Skip to main content

Highly accessible aqueous synthesis of well-dispersed dendrimer type platinum nanoparticles and their catalytic applications

Abstract

The application of novel methodologies to the synthesis of nanomaterials is still a challenge in many different technological and scientific fields. New efficient and reproducible synthetic methodologies, that produce fewer residues and reduce the cost of raw materials must be developed. In the present work, we have explored the attractive possibility to apply the cheap iron (II) sulphate salt in the reduction process of the K2PtCl4 to produce colloids suspensions. The synthesis took places in water and was assisted by sodium citrate (SC) using polyvinylpyrrolidone (PVP) as a surfactant. The adjustment of this novelty process allows obtaining well-dispersed and sub-20 nm dendrimer-type platinum nanoparticles (Pt D-NPs). The nano-dendrimers produced have been characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), XRD spectroscopy, inductive couple plasma (ICP) analysis, Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-vis) spectroscopy. Interesting conformational results derived from the size and shape will be discussed. Catalytic application of the Pt D-NPs has been explored in the reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP) in aqueous media at room temperature obtained TOF value of 253 min-1. Finally, our Pt D-NPs were tested as artificial metalloenzyme showing catechol oxidase activity for oxidation of L-DOPA.

This is a preview of subscription content, access via your institution.

References

  1. Stark, W. J.; Stoessel, P. R.; Wohlleben, W.; Hafner, A. Industrial applications of nanoparticles. Chem. Soc. Rev. 2015, 44, 5793–5805.

    Article  Google Scholar 

  2. Santos, C. S. C.; Gabriel, B.; Blanchy, M.; Menes, O.; García, D.; Blanco, M.; Arconada, N.; Neto, V. Industrial applications of nanoparticles-a prospective overview. Mater. Today Proc. 2015, 2, 456–465.

    Article  Google Scholar 

  3. Heiligtag, F. J.; Niederberger, M. The fascinating world of nanoparticle research. Mater. Today 2013, 16, 262–271.

    Article  Google Scholar 

  4. Oliveira, E.; Núñez, C.; Santos, H. M.; Fernández-Lodeiro, J.; Fernandez-Lodeiro, A.; Capelo, J. L.; Lodeiro, C. Revisiting the use of gold and silver functionalised nanoparticles as colorimetric and fluorometric chemosensors for metal ions. Sens. Actuators B Chem. 2015, 212, 297–328.

    Article  Google Scholar 

  5. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    Article  Google Scholar 

  6. Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 2015, 115, 10530–10574.

    Article  Google Scholar 

  7. Perfézou, M.; Turner, A.; Merkoci, A. Cancer detection using nanoparticle-based sensors. Chem. Soc. Rev. 2012, 41, 2606–2622.

    Article  Google Scholar 

  8. Huang, K.; Yan, Y. C.; Yu, X. G.; Zhang, H.; Yang, D. R. Graphene coupled with Pt cubic nanoparticles for high performance, air-stable graphene-silicon solar cells. Nano Energy 2017, 32, 225–231.

    Article  Google Scholar 

  9. Kim, J. K.; Kim, D. J.; Lee, C. S.; Cho, H. H.; Kim, J. H. Pt-decorated SnO2 nanotubes prepared directly on a conducting substrate and their application in solar energy conversion using a solid polymer electrolyte. Appl. Surf. Sci. 2018, 450, 9–20.

    Article  Google Scholar 

  10. Wang, C. P.; Cai, X. P.; Zhang, J. S.; Wang, X. Y.; Wang, Y.; Ge, H. F.; Yan, W. J.; Huang, Q.; Xiao, J. R.; Zhang, Q. et al. Trifolium-like platinum nanoparticle-mediated photothermal therapy inhibits tumor growth and osteolysis in a bone metastasis model. Small 2015, 11, 2080–2086.

    Article  Google Scholar 

  11. Pedone, D.; Moglianetti, M.; De Luca, E.; Bardi, G.; Pompa, P. P. Platinum nanoparticles in nanobiomedicine. Chem. Soc. Rev. 2017, 46, 4951–4975.

    Article  Google Scholar 

  12. Wang, H. L.; Sapi, A.; Thompson, C. M.; Liu, F. D.; Zherebetskyy, D.; Krier, J. M.; Carl, L. M.; Cai, X. J.; Wang, L. W.; Somorjai, G. A. Dramatically different kinetics and mechanism at solid/liquid and solid/gas interfaces for catalytic isopropanol oxidation over size-controlled platinum nanoparticles. J. Am. Chem. Soc. 2014, 136, 10515–10520.

    Article  Google Scholar 

  13. Dong, C. Y.; Lian, C.; Hu, S. C.; Deng, Z. S.; Gong, J. Q.; Li, M. D.; Liu, H. L.; Xing, M. Y.; Zhang, J. L. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252.

    Article  Google Scholar 

  14. Kim, K. S.; Demberelnyamba, D.; Lee, H. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir 2004, 20, 556–560.

    Article  Google Scholar 

  15. Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. H. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem., Int. Ed. 2008, 47, 3588–3591.

    Article  Google Scholar 

  16. Bigall, N. C.; Hartling, T.; Klose, M.; Simon, P.; Eng, L. M.; Eychmüller, A. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: Synthesis and distinct optical properties. Nano Lett. 2008, 8, 4588–4592.

    Article  Google Scholar 

  17. Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747–4765.

    Article  Google Scholar 

  18. Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663–12676.

    Article  Google Scholar 

  19. Zhang, H.; Jin, M. S.; Xiong, Y. J.; Lim, B.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 2013, 46, 1783–1794.

    Article  Google Scholar 

  20. Ren, J. T.; Tilley, R. D. Shape-controlled growth of platinum nanoparticles. Small 2007, 3, 1508–1512.

    Article  Google Scholar 

  21. Herricks, T.; Chen, J. Y.; Xia, Y. N. Polyol synthesis of platinum nanoparticles: Control of morphology with sodium nitrate. Nano Lett. 2004, 4, 2367–2371.

    Article  Google Scholar 

  22. Leong, G. J.; Schulze, M. C.; Strand, M. B.; Maloney, D.; Frisco, S. L.; Dinh, H. N.; Pivovar, B.; Richards, R. M. Shape-directed platinum nanoparticle synthesis: Nanoscale design of novel catalysts. Appl. Organomet. Chem. 2014, 28, 1–17.

    Article  Google Scholar 

  23. Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.

    Article  Google Scholar 

  24. Mahmoud, A.; Tabor, C. E.; El-Sayed, M. A.; Ding, Y.; Wang, Z. L. A new catalytically active colloidal platinum nanocatalyst: The multiarmed nanostar single crystal. J. Am. Chem. Soc. 2008, 130, 4590–4591.

    Article  Google Scholar 

  25. Ma, L.; Wang, C. M.; Gong, M.; Liao, L. W.; Long, R.; Wang, J. G.; Wu, D.; Zhong, W.; Kim, M. J.; Chen, Y. X. et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano 2012, 6, 9797–9806.

    Article  Google Scholar 

  26. Wang, J.; Zhang, X. B.; Wang, Z. L.; Wang, L. M.; Xing, W.; Liu, X. One-step and rapid synthesis of “clean” and monodisperse dendritic Pt nanoparticles and their high performance toward methanol oxidation and p-nitrophenol reduction. Nanoscale 2012, 4, 1549–1552.

    Article  Google Scholar 

  27. Yuan, Y.; Kaneti, Y. V.; Liu, M. S.; Jin, F. Z.; Kennedy, D. F.; Jiang, X. C.; Huang, J.; Yu, A. B. Seed-mediated synthesis of dendritic platinum nanostructures with high catalytic activity for aqueous-phase hydrogenation of acetophenone. J. Energy Chem. 2015, 24, 660–668.

    Article  Google Scholar 

  28. Lu, S. L.; Eid, K.; Li, W. F.; Cao, X. Q.; Pan, Y.; Guo, J.; Wang, L.; Wang, H. J.; Gu, H. W. Gaseous NH3 confers porous Pt nanodendrites assisted by halides. Sci. Rep. 2016, 6, 26196.

    Article  Google Scholar 

  29. Kong, X.; Cao, H. L.; Li, C.; Chen, X. One step photochemical synthesis of clean surfaced sponge-like porous platinum with high catalytic performances. J. Colloid Interface Sci. 2017, 487, 60–67.

    Article  Google Scholar 

  30. Rolison, D. R. Catalytic nanoarchitectures-the importance of nothing and the unimportance of periodicity. Science 2003, 299, 1698–1701.

    Article  Google Scholar 

  31. Shen, Q. M.; Jiang, L. P.; Zhang, H.; Min, Q. H.; Hou, W. H.; Zhu, J. J. Three-dimensional dendritic Pt nanostructures: Sonoelectrochemical synthesis and electrochemical applications. J. Phys. Chem. C 2008, 112, 16385–16392.

    Article  Google Scholar 

  32. Zuo, Y. P.; Wu, L.; Cai, K.; Li, T. T.; Yin, W. M.; Li, D. N.; Li, N.; Liu, J. W.; Han, H. Y. Platinum dendritic-flowers prepared by tellurium nanowires exhibit high electrocatalytic activity for glycerol oxidation. ACS Appl. Mater. Interfaces 2015, 7, 17725–17730.

    Article  Google Scholar 

  33. Jung, E. G.; Shin, Y.; Lee, M.; Yi, J.; Kang, T. Interfacial synthesis of two-dimensional dendritic platinum nanoparticles using oleic acid-in-water emulsion. ACS Appl. Mater. Interfaces 2015, 7, 10666–10670.

    Article  Google Scholar 

  34. Franc, G.; Badetti, E.; Colliere, V.; Majoral, J. P.; Sebastian, R. M.; Caminade, A. M. Dendritic structures within dendritic structures: Dendrimer-induced formation and self-assembly of nanoparticle networks. Nanoscale 2009, 1, 233–237.

    Article  Google Scholar 

  35. Wang, L.; Yamauchi, Y. Facile synthesis of three-dimensional dendritic platinum nanoelectrocatalyst. Chem. Mater. 2009, 21, 3562–3569.

    Article  Google Scholar 

  36. Mohanty, A.; Garg, N.; Jin, R. C. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew. Chem., Int. Ed. 2010, 49, 4962–4966.

    Article  Google Scholar 

  37. Chen, J. Y.; Herricks, T.; Xia, Y. N. Polyol synthesis of platinum nanostructures: Control of morphology through the manipulation of reduction kinetics. Angew. Chem., Int. Ed. 2005, 44, 2589–2592.

    Article  Google Scholar 

  38. Lim, B.; Lu, X. M.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Lee, E. P.; Xia, Y. N. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett. 2008, 8, 4043–4047.

    Article  Google Scholar 

  39. Rizvi, M. A. Complexation modulated redox behavior of transition metal systems (review). Russ. J. Gen. Chem. 2015, 85, 959–973.

    Article  Google Scholar 

  40. Rizvi, M. A.; Syed, R. M.; Khan, B. Complexation effect on redox potential of iron(III).iron(II) couple: A simple potentiometric experiment. J. Chem. Educ. 2011, 88, 220–222.

    Article  Google Scholar 

  41. Wen, Y. H.; Zhang, H. M.; Qian, P.; Zhou, H. T.; Zhao, P.; Yi, B. L.; Yang, Y. S. Studies on iron (Fe3+/Fe2+)-complex/bromine (Br2/Br.) redox flow cell in sodium acetate solution. J. Electrochem. Soc. 2006, 153, A929–A934.

    Article  Google Scholar 

  42. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.

    Article  Google Scholar 

  43. Jones, A. M.; Griffin, P. J.; Waite, T. D. Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, EDTA and fulvic acid. Geochim. Cosmochim. Acta 2015, 160, 117–131.

    Article  Google Scholar 

  44. Ilbert, M.; Bonnefoy, V. Insight into the evolution of the iron oxidation pathways. Biochim. Biophys. Acta — Bioenerg. 2013, 1827, 161–175.

    Article  Google Scholar 

  45. Song, Y. J.; Jiang, Y. B.; Wang, H. R.; Pena, D. A.; Qiu, Y.; Miller, J. E.; Shelnutt, J. A. Platinum nanodendrites. Nanotechnology 2006, 17, 1300–1308.

    Article  Google Scholar 

  46. Das, R. S.; Singh, B.; Banerjee, R.; Mukhopadhyay, S. PVP stabilized Pt nano particles catalyzed de-oxygenation of phenoxazine group by hydrazine in physiological buffer media: Surfactant competes with reactants for the same surface sites. Dalton Trans. 2013, 42, 4068–4080.

    Article  Google Scholar 

  47. Knecht, M. R.; Weir, M. G.; Myers, V. S.; Pyrz, W. D.; Ye, H.; Petkov, V.; Buttrey, D. J.; Frenkel, A. I.; Crooks, R. M. Synthesis and characterization of Pt dendrimer-encapsulated nanoparticles: Effect of the template on nanoparticle formation. Chem. Mater. 2008, 20, 5218–5228.

    Article  Google Scholar 

  48. Rahman, M. S.; Akhter, S.; Ahmed, K. N.; Rahman, M. S.; Saha, R. K.; Hossain, M. J. Tunable synthesis of platinum nanoparticles by EtOH reduction in presence of poly (vinylpyrrolidone). Bangladesh J. Sci. Ind. Res. 2015, 50, 87–89.

    Article  Google Scholar 

  49. Francis, A. J.; Dodge, C. J. Influence of complex structure on the biodegradation of iron-citrate complexes. Appl. Environ. Microbiol. 1993, 59, 109–113.

    Google Scholar 

  50. Ruales-Lonfat, C.; Barona, J. F.; Sienkiewicz, A.; Velez, J.; Benitez, L. N.; Pulgarin, C. Bacterial inactivation with iron citrate complex: A new source of dissolved iron in solar photo-Fenton process at near-neutral and alkaline pH. Appl. Catal. B Environ. 2016, 180, 379–390.

    Article  Google Scholar 

  51. Yin, B. S.; Ma, H. Y.; Wang, S. Y.; Chen, S. H. Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J. Phys. Chem. B 2003, 107, 8898–8904.

    Article  Google Scholar 

  52. Yin, J.; Wang, J. H.; Li, M. R.; Jin, C. Z.; Zhang, T. Iodine ions mediated formation of monomorphic single-crystalline platinum nanoflowers. Chem. Mater. 2012, 24, 2645–2654.

    Article  Google Scholar 

  53. Zhou, S.; Yang, T. H.; Zhao, M.; Xia, Y. N. Quantitative analysis of the reduction kinetics of a Pt(II) precursor in the context of Pt nanocrystal synthesis. Chin. J. Chem. Phys. 2018, 31, 370–374.

    Article  Google Scholar 

  54. McDermott, D. P. Vibrational assignments and normal-coordinate analyses of γ-butyrolactone and 2-pyrrolidinones. J. Phys. Chem. 1986, 90, 2569–2574.

    Article  Google Scholar 

  55. Borodko, Y.; Habas, S. E.; Koebel, M.; Yang, P. D.; Frei, H.; Somorjai, G. A. Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV.Raman and FTIR. J. Phys. Chem. B 2006, 110, 23052–23059.

    Article  Google Scholar 

  56. Liu, H.; Zhang, B.; Shi, H. Q.; Tang, Y. J.; Jiao, K.; Fu, X. Hydrothermal synthesis of monodisperse Ag2Se nanoparticles in the presence of PVP and KI and their application as oligonucleotide labels. J. Mater. Chem. 2008, 18, 2573–2580.

    Article  Google Scholar 

  57. Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Tilley, R. D. In situ and ex situ studies of platinum nanocrystals: Growth and evolution in solution. J. Am. Chem. Soc. 2009, 131, 14590–14595.

    Article  Google Scholar 

  58. Wang, L.; Hu, C. P.; Nemoto, Y.; Tateyama, Y.; Yamauchi, Y. On the role of ascorbic acid in the synthesis of single-crystal hyperbranched platinum nanostructures. Cryst. Growth Des. 2010, 10, 3454–3460.

    Article  Google Scholar 

  59. Wang, L.; Wang, H. J.; Nemoto, Y.; Yamauchi, Y. Rapid and efficient synthesis of platinum nanodendrites with high surface area by chemical reduction with formic acid. Chem. Mater. 2010, 22, 2835–2841.

    Article  Google Scholar 

  60. Liu, M. H.; Yan, X. P.; Liu, H. F.; Yu, W. Y. An investigation of the interaction between polyvinylpyrrolidone and metal cations. React. Funct. Polym. 2000, 44, 55–64.

    Article  Google Scholar 

  61. Filice, M.; Marciello, M.; del Puerto Morales, M.; Palomo, J. M. Synthesis of heterogeneous enzyme-metal nanoparticle biohybrids in aqueous media and their applications in C-C bond formation and tandem catalysis. Chem. Commun. 2013, 49, 6876–6878.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the financial support by the PROTEOMASS Scientific Society (Portugal) (General Funding Grant, as well as the Associate Laboratory Research Unit for Green Chemistry - Clean Processes and Technologies - LAQV-REQUIMTE financed by national funds from FCT/MEC (UID/QUI/50006/2013) and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER - 007265). J. D., C. L., J. L. C., A. F. L., and J. F. L. thank the FCT-MEC grant (PTDC/QEQ-MED/2118/2014). A. F. L. acknowledges the PhD grants from (FCT-MEC) (Portugal) SFRH/BD/52528/2014 and J. D. thanks the PhD grant associated to the FCT grant PTDC/QEQ-MED/2118/2014 from the (FCT-MEC-Portugal). J. F. L. thanks FCT/MEC (Portugal) SFRH/BPD/93982/2013 and FCT-UNL for the DL57/2016 Assistant Researcher Contract. The authors thank the support by the Spanish National Research Council (CSIC) (CSIC-PIE 201880E011) and we also thank the Ministry of Education, Youth and Sports of the Community of Madrid and the European Social Fund for a contract to C. P-R. (PEJD-2017PRE/SAL-3762) in the program of Youth Employment and the Youth Employment Initiative (YEI) 2017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose M. Palomo, Carlos Lodeiro or Javier Fernández-Lodeiro.

Electronic supplementary material

12274_2019_2350_MOESM1_ESM.pdf

Highly accessible aqueous synthesis of well-dispersed dendrimer type platinum nanoparticles and their catalytic applications

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández-Lodeiro, A., Djafari, J., Lopez-Tejedor, D. et al. Highly accessible aqueous synthesis of well-dispersed dendrimer type platinum nanoparticles and their catalytic applications. Nano Res. 12, 1083–1092 (2019). https://doi.org/10.1007/s12274-019-2350-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2350-7

Keywords

  • platinum dendrimer NPs
  • catalytic application
  • green synthesis
  • catechol oxidase-like activity