Stark, W. J.; Stoessel, P. R.; Wohlleben, W.; Hafner, A. Industrial applications of nanoparticles. Chem. Soc. Rev.
2015, 44, 5793–5805.
Article
Google Scholar
Santos, C. S. C.; Gabriel, B.; Blanchy, M.; Menes, O.; García, D.; Blanco, M.; Arconada, N.; Neto, V. Industrial applications of nanoparticles-a prospective overview. Mater. Today Proc.
2015, 2, 456–465.
Article
Google Scholar
Heiligtag, F. J.; Niederberger, M. The fascinating world of nanoparticle research. Mater. Today
2013, 16, 262–271.
Article
Google Scholar
Oliveira, E.; Núñez, C.; Santos, H. M.; Fernández-Lodeiro, J.; Fernandez-Lodeiro, A.; Capelo, J. L.; Lodeiro, C. Revisiting the use of gold and silver functionalised nanoparticles as colorimetric and fluorometric chemosensors for metal ions. Sens. Actuators B Chem.
2015, 212, 297–328.
Article
Google Scholar
Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev.
2018, 118, 4981–5079.
Article
Google Scholar
Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev.
2015, 115, 10530–10574.
Article
Google Scholar
Perfézou, M.; Turner, A.; Merkoci, A. Cancer detection using nanoparticle-based sensors. Chem. Soc. Rev.
2012, 41, 2606–2622.
Article
Google Scholar
Huang, K.; Yan, Y. C.; Yu, X. G.; Zhang, H.; Yang, D. R. Graphene coupled with Pt cubic nanoparticles for high performance, air-stable graphene-silicon solar cells. Nano Energy
2017, 32, 225–231.
Article
Google Scholar
Kim, J. K.; Kim, D. J.; Lee, C. S.; Cho, H. H.; Kim, J. H. Pt-decorated SnO2 nanotubes prepared directly on a conducting substrate and their application in solar energy conversion using a solid polymer electrolyte. Appl. Surf. Sci.
2018, 450, 9–20.
Article
Google Scholar
Wang, C. P.; Cai, X. P.; Zhang, J. S.; Wang, X. Y.; Wang, Y.; Ge, H. F.; Yan, W. J.; Huang, Q.; Xiao, J. R.; Zhang, Q. et al. Trifolium-like platinum nanoparticle-mediated photothermal therapy inhibits tumor growth and osteolysis in a bone metastasis model. Small
2015, 11, 2080–2086.
Article
Google Scholar
Pedone, D.; Moglianetti, M.; De Luca, E.; Bardi, G.; Pompa, P. P. Platinum nanoparticles in nanobiomedicine. Chem. Soc. Rev.
2017, 46, 4951–4975.
Article
Google Scholar
Wang, H. L.; Sapi, A.; Thompson, C. M.; Liu, F. D.; Zherebetskyy, D.; Krier, J. M.; Carl, L. M.; Cai, X. J.; Wang, L. W.; Somorjai, G. A. Dramatically different kinetics and mechanism at solid/liquid and solid/gas interfaces for catalytic isopropanol oxidation over size-controlled platinum nanoparticles. J. Am. Chem. Soc.
2014, 136, 10515–10520.
Article
Google Scholar
Dong, C. Y.; Lian, C.; Hu, S. C.; Deng, Z. S.; Gong, J. Q.; Li, M. D.; Liu, H. L.; Xing, M. Y.; Zhang, J. L. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun.
2018, 9, 1252.
Article
Google Scholar
Kim, K. S.; Demberelnyamba, D.; Lee, H. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir
2004, 20, 556–560.
Article
Google Scholar
Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. H. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem., Int. Ed.
2008, 47, 3588–3591.
Article
Google Scholar
Bigall, N. C.; Hartling, T.; Klose, M.; Simon, P.; Eng, L. M.; Eychmüller, A. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: Synthesis and distinct optical properties. Nano Lett.
2008, 8, 4588–4592.
Article
Google Scholar
Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev.
2016, 45, 4747–4765.
Article
Google Scholar
Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B
2005, 109, 12663–12676.
Article
Google Scholar
Zhang, H.; Jin, M. S.; Xiong, Y. J.; Lim, B.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res.
2013, 46, 1783–1794.
Article
Google Scholar
Ren, J. T.; Tilley, R. D. Shape-controlled growth of platinum nanoparticles. Small
2007, 3, 1508–1512.
Article
Google Scholar
Herricks, T.; Chen, J. Y.; Xia, Y. N. Polyol synthesis of platinum nanoparticles: Control of morphology with sodium nitrate. Nano Lett.
2004, 4, 2367–2371.
Article
Google Scholar
Leong, G. J.; Schulze, M. C.; Strand, M. B.; Maloney, D.; Frisco, S. L.; Dinh, H. N.; Pivovar, B.; Richards, R. M. Shape-directed platinum nanoparticle synthesis: Nanoscale design of novel catalysts. Appl. Organomet. Chem.
2014, 28, 1–17.
Article
Google Scholar
Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc.
2011, 133, 4718–4721.
Article
Google Scholar
Mahmoud, A.; Tabor, C. E.; El-Sayed, M. A.; Ding, Y.; Wang, Z. L. A new catalytically active colloidal platinum nanocatalyst: The multiarmed nanostar single crystal. J. Am. Chem. Soc.
2008, 130, 4590–4591.
Article
Google Scholar
Ma, L.; Wang, C. M.; Gong, M.; Liao, L. W.; Long, R.; Wang, J. G.; Wu, D.; Zhong, W.; Kim, M. J.; Chen, Y. X. et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano
2012, 6, 9797–9806.
Article
Google Scholar
Wang, J.; Zhang, X. B.; Wang, Z. L.; Wang, L. M.; Xing, W.; Liu, X. One-step and rapid synthesis of “clean” and monodisperse dendritic Pt nanoparticles and their high performance toward methanol oxidation and p-nitrophenol reduction. Nanoscale
2012, 4, 1549–1552.
Article
Google Scholar
Yuan, Y.; Kaneti, Y. V.; Liu, M. S.; Jin, F. Z.; Kennedy, D. F.; Jiang, X. C.; Huang, J.; Yu, A. B. Seed-mediated synthesis of dendritic platinum nanostructures with high catalytic activity for aqueous-phase hydrogenation of acetophenone. J. Energy Chem.
2015, 24, 660–668.
Article
Google Scholar
Lu, S. L.; Eid, K.; Li, W. F.; Cao, X. Q.; Pan, Y.; Guo, J.; Wang, L.; Wang, H. J.; Gu, H. W. Gaseous NH3 confers porous Pt nanodendrites assisted by halides. Sci. Rep.
2016, 6, 26196.
Article
Google Scholar
Kong, X.; Cao, H. L.; Li, C.; Chen, X. One step photochemical synthesis of clean surfaced sponge-like porous platinum with high catalytic performances. J. Colloid Interface Sci.
2017, 487, 60–67.
Article
Google Scholar
Rolison, D. R. Catalytic nanoarchitectures-the importance of nothing and the unimportance of periodicity. Science
2003, 299, 1698–1701.
Article
Google Scholar
Shen, Q. M.; Jiang, L. P.; Zhang, H.; Min, Q. H.; Hou, W. H.; Zhu, J. J. Three-dimensional dendritic Pt nanostructures: Sonoelectrochemical synthesis and electrochemical applications. J. Phys. Chem. C
2008, 112, 16385–16392.
Article
Google Scholar
Zuo, Y. P.; Wu, L.; Cai, K.; Li, T. T.; Yin, W. M.; Li, D. N.; Li, N.; Liu, J. W.; Han, H. Y. Platinum dendritic-flowers prepared by tellurium nanowires exhibit high electrocatalytic activity for glycerol oxidation. ACS Appl. Mater. Interfaces
2015, 7, 17725–17730.
Article
Google Scholar
Jung, E. G.; Shin, Y.; Lee, M.; Yi, J.; Kang, T. Interfacial synthesis of two-dimensional dendritic platinum nanoparticles using oleic acid-in-water emulsion. ACS Appl. Mater. Interfaces
2015, 7, 10666–10670.
Article
Google Scholar
Franc, G.; Badetti, E.; Colliere, V.; Majoral, J. P.; Sebastian, R. M.; Caminade, A. M. Dendritic structures within dendritic structures: Dendrimer-induced formation and self-assembly of nanoparticle networks. Nanoscale
2009, 1, 233–237.
Article
Google Scholar
Wang, L.; Yamauchi, Y. Facile synthesis of three-dimensional dendritic platinum nanoelectrocatalyst. Chem. Mater.
2009, 21, 3562–3569.
Article
Google Scholar
Mohanty, A.; Garg, N.; Jin, R. C. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew. Chem., Int. Ed.
2010, 49, 4962–4966.
Article
Google Scholar
Chen, J. Y.; Herricks, T.; Xia, Y. N. Polyol synthesis of platinum nanostructures: Control of morphology through the manipulation of reduction kinetics. Angew. Chem., Int. Ed.
2005, 44, 2589–2592.
Article
Google Scholar
Lim, B.; Lu, X. M.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Lee, E. P.; Xia, Y. N. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett.
2008, 8, 4043–4047.
Article
Google Scholar
Rizvi, M. A. Complexation modulated redox behavior of transition metal systems (review). Russ. J. Gen. Chem.
2015, 85, 959–973.
Article
Google Scholar
Rizvi, M. A.; Syed, R. M.; Khan, B. Complexation effect on redox potential of iron(III).iron(II) couple: A simple potentiometric experiment. J. Chem. Educ.
2011, 88, 220–222.
Article
Google Scholar
Wen, Y. H.; Zhang, H. M.; Qian, P.; Zhou, H. T.; Zhao, P.; Yi, B. L.; Yang, Y. S. Studies on iron (Fe3+/Fe2+)-complex/bromine (Br2/Br.) redox flow cell in sodium acetate solution. J. Electrochem. Soc.
2006, 153, A929–A934.
Article
Google Scholar
Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods
2012, 9, 671–675.
Article
Google Scholar
Jones, A. M.; Griffin, P. J.; Waite, T. D. Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, EDTA and fulvic acid. Geochim. Cosmochim. Acta
2015, 160, 117–131.
Article
Google Scholar
Ilbert, M.; Bonnefoy, V. Insight into the evolution of the iron oxidation pathways. Biochim. Biophys. Acta — Bioenerg.
2013, 1827, 161–175.
Article
Google Scholar
Song, Y. J.; Jiang, Y. B.; Wang, H. R.; Pena, D. A.; Qiu, Y.; Miller, J. E.; Shelnutt, J. A. Platinum nanodendrites. Nanotechnology
2006, 17, 1300–1308.
Article
Google Scholar
Das, R. S.; Singh, B.; Banerjee, R.; Mukhopadhyay, S. PVP stabilized Pt nano particles catalyzed de-oxygenation of phenoxazine group by hydrazine in physiological buffer media: Surfactant competes with reactants for the same surface sites. Dalton Trans.
2013, 42, 4068–4080.
Article
Google Scholar
Knecht, M. R.; Weir, M. G.; Myers, V. S.; Pyrz, W. D.; Ye, H.; Petkov, V.; Buttrey, D. J.; Frenkel, A. I.; Crooks, R. M. Synthesis and characterization of Pt dendrimer-encapsulated nanoparticles: Effect of the template on nanoparticle formation. Chem. Mater.
2008, 20, 5218–5228.
Article
Google Scholar
Rahman, M. S.; Akhter, S.; Ahmed, K. N.; Rahman, M. S.; Saha, R. K.; Hossain, M. J. Tunable synthesis of platinum nanoparticles by EtOH reduction in presence of poly (vinylpyrrolidone). Bangladesh J. Sci. Ind. Res.
2015, 50, 87–89.
Article
Google Scholar
Francis, A. J.; Dodge, C. J. Influence of complex structure on the biodegradation of iron-citrate complexes. Appl. Environ. Microbiol.
1993, 59, 109–113.
Google Scholar
Ruales-Lonfat, C.; Barona, J. F.; Sienkiewicz, A.; Velez, J.; Benitez, L. N.; Pulgarin, C. Bacterial inactivation with iron citrate complex: A new source of dissolved iron in solar photo-Fenton process at near-neutral and alkaline pH. Appl. Catal. B Environ.
2016, 180, 379–390.
Article
Google Scholar
Yin, B. S.; Ma, H. Y.; Wang, S. Y.; Chen, S. H. Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J. Phys. Chem. B
2003, 107, 8898–8904.
Article
Google Scholar
Yin, J.; Wang, J. H.; Li, M. R.; Jin, C. Z.; Zhang, T. Iodine ions mediated formation of monomorphic single-crystalline platinum nanoflowers. Chem. Mater.
2012, 24, 2645–2654.
Article
Google Scholar
Zhou, S.; Yang, T. H.; Zhao, M.; Xia, Y. N. Quantitative analysis of the reduction kinetics of a Pt(II) precursor in the context of Pt nanocrystal synthesis. Chin. J. Chem. Phys.
2018, 31, 370–374.
Article
Google Scholar
McDermott, D. P. Vibrational assignments and normal-coordinate analyses of γ-butyrolactone and 2-pyrrolidinones. J. Phys. Chem.
1986, 90, 2569–2574.
Article
Google Scholar
Borodko, Y.; Habas, S. E.; Koebel, M.; Yang, P. D.; Frei, H.; Somorjai, G. A. Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV.Raman and FTIR. J. Phys. Chem. B
2006, 110, 23052–23059.
Article
Google Scholar
Liu, H.; Zhang, B.; Shi, H. Q.; Tang, Y. J.; Jiao, K.; Fu, X. Hydrothermal synthesis of monodisperse Ag2Se nanoparticles in the presence of PVP and KI and their application as oligonucleotide labels. J. Mater. Chem.
2008, 18, 2573–2580.
Article
Google Scholar
Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Tilley, R. D. In situ and ex situ studies of platinum nanocrystals: Growth and evolution in solution. J. Am. Chem. Soc.
2009, 131, 14590–14595.
Article
Google Scholar
Wang, L.; Hu, C. P.; Nemoto, Y.; Tateyama, Y.; Yamauchi, Y. On the role of ascorbic acid in the synthesis of single-crystal hyperbranched platinum nanostructures. Cryst. Growth Des.
2010, 10, 3454–3460.
Article
Google Scholar
Wang, L.; Wang, H. J.; Nemoto, Y.; Yamauchi, Y. Rapid and efficient synthesis of platinum nanodendrites with high surface area by chemical reduction with formic acid. Chem. Mater.
2010, 22, 2835–2841.
Article
Google Scholar
Liu, M. H.; Yan, X. P.; Liu, H. F.; Yu, W. Y. An investigation of the interaction between polyvinylpyrrolidone and metal cations. React. Funct. Polym.
2000, 44, 55–64.
Article
Google Scholar
Filice, M.; Marciello, M.; del Puerto Morales, M.; Palomo, J. M. Synthesis of heterogeneous enzyme-metal nanoparticle biohybrids in aqueous media and their applications in C-C bond formation and tandem catalysis. Chem. Commun.
2013, 49, 6876–6878.
Article
Google Scholar