The impact of fluorination on both donor polymer and non-fullerene acceptor: The more fluorine, the merrier


Fluorination of the donor polymer or non-fullerene acceptor (NFA) in an organic photovoltaic device is an effective method to improve device efficiency. Although there have been many studies on donor polymer fluorination, blends containing both a fluorinated donor and fluorinated NFA have rarely been reported. In this study, we use two donor polymers (4′-FT-HTAZ and 4′-FT-FTAZ) and two NFAs (ITIC-Th and ITIC-Th1) with different amounts of fluorine (from 2F to 6F) to investigate how the degree of fluorination in a blend impacts device performance. We find that fluorinating the NFA leads to a higher short-circuit current density (Jsc) and fill factor (FF), however, the open-circuit voltage (Voc) is decreased due to a depressed lowest unoccupied molecular orbital (LUMO) level. Adding additional fluorine to the donor polymer does not have a large effect on the Jsc or FF, but it does lead to an improved Voc. By fluorinating the NFA and having more fluorine on the donor polymer, we obtain both a high Jsc and Voc simultaneously, leading to a power conversion efficiency over 10% in the case of 4′-FT-FTAZ:ITIC-Th1, which has the most amount of fluorine (6F).

This is a preview of subscription content, access via your institution.


  1. [1]

    Zhang, Q. Q.; Kelly, M. A.; Bauer, N.; You, W. The curious case of fluorination of conjugated polymers for solar cells. Acc. Chem. Res. 2017, 50, 2401–2409.

    Article  Google Scholar 

  2. [2]

    Leclerc, N.; Chávez, P.; Ibraikulov, O. A.; Heiser, T.; Lévêque, P. Impact of backbone fluorination on π-conjugated polymers in organic photovoltaic devices: A review. Polymers 2016, 8, 11.

    Article  Google Scholar 

  3. [3]

    Meyer, F. Fluorinated conjugated polymers in organic bulk heterojunction photovoltaic solar cells. Prog. Polym. Sci. 2015, 47, 70–91.

    Article  Google Scholar 

  4. [4]

    Xu, X. P.; Li, Y.; Luo, M. M.; Peng, Q. Recent progress towards fluorinated copolymers for efficient photovoltaic applications. Chin. Chem. Lett. 2016, 27, 1241–1249.

    Article  Google Scholar 

  5. [5]

    Liang, Y. Y.; Feng, D. Q.; Wu, Y.; Tsai, S. T.; Li, G.; Ray, C.; Yu, L. P. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J. Am. Chem. Soc. 2009, 131, 7792–7799.

    Article  Google Scholar 

  6. [6]

    Chen, H. Y.; Hou, J. H.; Zhang, S. Q.; Liang, Y. Y.; Yang, G. W.; Yang, Y.; Yu, L. P.; Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 2009, 3, 649–653.

    Article  Google Scholar 

  7. [7]

    Zhou, H. X.; Yang, L. Q.; Stuart, A. C.; Price, S. C.; Liu, S. B.; You, W. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew. Chem., Int. Ed. 2011, 50, 2995–2998.

    Article  Google Scholar 

  8. [8]

    Price, S. C.; Stuart, A. C.; Yang, L. Q.; Zhou, H. X.; You, W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer.fullerene solar cells. J. Am. Chem. Soc. 2011, 133, 4625–4631.

    Article  Google Scholar 

  9. [9]

    Zhang, Q. Q.; Yan, L.; Jiao, X. C.; Peng, Z. X.; Liu, S. B.; Rech, J. J.; Klump, E.; Ade, H.; So, F.; You, W. Fluorinated thiophene units improve photovoltaic device performance of donor.acceptor copolymers. Chem. Mater. 2017, 29, 5990–6002.

    Article  Google Scholar 

  10. [10]

    Long, X. J.; Dou, C. D.; Liu, J.; Wang, L. X. Fine-tuning LUMO energy levels of conjugated polymers containing a B←N unit. Macromolecules 2017, 50, 8521–8528.

    Article  Google Scholar 

  11. [11]

    Cai, M.; Bao, X. C.; Liu, Y. F.; Li, C. C.; Wang, X.; Lan, Z. G.; Yang, R. Q.; Wan, X. B. Unexpected opposite influences of para vs. ortho backbone fluorination on the photovoltaic performance of a wide-bandgap conjugated polymer. Chem. Mater. 2017, 29, 9162–9170.

    Article  Google Scholar 

  12. [12]

    Yu, J. W.; Yang, J.; Zhou, X.; Yu, S. M.; Tang, Y. M.; Wang, H.; Chen, J. H.; Zhang, S. M.; Guo, X. G. Phthalimide-based wide bandgap donor polymers for efficient non-fullerene solar cells. Macromolecules 2017, 50, 8928–8937.

    Article  Google Scholar 

  13. [13]

    Deng, D.; Zhang, Y. J.; Zhang, J. Q.; Wang, Z. Y.; Zhu, L. Y.; Fang, J.; Xia, B. Z.; Wang, Z.; Lu, K.; Ma, W. et al. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat. Commun. 2016, 7, 13740.

    Article  Google Scholar 

  14. [14]

    Zhang, G. J.; Xu, X. P.; Bi, Z. Z.; Ma, W.; Tang, D. S.; Li, Y.; Peng, Q. Fluorinated and alkylthiolated polymeric donors enable both efficient fullerene and nonfullerene polymer solar cells. Adv. Funct. Mater. 2018, 28, 1706404.

    Article  Google Scholar 

  15. [15]

    Peng, R. P.; Guo, H.; Xiao, J. B.; Wang, G.; Tan, S. T.; Zhao, B.; Guo, X.; Li, Y. F. Synergistic effect of fluorine substitution and thio-alkylation on photovoltaic performances of alternating conjugated polymers based on alkylthio-substituted benzothiadiazole-quaterthiophene. ACS Appl. Energy Mater. 2018, 1, 2192–2199.

    Article  Google Scholar 

  16. [16]

    Weng, K. K.; Xue, X. N.; Qi, F.; Zhang, Y.; Huo, L. J.; Zhang, J. Q.; Wei, D. H.; Wan, M. X.; Sun, Y. M. Synergistic effects of fluorination and alkylthiolation on the photovoltaic performance of the poly(benzodithiophenebenzothiadiazole) copolymers. ACS Appl. Energy Mater. 2018, 1, 4686–4694.

    Article  Google Scholar 

  17. [17]

    Gao, Y. Y.; Wang, Z.; Zhang, J. Q.; Zhang, H.; Lu, K.; Guo, F. Y.; Wei, Z. X.; Yang, Y. L.; Zhao, L. C.; Zhang, Y. Wide-bandgap conjugated polymers based on alkylthiofuran-substituted benzo[1,2-b:4,5-b’]difuran for efficient fullerene-free polymer solar cells. Macromolecules 2018, 51, 2498–2505.

    Article  Google Scholar 

  18. [18]

    Song, S.; Kim, S.; Kim, W.; Park, S. S.; Park, S. H.; Jin, Y. Synthesis and photovoltaic properties of copolymers with a fluoro quinoxaline unit. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 821–830.

    Article  Google Scholar 

  19. [19]

    Bauer, N.; Zhang, Q. Q.; Zhu, J. S.; Peng, Z. X.; Yan, L.; Zhu, C. H.; Ade, H.; Zhan, X. W.; You, W. Donor polymer fluorination doubles the efficiency in non-fullerene organic photovoltaics. J. Mater. Chem. A 2017, 5, 22536–22541.

    Article  Google Scholar 

  20. [20]

    Yang, J.; Uddin, M. A.; Tang, Y. M.; Wang, Y. L.; Wang, Y.; Su, H. M.; Gao, R. T.; Chen, Z. K.; Dai, J. F.; Woo, H. Y. et al. Quinoxaline-based wide band gap polymers for efficient nonfullerene organic solar cells with large open-circuit voltages. ACS Appl. Mater. Interfaces 2018, 10, 23235–23246.

    Article  Google Scholar 

  21. [21]

    Xie, R. H.; Ying, L.; Liao, H. L.; Chen, Z. X.; Huang, F.; Cao, Y. Efficient non-fullerene organic solar cells enabled by sequential fluorination of small-molecule electron acceptors. Front. Chem. 2018, 6, 303.

    Article  Google Scholar 

  22. [22]

    Fan, Q. P.; Su, W. Y.; Wang, Y.; Guo, B.; Jiang, Y. F.; Guo, X.; Liu, F.; Russell, T. P.; Zhang, M. J.; Li, Y. F. Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency. Sci. China Chem. 2018, 61, 531–537.

    Article  Google Scholar 

  23. [23]

    Lin, Z. J.; Huang, K. X.; Wang, Z. L.; Chen, X. J.; Sun, J.; Xu, Z.; He, T.; Yin, S. C.; Li, M. M.; Zhang, Q. et al. Alkyl side-chain and fluorination engineering in the indeno[1,2-b]fluorene-based small-molecule acceptors for efficient non-fullerene organic solar cells. Dye. Pigment. 2019, 160, 432–438.

    Article  Google Scholar 

  24. [24]

    Lee, J.; Ko, S. J.; Seifrid, M.; Lee, H.; McDowell, C.; Luginbuhl, B. R.; Karki, A.; Cho, K.; Nguyen, T. Q.; Bazan, G. C. Design of nonfullerene acceptors with near-infrared light absorption capabilities. Adv. Energy Mater. 2018, 8, 1801209.

    Article  Google Scholar 

  25. [25]

    Li, T.; Zhang, H. H.; Xiao, Z.; Rech, J. J.; Niu, H. L.; You, W.; Ding, L. M. A carbon-oxygen-bridged hexacyclic ladder-type building block for low-bandgap nonfullerene acceptors. Mater. Chem. Front. 2018, 2, 700–703.

    Article  Google Scholar 

  26. [26]

    Dai, S. X.; Zhao, F. W.; Zhang, Q. Q.; Lau, T. K.; Li, T. F.; Liu, K.; Ling, Q. D.; Wang, C. R.; Lu, X. H.; You, W. et al. Fused nonacyclic electron acceptors for efficient polymer solar cells. J. Am. Chem. Soc. 2017, 139, 1336–1343.

    Article  Google Scholar 

  27. [27]

    Li, Z. Y.; Dai, S. X.; Xin, J. M.; Zhang, L.; Wu, Y.; Rech, J.; Zhao, F. W.; Li, T. F.; Liu, K.; Liu, Q. et al. Enhancing the performance of the electron acceptor ITIC-Th via tailoring its end groups. Mater. Chem. Front. 2018, 2, 537–543.

    Article  Google Scholar 

  28. [28]

    Zhao, F. W.; Dai, S. X.; Wu, Y.; Zhang, Q. Q.; Wang, J. Y.; Jiang, L.; Ling, Q. D.; Wei, Z. X.; Ma, W.; You, W. et al. Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency. Adv. Mater. 2017, 29, 1700144.

    Article  Google Scholar 

  29. [29]

    Zhao, W. C.; Li, S. S.; Yao, H. F.; Zhang, S. Q.; Zhang, Y.; Yang, B.; Hou, J. H. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 2017, 139, 7148–7151.

    Article  Google Scholar 

  30. [30]

    Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H.-L.; Lau, T.-K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule in press, DOI:

  31. [31]

    Hexemer, A.; Bras, W.; Glossinger, J.; Schaible, E.; Gann, E.; Kirian, R.; MacDowell, A.; Church, M.; Rude, B.; Padmore, H. A SAXS/WAXS/GISAXS beamline with multilayer monochromator. J. Phys. Conf. Ser. 2010, 247, 012007.

    Article  Google Scholar 

  32. [32]

    Gann, E.; Young, A. T.; Collins, B. A.; Yan, H.; Nasiatka, J.; Padmore, H. A.; Ade, H.; Hexemer, A.; Wang, C. Soft X-ray scattering facility at the Advanced Light Source with real-time data processing and analysis. Rev. Sci. Instrum. 2012, 83, 045110.

    Article  Google Scholar 

  33. [33]

    Kilcoyne, A. L. D.; Tyliszczak, T.; Steele, W. F.; Fakra, S.; Hitchcock, P.; Franck, K.; Anderson, E.; Harteneck, B.; Rightor, E. G.; Mitchell, G. E. et al. Interferometer-controlled scanning transmission X-ray microscopes at the advanced light source. J. Synchrotron Radiat. 2003, 10, 125–136.

    Article  Google Scholar 

  34. [34]

    Ilavsky, J. Nika: Software for two-dimensional data reduction. J. Appl. Crystallogr. 2012, 45, 324–328.

    Article  Google Scholar 

  35. [35]

    Aldrich, T. J.; Matta, M.; Zhu, W. G.; Swick, S. M.; Stern, C. L.; Schatz, G. C.; Facchetti, A.; Melkonyan, F. S.; Marks, T. J. Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response. J. Am. Chem. Soc. 2019, 141, 3274–3287.

    Article  Google Scholar 

  36. [36]

    Lakhwani, G.; Rao, A.; Friend, R. H. Bimolecular recombination in organic photovoltaics. Annu. Rev. Phys. Chem. 2014, 65, 557–581.

    Article  Google Scholar 

  37. [37]

    Cowan, S. R.; Roy, A.; Heeger, A. J. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 2010, 82, 245207.

    Article  Google Scholar 

  38. [38]

    Proctor, C. M.; Love, J. A.; Nguyen, T.-Q. Mobility guidelines for high fill factor solution-processed small molecule solar cells. Adv. Mater. 2014, 26, 5957–5961.

    Article  Google Scholar 

  39. [39]

    Li, W. T.; Albrecht, S.; Yang, L. Q.; Roland, S.; Tumbleston, J. R.; McAfee, T.; Yan, L.; Kelly, M. A.; Ade, H.; Neher, D. et al. Mobility-controlled performance of thick solar cells based on fluorinated copolymers. J. Am. Chem. Soc. 2014, 136, 15566–15576.

    Article  Google Scholar 

  40. [40]

    Würfel, U.; Neher, D.; Spies, A.; Albrecht, S. Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells. Nat. Commun. 2015, 6, 6951.

    Article  Google Scholar 

  41. [41]

    Bartesaghi, D.; del Carmen Pérez, I.; Kniepert, J.; Roland, S.; Turbiez, M.; Neher, D.; Koster, L. J. A. Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 2015, 6, 7083.

    Article  Google Scholar 

  42. [42]

    Bartelt, J. A.; Lam, D.; Burke, T. M.; Sweetnam, S. M.; McGehee, M. D. Charge-carrier mobility requirements for bulk heterojunction solar cells with high fill factor and external quantum efficiency > 90%. Adv. Energy Mater. 2015, 5, 1500577.

    Article  Google Scholar 

  43. [43]

    Chen, P.; Shi, S. B.; Wang, H.; Qiu, F. L.; Wang, Y. X.; Tang, Y. M.; Feng, J. R.; Guo, H.; Cheng, X.; Guo, X. G. Aggregation strength tuning in difluorobenzoxadiazole-based polymeric semiconductors for high-performance thick-film polymer solar cells. ACS Appl. Mater. Interfaces 2018, 10, 21481–21491.

    Article  Google Scholar 

  44. [44]

    Mukherjee, S.; Proctor, C. M.; Bazan, G. C.; Nguyen, T. Q.; Ade, H. Significance of average domain purity and mixed domains on the photovoltaic performance of high-efficiency solution-processed small-molecule BHJ solar cells. Adv. Energy Mater. 2015, 5, 1500877.

    Article  Google Scholar 

  45. [45]

    Zhou, H. X.; Yang, L. Q.; Liu, S. B.; You, W. A tale of current and voltage: Interplay of band gap and energy levels of conjugated polymers in bulk heterojunction solar cells. Macromolecules 2010, 43, 10390–10396.

    Article  Google Scholar 

Download references


N. B., Q. Z., J. R., Z. P., H. A., and W. Y. were supported by an NSF grant (CBET-1639429). N.B. was also supported by the Dissertation Completion Fellowship from the Graduate School at UNC. S. D., J. W., and X. Z. thank the National Natural Science Foundation of China (Nos. 51761165023 and 21734001). X-ray data was acquired at beamlines and 7.3.3 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. C. Wang, C. Zhu, and A.L.D. Kilcoyne are gratefully acknowledged for providing the beamline support at beamlines 7.3.3 and

Author information



Corresponding author

Correspondence to Wei You.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bauer, N., Zhang, Q., Rech, J.J. et al. The impact of fluorination on both donor polymer and non-fullerene acceptor: The more fluorine, the merrier. Nano Res. 12, 2400–2405 (2019).

Download citation


  • organic solar cells
  • non-fullerene acceptors
  • fluorination
  • bulk heterojunction