Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance

Abstract

A simple one-step thermal polymerization method was developed for synthesis of holey graphitic carbon nitride nanotubes, involving direct heating of mixtures of melamine and urea or melamine and cyanuric acid in specific mass ratios. Supramolecular structures formed between the precursor molecules guided nanotube formation. The porous and nanotubular structure of the nanotubes facilitated efficient charge carrier migration and separation, thereby enhancing photocatalytic H2 production in 20 vol.% lactic acid under visible light irradiation. Nanotubes synthesized using melamine and urea in a 1:10 mass ratio (denoted herein as CN-MU nanotubes) exhibited a photocatalytic hydrogen production rate of 1,073.6 μmol·h−1·g−1 with Pt as the cocatalyst, a rate of 4.7 and 3.1 times higher than traditional Pt/g-C3N4 photocatalysts prepared from graphitic carbon nitride (g-C3N4) obtained by direct thermal polymerization of melamine or urea, respectively. On the basis of their outstanding performance for photocatalytic H2 production, it is envisaged that the holey g-C3N4 nanotubes will find widespread uptake in other areas, including photocatalytic CO2 reduction, dye-sensitized solar cells and photoelectrochemical sensors.

References

  1. [1]

    Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    Article  Google Scholar 

  2. [2]

    Zhang, J. S.; Chen, Y.; Wang, X. C. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092–3108.

    Article  Google Scholar 

  3. [3]

    Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K. Visible-light-driven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts. Angew. Chem., Int. Ed. 2015, 54, 2406–2409.

    Article  Google Scholar 

  4. [4]

    Huang, J. H.; Ho, W.; Wang, X. C. Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination. Chem. Commun. 2014, 50, 4338–4340.

    Article  Google Scholar 

  5. [5]

    Su, F. Z.; Mathew, S. C.; Lipner, G.; Fu, X. Z.; Antonietti, M.; Blechert, S.; Wang, X. C. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 2010, 132, 16299–16301.

    Article  Google Scholar 

  6. [6]

    Xia, P. F.; Zhu, B. C.; Yu, J. G.; Cao, S. W.; Jaroniec, M. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A 2017, 5, 3230–3238.

    Article  Google Scholar 

  7. [7]

    Dong, F.; Zhao, Z. W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 11392–11401.

    Article  Google Scholar 

  8. [8]

    Liang, Q. H.; Li, Z.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 2015, 25, 6885–6892.

    Article  Google Scholar 

  9. [9]

    Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

    Google Scholar 

  10. [10]

    Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648.

    Article  Google Scholar 

  11. [11]

    Wang, Y.; Li, H. R.; Yao, J.; Wang, X. C.; Antonietti, M. Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C–H bond oxidation. Chem. Sci. 2011, 2, 446–450.

    Article  Google Scholar 

  12. [12]

    Li, J. H.; Shen, B.; Hong, Z. H.; Lin, B. Z.; Gao, B. F.; Chen, Y. L. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visiblelight photoreactivity. Chem. Commun. 2012, 48, 12017–12019.

    Article  Google Scholar 

  13. [13]

    Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 1730–1733.

    Article  Google Scholar 

  14. [14]

    Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.

    Article  Google Scholar 

  15. [15]

    Yao, L. H.; Wei, D.; Ni, Y. M.; Yan, D. P.; Hu, C. W. Surface localization of CdZnS quantum dots onto 2D g-C3N4 ultrathin microribbons: Highly efficient visible light-induced H2-generation. Nano Energy 2016, 26, 248–256.

    Article  Google Scholar 

  16. [16]

    Zhang, X. H.; Yu, L. J.; Zhuang, C. S.; Peng, T. Y.; Li, R. J.; Li, X. G. Highly asymmetric phthalocyanine as a sensitizer of graphitic carbon nitride for extremely efficient photocatalytic H2 production under near-infrared light. ACS Catal. 2014, 4, 162–170.

    Article  Google Scholar 

  17. [17]

    Zhang, Y. H.; Pan, Q. W.; Chai, G. Q.; Liang, M. R.; Dong, G. P.; Zhang, Q. Y.; Qiu, J. R. Synthesis and luminescence mechanism of multicoloremitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 2013, 3, 1943.

    Article  Google Scholar 

  18. [18]

    Bai, X. J.; Wang, L.; Zong, R. L.; Zhu, Y. F. Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C 2013, 117, 9952–9961.

    Article  Google Scholar 

  19. [19]

    Guo, Q. X.; Xie, Y.; Wang, X. J.; Zhang, S. Y.; Hou. T.; Lv, S. C. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzenethermal process at low temperatures. Chem. Commun. 2004, 26–27.

    Google Scholar 

  20. [20]

    Niu, P.; Zhang, L. L.; Liu, G.; Chen, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

    Article  Google Scholar 

  21. [21]

    Zhang, J. S.; Zhang, M. W.; Yang, C.; Wang, X. C. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 2014, 26, 4121–4126.

    Article  Google Scholar 

  22. [22]

    Zeng, Z. X.; Li, K. X.; Yan, L. S.; Dai, Y. H.; Guo, H. Q.; Huo, M. X.; Guo, Y. H. Fabrication of carbon nitride nanotubes by a simple water-induced morphological transformation process and their efficient visible-light photocatalytic activity. RSC Adv. 2014, 4, 59513–59518.

    Article  Google Scholar 

  23. [23]

    Tong, Z. W.; Yang, D.; Sun, Y. Y.; Nan, Y. H.; Jiang, Z. Y. Tubular g-C3N4 isotype heterojunction: Enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer. Small 2016, 12, 4093–4101.

    Article  Google Scholar 

  24. [24]

    Ran, J. R.; Ma, T. Y.; Gao, G. P.; Du, X. W.; Qiao, S. Z. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 2015, 8, 3708–3717.

    Article  Google Scholar 

  25. [25]

    Han, Q.; Wang, B.; Gao, J.; Cheng, Z. H.; Zhao, Y.; Zhang, Z. P.; Qu, L. T. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 2016, 10, 2745–2751.

    Article  Google Scholar 

  26. [26]

    Wang, S. P.; Li, C. J.; Wang, T.; Zhang, P.; Li, A.; Gong, J. L. Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties. J. Mater. Chem. A 2014, 2, 2885–2890.

    Article  Google Scholar 

  27. [27]

    Gao, J.; Zhou, Y.; Li, Z. S.; Yan, S. C.; Wang, N. Y.; Zou, Z. G. High-yield synthesis of millimeter-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity. Nanoscale 2012, 4, 3687–3692.

    Article  Google Scholar 

  28. [28]

    Li, J.; Cao, C. B.; Zhu, H. S. Synthesis and characterization of graphitelike carbon nitride nanobelts and nanotubes. Nanotechnology 2007, 18, 115605.

    Article  Google Scholar 

  29. [29]

    Zhou, C.; Shi, R.; Shang, L.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Res. 2018, 11, 3462–3468.

    Article  Google Scholar 

  30. [30]

    Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc. 2013, 135, 7118–7121.

    Article  Google Scholar 

  31. [31]

    Liang, Q. H.; Li, Z.; Yu, X. L.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 4634–4639.

    Article  Google Scholar 

  32. [32]

    Zhao, Y.; Zhao, F.; Wang, X. P.; Xu, C. Y.; Zhang, Z. P.; Shi, G. Q.; Qu, L. T. Graphitic carbon nitride nanoribbons: Graphene-assisted formation and synergic function for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 13934–13939.

    Article  Google Scholar 

  33. [33]

    Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2012, 135, 18–21.

    Article  Google Scholar 

  34. [34]

    Hong, J. D.; Yin, S. M.; Pan, Y. X.; Han, J. Y.; Zhou, T. H.; Xu, R. Porous carbon nitride nanosheets for enhanced photocatalytic activities. Nanoscale 2014, 6, 14984–14990.

    Article  Google Scholar 

  35. [35]

    Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.

    Article  Google Scholar 

  36. [36]

    Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. J. Am. Chem. Soc. 2003, 125, 10288–10300.

    Article  Google Scholar 

  37. [37]

    Liu, J. H.; Zhang, T. K.; Wang, Z. C.; Dawson, G.; Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 2011, 21, 14398–14401.

    Article  Google Scholar 

  38. [38]

    Ma, W. G.; Han, D. X.; Zhou, M.; Sun, H.; Wang, L. N.; Dong, X. D.; Niu, L. Ultrathin g-C3N4/TiO2 composites as photoelectrochemical elements for the real-time evaluation of global antioxidant capacity. Chem. Sci. 2014, 5, 3946–3951.

    Article  Google Scholar 

  39. [39]

    Mo, Z.; Xu, H.; Chen, Z. G.; She, X. J.; Song, Y. H.; Wu, J. J.; Yan, P. C.; Xu, L.; Lei, Y. C.; Yuan, S. Q. et al. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Appl. Catal. B Environ. 2018, 225, 154–161.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Key R&D Program of China (Nos. 2018YFB1502002, 2017YFA0206904, 2017YFA0206900, and 2016YFB0600901), the National Natural Science Foundation of China (Nos. 51825205, U1662118, 51772305, 51572270, 21871279, and 21802154), the Beijing Natural Science Foundation (Nos. 2191002, 2182078, and 2194089), the Beijing Municipal Science and Technology Project (No. Z181100005118007), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17000000), the Royal Society-Newton Advanced Fellowship (No. NA170422), the International Partnership Program of Chinese Academy of Sciences (No. GJHZ1819) and the K. C. Wong Education Foundation. G. I. N. W. acknowledges funding support from the Energy Education Trust of New Zealand and the University of Auckland Faculty Research Development Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tierui Zhang.

Electronic supplementary material

12274_2019_2357_MOESM1_ESM.pdf

Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhou, C., Shi, R. et al. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Res. 12, 2385–2389 (2019). https://doi.org/10.1007/s12274-019-2357-0

Download citation

Keywords

  • graphitic carbon nitride
  • holey nanotubes
  • photocatalysis
  • visible-light response
  • hydrogen evolution