefGoogle Scholar
  38. [38]
    Amir, Y.; Ben-Ishay, E.; Levner, D.; Ittah, S.; Abu-Horowitz, A.; Bachelet, I. Universal computing by DNA origami robots in a living animal. Nat Nanotechnol 2014, 9, 353–357.CrossRefGoogle Scholar
  39. [39]
    Zadegan, R. M.; Jepsen, M. D. E.; Hildebrandt, L. L.; Birkedal, V.; Kjems, J. Construction of a fuzzy and boolean logic gates based on DNA. Small 2015, 11, 1811–1817.CrossRefGoogle Scholar
  40. [40]
    Del Grosso, E.; Dallaire, A. M.; Vallée-Bélisle, A.; Ricci, F. Enzyme-operated DNA-based nanodevices. Nano Lett. 2015, 15, 8407–8411.CrossRefGoogle Scholar
  41. [41]
    Yurke, B.; Turberfield, A. J.; Mills, Jr. A. P.; Simmel, F. C.; Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 2000, 406, 605–608.CrossRefGoogle Scholar
  42. [42]
    Liedl, T.; Olapinski, M.; Simmel, F. C. A surface-bound DNA switch driven by a chemical oscillator. Angew. Chem., Int. Ed. 2006, 45, 5007–5010.CrossRefGoogle Scholar
  43. [43]
    Surana S.; Modi, S.; Krishnan, Y. An autonomous DNA nanodevice captures pH maps of living cells in culture and in vivo. In Proceedings of the 17th International Conference on DNA Computing and Molecular Programming, Pasadena, CA, USA, 2011, pp 22–31.CrossRefGoogle Scholar
  44. [44]
    Jangjian, P. C.; Liu, T. F.; Li, M. Y.; Tsai, M. S.; Chang, C. C. Room temperature negative differential resistance in DNA-based molecular devices. Appl. Phys. Lett. 2009, 94, 043105.CrossRefGoogle Scholar
  45. [45]
    Jangjian, P. C.; Liu, T. F.; Tsai, C. M.; Li, M. Y.; Tsai, M. S.; Tseng, S. H.; Cheng, T. M.; Chang, C. C. DNA mismatch detection by metal ion enhanced impedance analysis. Chin. J. Phys. 2009, 47, 740–747.Google Scholar
  46. [46]
    Tseng, S. H.; JangJian, P. C.; Tsai, C. M.; Cheng, T. M.; Chu, H. L.; Chang, Y. C.; Chung, W. H.; Chang, C. C. Ni2+-enhanced charge transport via π‒π stacking corridor in metallic DNA. Biophys. J. 2011, 100, 1042–1048.CrossRefGoogle Scholar
  47. [47]
    Rakitin, A.; Aich, P.; Papadopoulos, C.; Kobzar, Y.; Vedeneev, A. S.; Lee, J. S.; Xu, J. M. Metallic conduction through engineered DNA: DNA nanoelectronic building blocks. Phys. Rev. Lett. 2001, 86, 3670–3673.CrossRefGoogle Scholar
  48. [48]
    Wood, D. O.; Dinsmore, M. J.; Bare, G. A.; Lee, J. S. M-DNA is stabilised in G•C tracts or by incorporation of 5-fluorouracil. Nucleic Acids Res. 2002, 30, 2244–2250.CrossRefGoogle Scholar
  49. [49]
    Jian, P. C. J.; Liu, T. F.; Tsai, C. M.; Tsai, M. S.; Chang, C. C. Ni2+ doping DNA: A semiconducting biopolymer. Nanotechnology 2008, 19, 355703.CrossRefGoogle Scholar
  50. [50]
    Dobre, C.; Xhafa, F. Intelligent services for Big Data science. Future Gener. Comput. Syst. 2014, 37, 267–281.CrossRefGoogle Scholar
  51. [51]
    Feynman, R. P. There’s plenty of room at the bottom. Caltech. Eng. Sci. 1960, 23, 22–36.Google Scholar
  52. [52]
    Ruiz, R.; Kang, H. M.; Detcheverry, F. A.; Dobisz, E.; Kercher, D. S.; Albrecht, T. R.; de Pablo, J. J.; Nealey, P. F. Density multiplication and improved lithography by directed block copolymer assembly. Science 2008, 321, 936–939.CrossRefGoogle Scholar
  53. [53]
    Mendes, P. M.; Jacke, S.; Critchley, K.; Plaza, J.; Chen, Y.; Nikitin, K.; Palmer, R. E.; Preece, J. A.; Evans, S. D.; Fitzmaurice, D. Gold nanoparticle patterning of silicon wafers using chemical e-beam lithography. Langmuir 2004, 20, 3766–3768.CrossRefGoogle Scholar
  54. [54]
    Wolpert, D.; Behnen, E.; Sigal, L.; Chan, Y.; Téllez, G. E.; Bradley, D.; Serton, R.; Veerabhadraiah, R.; Ansley, W.; Bianchi, A. et al. IBM z14: Enabling physical design in 14-nm technology for high-performance, high-reliability microprocessors. IBM J. Res. Dev. 2018, 62, 10:1–10:14.CrossRefGoogle Scholar
  55. [55]
    Topol, A. W.; La Tulipe, D. C.; Shi, L.; Frank, D. J.; Bernstein, K.; Steen, S. E.; Kumar, A.; Singco, G. U.; Young, A. M.; Guarini, K. W. et al. Threedimensional integrated circuits. IBM J. Res. Dev. 2006, 50, 491–506.CrossRefGoogle Scholar
  56. [56]
    Lakshmanan, V. H.; Gayathri, S. A basic architecture for a multistate memory system using nano-antennas. In Proceedings of the 4th IEEE Conference on Nanotechnology, Munich, Germany, 2004, pp 74–76.Google Scholar
  57. [57]
    Avci, C. O.; Mann, M.; Tan, A. J.; Gambardella, P.; Beach, G. S. D. A multistate memory device based on the unidirectional spin Hall magnetoresistance. Appl. Phys. Lett. 2017, 110, 203506.CrossRefGoogle Scholar
  58. [58]
    Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat Nanotechnol. 2013, 8, 13–24.CrossRefGoogle Scholar
  59. [59]
    Carter, D. E. Oxidation-reduction reactions of metal ions. Environ Health Perspect. 1995, 103, 17–19.Google Scholar
  60. [60]
    Pershin, Y. V.; Martinez-Rinconl, J.; Di Ventra, M. Memory circuit elements: From systems to applications. J. Comput. Theor. Nanos. 2011, 8, 441–448.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pang-Chia Chang
    • 1
  • Chia-Yu Chang
    • 2
    • 3
  • Wen-Bin Jian
    • 1
    Email author
  • Chiun-Jye Yuan
    • 2
    • 3
  • Yu-Chang Chen
    • 3
  • Chia-Ching Chang
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Electrophysics“National Chiao Tung University”HsinchuChina
  2. 2.Department of Biological Science and Technology“National Chiao Tung University”HsinchuChina
  3. 3.Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B)“National Chiao Tung University”HsinchuChina
  4. 4.Institute of Physics“Academia Sinica”TaipeiChina

Personalised recommendations