Skip to main content

Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging

Abstract

Persistent luminescence nanoprobes (PLNPs) can remain luminescent after ceasing excitation. Due to the ultra-long decay time of persistent luminescence (PersL), autofluorescence interference can be efficiently eliminated by collecting PersL signal after autofluorescence decays completely, thus the imaging contrast and sensing sensitivity can be significantly improved. Since near-infrared (NIR) light shows reduced scattering and absorption coefficient in penetrating biological organs or tissues, near-infrared persistent luminescence nanoprobes (NIR PLNPs) possess deep tissue penetration and offer a bright prospect in the areas of in vivo biosensing/bioimaging. In this review, we firstly summarize the design of different types of NIR PLNPs for biosensing/bioimaging, such as transition metal ions-doped NIR PLNPs, lanthanide ions-doped NIR PLNPs, organic molecules-based NIR PLNPs, and semiconducting polymer self-assembled NIR PLNPs. Notably, organic molecules-based NIR PLNPs and semiconductor self-assembled NIR PLNPs, for the first time, were introduced to the review of PLNPs. Secondly, the effects of different types of charge carriers on NIR PersL and luminescence decay of NIR PLNPs are significantly emphasized so as to build up an in-depth understanding of their luminescence mechanism. It includes the regulation of valence band and conduction band of different host materials, alteration of defect types, depth and concentration changes caused by ion doping, effective radiation transitions and energy transfer generated by different luminescence centers. Given the design and potential of NIR PLNPs as long-lived luminescent materials, the current challenges and future perspective in this rapidly growing field are also discussed.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Kabe, R.; Adachi, C. Organic long persistent luminescence. Nature 2017, 550, 384–387.

    Google Scholar 

  2. [2]

    Zagorovsky, K.; Chan, W. C. W. Illuminating the deep. Nat. Mater. 2013, 12, 285–287.

    Google Scholar 

  3. [3]

    Vahrmeijer, A. L.; Hutteman, M.; van der Vorst, J. R.; van de Velde, C. J. H.; Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507–518.

    Google Scholar 

  4. [4]

    Zwier, J. M.; Hildebrandt, N. Time-gated FRET detection for multiplexed biosensing. In Reviews in Fluorescence 2016. Geddes, C. D., Ed.; Springer: Cham, 2017; pp 17–43.

    Google Scholar 

  5. [5]

    Baggaley, E.; Weinstein, J. A.; Williams, J. A. G. Time-resolved emission imaging microscopy using phosphorescent metal complexes: Taking FLIM and PLIM to new lengths. In Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents. Lo, K. K. W., Ed.; Springer: Berlin Heidelberg, 2014; p 1.

    Google Scholar 

  6. [6]

    Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J. J.; Dorenbos, P.; Bessodes, M.; Gourier, D. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 2014, 13, 418–426.

    Google Scholar 

  7. [7]

    Berezin, M. Y.; Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 2010, 110, 2641–2684.

    Google Scholar 

  8. [8]

    Chen, Y.; Periasamy, A. Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization. Microsc. Res. Tech. 2004, 63, 72–80.

    Google Scholar 

  9. [9]

    Zhang, K. Y.; Yu, Q.; Wei, H. J.; Liu, S. J.; Zhao, Q.; Huang, W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 2018, 118, 1770–1839.

    Google Scholar 

  10. [10]

    van den Eeckhout, K.; Smet, P. F.; Poelman, D. Persistent luminescence in Eu2+-doped compounds: A review. Materials 2010, 3, 2536–2566.

    Google Scholar 

  11. [11]

    Matsuzawa, T.; Aoki, Y.; Takeuchi, N.; Murayama, Y. A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+. J. Electrochem. Soc. 1996, 143, 2670–2673.

    Google Scholar 

  12. [12]

    Sun, H. B.; Liu, S. J.; Lin, W. P.; Zhang, K. Y.; Lv, W.; Huang, X.; Huo, F. W.; Yang, H. R.; Jenkins, G.; Zhao, Q. et al. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 2014, 5, 3601.

    Google Scholar 

  13. [13]

    Hanaoka, K.; Kikuchi, K.; Kobayashi, S.; Nagano, T. Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system. J. Am. Chem. Soc. 2007, 129, 13502–13509.

    Google Scholar 

  14. [14]

    Baggaley, E.; Botchway, S. W.; Haycock, J. W.; Morris, H.; Sazanovich, I. V.; Williams, J. A. G.; Weinstein, J. A. Long-lived metal complexes open up microsecond lifetime imaging microscopy under multiphoton excitation: From FLIM to PLIM and beyond. Chem. Sci. 2014, 5, 879–886.

    Google Scholar 

  15. [15]

    Li, L.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I. Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. J. Am. Chem. Soc. 2011, 133, 1176–1179.

    Google Scholar 

  16. [16]

    Raut, S. L.; Fudala, R.; Rich, R.; Kokate, R. A.; Chib, R.; Gryczynski, Z.; Gryczynski, I. Long lived BSA Au clusters as a time gated intensity imaging probe. Nanoscale 2014, 6, 2594–2597.

    Google Scholar 

  17. [17]

    Kandpal, S. K.; Goundie, B.; Wright, J.; Pollock, R. A.; Mason, M. D.; Meulenberg, R. W. Investigation of the emission mechanism in milled SrAl2O4: Eu, Dy using optical and synchrotron X-ray spectroscopy. ACS Appl. Mater. Interfaces 2011, 3, 3482–3486.

    Google Scholar 

  18. [18]

    Wang, J.; Ma, Q. Q.; Liu, H. Y.; Wang, Y. Q.; Shen, H. J.; Hu, X. X; Ma, C.; Yuan, Q.; Tan, W. H. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition. Anal. Chem. 2017, 89, 12764–12770.

    Google Scholar 

  19. [19]

    Li, Z. J.; Zhang, Y. W.; Wu, X.; Huang, L.; Li, D. S.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc. 2015, 137, 5304–5307.

    Google Scholar 

  20. [20]

    Aitasalo, T.; Hietikko, A.; Hreniak, D.; Holsa, J.; Lastusaari, M.; Niittykoski, J.; Stręk, W. Luminescence properties of BaMg2Si2O7: Eu2+, Mn2+. J. Alloys Compd. 2008, 451, 229–231.

    Google Scholar 

  21. [21]

    Lin, X. H.; Zhang, R. L.; Tian, X. M.; Li, Y.; Du, B. S.; Nie, J. M.; Li, Z. Z.; Chen, L.; Ren, J. J.; Qiu, J. R. et al. Coordination geometry-dependent multi-band emission and atypically deep-trap-dominated NIR persistent luminescence from chromium-doped aluminates. Adv. Opt. Mater. 2018, 6, 1701161.

    Google Scholar 

  22. [22]

    Zhang, Y.; Huang, R.; Lin, Z. X.; Song, J.; Wang, X.; Guo, Y. Q.; Song, C.; Yu, Y. Co-dopant influence on near-infrared luminescence properties of Zn2SnO4: Cr3+, Eu3+ ceramic discs. J. Alloys Compd. 2016, 686, 407–412.

    Google Scholar 

  23. [23]

    Jia, D. D.; Jia, W. Y.; Evans, D. R.; Dennis, W. M.; Liu, H. M.; Zhu, J.; Yen, W. M. Trapping processes in CaS: Eu2+, Tm3+. J. Appl. Phys. 2000, 88, 3402–3407.

    Google Scholar 

  24. [24]

    Lecointre, A.; Bessiere, A.; Bos, A. J. J.; Dorenbos, P.; Viana, B.; Jacquart, S. Designing a red persistent luminescence phosphor: The example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy). J. Phys. Chem. C 2011, 115, 4217–4227.

    Google Scholar 

  25. [25]

    Zheng, B.; Chen, H. B.; Zhao, P. Q.; Pan, H. Z.; Wu, X. L.; Gong, X. Q.; Wang, H. J.; Chang, J. Persistent luminescent nanocarrier as an accurate tracker in vivo for near infrared-remote selectively triggered photothermal therapy. ACS Appl. Mater. Interfaces 2016, 8, 21603–21611.

    Google Scholar 

  26. [26]

    Zhang, H. W.; Fu, X. Y.; Niu, S. Y.; Xin, Q. Blue luminescence of nanocrystalline CaZrO3: Tm phosphors synthesized by a modified Pechini sol-gel method. J. Lumin. 2008, 128, 1348–1352.

    Google Scholar 

  27. [27]

    Wu, Y. L.; Li, Y.; Qin, X. X.; Chen, R. C.; Wu, D. K.; Liu, S. J.; Qiu, J. R. Dual mode NIR long persistent phosphorescence and NIR-to-NIR Stokes luminescence in La3Ga5GeO14: Cr3+, Nd3+ phosphor. J. Alloys Compd. 2015, 649, 62–66.

    Google Scholar 

  28. [28]

    Kong, J. T.; Zheng, W.; Liu, Y. S.; Li, R. F.; Ma, E.; Zhu, H. M.; Chen, X. Y. Persistent luminescence from Eu3+ in SnO2 nanoparticles. Nanoscale 2015, 7, 11048–11054.

    Google Scholar 

  29. [29]

    Abdukayum, A.; Chen, J. T.; Zhao, Q.; Yan, X. P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 2013, 135, 14125–14133.

    Google Scholar 

  30. [30]

    Ma, Q. Q.; Wang, J.; Zheng, W.; Wang, Q.; Li, Z. H.; Cong, H. J.; Liu, H. J.; Chen, X. Y.; Yuan, Q. Controlling disorder in host lattice by hetero-valence ion doping to manipulate luminescence in spinel solid solution phosphors. Sci. China Chem. 2018, 61, 1624–1629.

    Google Scholar 

  31. [31]

    Liu, H. Y.; Hu, X. X.; Wang, J.; Liu, M.; Wei, W.; Yuan, Q. Direct low-temperature synthesis of ultralong persistent luminescence nanobelts based on a biphasic solution-chemical reaction. Chin. Chem. Lett. 2018, 29, 1641–1644.

    Google Scholar 

  32. [32]

    Song, L.; Li, P. P.; Yang, W.; Lin, X. H.; Liang, H.; Chen, X. F.; Liu, G.; Li, J.; Yang, H. H. Low-dose X-ray activation of W(VI)-doped persistent luminescence nanoparticles for deep-tissue photodynamic therapy. Adv. Funct. Mater. 2018, 28, 1707496.

    Google Scholar 

  33. [33]

    Wang, X. J.; Jia, D. D.; Yen, W. M. Mn2+ activated green, yellow, and red long persistent phosphors. J. Lumin. 2003, 102–103, 34–37.

    Google Scholar 

  34. [34]

    Zheng, B.; Bai, Y.; Chen, H. B.; Pan, H. Z.; Ji, W. Y.; Gong, X. Q.; Wu, X. L.; Wang, H. J.; Chang, J. Near-infrared light-excited upconverting persistent nanophosphors in vivo for imaging-guided cell therapy. ACS Appl. Mater. Interfaces 2018, 10, 19514–19522.

    Google Scholar 

  35. [35]

    Song, L.; Lin, X. H.; Song, X. R.; Chen, S.; Chen, X. F.; Li, J.; Yang, H. H. Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale 2017, 9, 2718–2722.

    Google Scholar 

  36. [36]

    Niioka, H.; Yamasaki, J.; Dung, D. T. K.; Miyake, J. Enhancement of near-infrared luminescence of Y2O3: Ln, Yb (Ln = Tm, Ho, Er) by Li-ion doping for cellular bioimaging. Chem. Lett. 2016, 45, 1406–1408.

    Google Scholar 

  37. [37]

    Wang, B.; Lin, H.; Xu, J.; Chen, H.; Lin, Z. B.; Huang, F.; Wang, Y. S. Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7: Pr3+. Inorg. Chem. 2015, 54, 11299–11306.

    Google Scholar 

  38. [38]

    Wang, Y. Q.; Wang, J.; Ma, Q. Q.; Li, Z. H.; Yuan, Q. Recent progress in background-free latent fingerprint imaging. Nano Res. 2018, 11, 5499–5518.

    Google Scholar 

  39. [39]

    Li, N.; Li, Y. H.; Han, Y. Y.; Pan, W.; Zhang, T. T.; Tang, B. A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo. Anal. Chem. 2014, 86, 3924–3930.

    Google Scholar 

  40. [40]

    Abdukayum, A.; Yang, C. X.; Zhao, Q.; Chen, J. T.; Dong, L. X.; Yan, X. P. Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo. Anal. Chem. 2014, 86, 4096–4101.

    Google Scholar 

  41. [41]

    Shi, J. P.; Sun, X.; Li, J. L.; Man, H. Z.; Shen, J. S.; Yu, Y. K.; Zhang, H. W. Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 2015, 37, 260–270.

    Google Scholar 

  42. [42]

    Teng, Y.; Zhou, J. J.; Khisro, S. N.; Zhou, S. F.; Qiu, J. R. Persistent luminescence of SrAl2O4: Eu2+, Dy3+, Cr3+ phosphors in the tissue transparency window. Mater. Chem. Phys. 2014, 147, 772–776.

    Google Scholar 

  43. [43]

    Wu, S. Q.; Chi, C. W.; Yang, C. X.; Yan, X. P. Penetrating peptide-bioconjugated persistent nanophosphors for long-term tracking of adipose-derived stem cells with superior signal-to-noise ratio. Anal. Chem. 2016, 88, 4114–4121.

    Google Scholar 

  44. [44]

    Lu, Y. C.; Yang, C. X.; Yan, X. P. Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging. Nanoscale 2015, 7, 17929–17937.

    Google Scholar 

  45. [45]

    Fu, X. Y.; Liu, C. L.; Shi, J. P.; Man, H. Z.; Xu, J.; Zhang, H. W. Long persistent near infrared luminescence nanoprobes LiGa5O8: Cr3+-PEG-OCH3 for in vivo imaging. Opt. Mater. 2014, 36, 1792–1797.

    Google Scholar 

  46. [46]

    Nie, J. M.; Li, Y.; Liu, S. S.; Chen, Q. Q.; Xu, Q.; Qiu, J. R. Tunable long persistent luminescence in the second near-infrared window via crystal field control. Sci. Rep. 2017, 7, 12392.

    Google Scholar 

  47. [47]

    le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J. P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 9266–9271.

    Google Scholar 

  48. [48]

    Lin, X. H.; Song, L.; Chen, S.; Chen, X. F.; Wei, J. J.; Li, J. Y.; Huang, G. M.; Yang, H. H. Kiwifruit-like persistent luminescent nanoparticles with high-performance and in situ activable near-infrared persistent luminescence for long-term in vivo bioimaging. ACS Appl. Mater. Interfaces 2017, 9, 41181–41187.

    Google Scholar 

  49. [49]

    Xu, J.; Murata, D.; Ueda, J.; Tanabe, S. Near-infrared long persistent luminescence of Er3+ in garnet for the third bio-imaging window. J. Mater. Chem. C 2016, 4, 11096–11103.

    Google Scholar 

  50. [50]

    Li, Y.; Gecevicius, M.; Qiu, J. R. Long persistent phosphors—From fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090–2136.

    Google Scholar 

  51. [51]

    Lécuyer, T.; Teston, E.; Ramirez-Garcia, G.; Maldiney, T.; Viana, B.; Seguin, J.; Mignet, N.; Scherman, D.; Richard, C. Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 2016, 6, 2488–2524.

    Google Scholar 

  52. [52]

    Sun, S. K.; Wang, H. F.; Yan, X. P. Engineering persistent luminescence nanoparticles for biological applications: From biosensing/bioimaging to theranostics. Acc. Chem. Res. 2018, 51, 1131–1143.

    Google Scholar 

  53. [53]

    Wang, J.; Ma, Q. Q.; Wang, Y. Q.; Shen, H. J.; Yuan, Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale 2017, 9, 6204–6218.

    Google Scholar 

  54. [54]

    Singh, S. K. Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications. RSC Adv. 2014, 4, 58674–58698.

    Google Scholar 

  55. [55]

    Elzerman, J. M.; Hanson, R.; Willems van Beveren, L. H.; Witkamp, B.; Vandersypen, L. M. K.; Kouwenhoven, L. P. Single-shot read-out of an individual electron spin in a quantum dot. Nature 2004, 430, 431–435.

    Google Scholar 

  56. [56]

    Zubiaga, A.; Plazaola, F.; García, J. A.; Tuomisto, F.; Muñoz-Sanjosé, V.; Tena-Zaera, R. Positron annihilation lifetime spectroscopy of ZnO bulk samples. Phys. Rev. B 2007, 76, 085202.

    Google Scholar 

  57. [57]

    Dutta, S.; Chattopadhyay, S.; Sarkar, A.; Chakrabarti, M.; Sanyal, D.; Jana, D. Role of defects in tailoring structural, electrical and optical properties of ZnO. Prog. Mater. Sci. 2009, 54, 89–136.

    Google Scholar 

  58. [58]

    Bioul, G.; Davio, M. Taylor expansions of Boolean functions and of their derivatives. Philips Res. Rep. 1972, 27, 1–6.

    Google Scholar 

  59. [59]

    Bessière, A.; Jacquart, S.; Priolkar, K.; Lecointre, A.; Viana, B.; Gourier, D. ZnGa2O4: Cr3+: A new red long-lasting phosphor with high brightness. Opt. Express 2011, 19, 10131–10137.

    Google Scholar 

  60. [60]

    Allix, M.; Chenu, S.; Véron, E.; Poumeyrol, T.; Kouadri-Boudjelthia, E. A.; Alahraché, S.; Porcher, F.; Massiot, D.; Fayon, F. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4. Chem. Mater. 2013, 25, 1600–1606.

    Google Scholar 

  61. [61]

    Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. Sect. A 1976, 32, 751–767.

    Google Scholar 

  62. [62]

    Kahan, H. M.; Macfarlane, R. M. Optical and microwave spectra of Cr3+ in the Spinel ZnGa2O4. J. Chem. Phys. 1971, 54, 5197–5205.

    Google Scholar 

  63. [63]

    Dhak, P.; Gayen, U. K.; Mishra, S.; Pramanik, P.; Roy, A. Optical emission spectra of chromium doped nanocrystalline zinc gallate. J. Appl. Phys. 2009, 106, 063721.

    Google Scholar 

  64. [64]

    Zhou, Z. H.; Zheng, W.; Kong, J. T.; Liu, Y.; Huang, P.; Zhou, S. Y.; Chen, Z.; Shi, J. L.; Chen, X. Y. Rechargeable and LED-activated ZnGa2O4: Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection. Nanoscale 2017, 9, 6846–6853.

    Google Scholar 

  65. [65]

    van Gorkom, G. G. P.; Henning, J. C. M.; van Stapele, R. P. Optical spectra of Cr3+ pairs in the spinel ZnGa2O4. Phys. Rev. B 1973, 8, 955–973.

    Google Scholar 

  66. [66]

    Dai, W. B.; Lei, Y. F.; Ye, S.; Song, E. H.; Chen, Z.; Zhang, Q. Y. Mesoporous nanoparticles Gd2O3@mSiO2/ZnGa2O4: Cr3+, Bi3+ as multifunctional probes for bioimaging. J. Mater. Chem. B 2016, 4, 1842–1852.

    Google Scholar 

  67. [67]

    Zou, R.; Huang, J. J.; Shi, J. P.; Huang, L.; Zhang, X. J.; Wong, K. L.; Zhang, H. W.; Jin, D. Y.; Wang, J.; Su, Q. Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence. Nano Res. 2017, 10, 2070–2082.

    Google Scholar 

  68. [68]

    Srivastava, B. B.; Kuang, A.; Mao, Y. B. Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route. Chem. Commun. 2015, 51, 7372–7375.

    Google Scholar 

  69. [69]

    Teston, E.; Richard, S.; Maldiney, T.; Lièvre, N.; Wang, G. Y.; Motte, L.; Richard, C.; Lalatonne, Y. Non-aqueous sol-gel synthesis of ultra small persistent luminescence nanoparticles for near-infrared in vivo imaging. Chem. -Eur. J. 2015, 21, 7350–7354.

    Google Scholar 

  70. [70]

    Fonger, W. H.; Struck, C. W. Temperature dependences of Cr3+ radiative and nonradiative transitions in ruby and emerald. Phys. Rev. B 1975, 11, 3251–3260.

    Google Scholar 

  71. [71]

    Yang, J.; Liu, Y. X.; Zhao, Y. Y.; Gong, Z.; Zhang, M.; Yan, D. T.; Zhu, H. C.; Liu, C. G.; Xu, C. S.; Zhang, H. Ratiometric afterglow nanothermometer for simultaneous in situ bioimaging and local tissue temperature sensing. Chem. Mater. 2017, 29, 8119–8131.

    Google Scholar 

  72. [72]

    Yan, W. Z.; Liu, F.; Lu, Y. Y.; Wang, X. J.; Yin, M.; Pan, Z. W. Near infrared long-persistent phosphorescence in La3Ga5GeO14: Cr3+ phosphor. Opt. Express 2010, 18, 20215–20221.

    Google Scholar 

  73. [73]

    Pan, Z. W.; Lu, Y. Y.; Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 2011, 11, 58–63.

    Google Scholar 

  74. [74]

    Wang, J.; Ma, Q. Q.; Hu, X. X.; Liu, H. Y.; Zheng, W.; Chen, X. Y.; Yuan, Q.; Tan, W. H. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 2017, 11, 8010–8017.

    Google Scholar 

  75. [75]

    Li, Y.; Zhou, S. F.; Li, Y. Y.; Sharafudeen, K.; Ma, Z. J.; Dong, G. P.; Peng, M. Y.; Qiu, J. R. Long persistent and photo-stimulated luminescence in Cr3+-doped Zn-Ga-Sn-O phosphors for deep and reproducible tissue imaging. J. Mater. Chem. C 2014, 2, 2657–2663.

    Google Scholar 

  76. [76]

    Li, Y.; Li, Y. Y.; Chen, R. C.; Sharafudeen, K.; Zhou, S. F.; Gecevicius, M.; Wang, H. H.; Dong, G. P; Wu, Y. L; Qin, X. X. et al. Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence. NPG Asia Mater. 2015, 7, e180.

    Google Scholar 

  77. [77]

    Jin, Y. H.; Hu, Y. H.; Chen, L.; Ju, G. F.; Wu, H. Y.; Mu, Z. F.; He, M.; Xue, F. H. Luminescent properties of a green long persistent phosphor Li2MgGeO4: Mn2+. Opt. Mater. Express 2016, 6, 929–937.

    Google Scholar 

  78. [78]

    Takahashi, Y.; Ando, M.; Ihara, R.; Fujiwara, T. Green-emissive Mn-activated nanocrystallized glass with willemite-type Zn2GeO4. Opt. Mater. Express 2011, 1, 372–378.

    Google Scholar 

  79. [79]

    Terraschke, H.; Wickleder, C. UV, blue, green, yellow, red, and small: Newest developments on Eu2+-doped nanophosphors. Chem. Rev. 2015, 115, 11352–11378.

    Google Scholar 

  80. [80]

    Cheng, J. G.; Li, P. L.; Wang, Z. J.; Li, Z. L.; Tian, M. M.; Wang, C.; Yang, Z. P. Color selective manipulation in Li2ZnGe3O8: Mn2+ by multiple-cation substitution on different crystal-sites. Dalton Trans. 2018, 47, 4293–4300.

    Google Scholar 

  81. [81]

    Maldiney, T.; Lecointre, A.; Viana, B.; Bessière, A.; Bessodes, M.; Gourier, D.; Richard, C.; Scherman, D. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 2011, 133, 11810–11815.

    Google Scholar 

  82. [82]

    Wang, J.; Ma, Q. Q.; Zheng, W.; Liu, H. Y.; Yin, C. Q.; Wang, F. B.; Chen, X. Y.; Yuan, Q.; Tan, W. H. One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano 2017, 11, 8185–8191.

    Google Scholar 

  83. [83]

    Li, Z. H.; Wang, Q.; Wang, Y. Q.; Ma, Q. Q.; Wang, J.; Li, Z. H.; Li, Y. X.; Lv, X. B.; Wei, W.; Chen, L. et al. Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition. Nano Res. 2018, 11, 6167–6176.

    Google Scholar 

  84. [84]

    Che, G. B.; Liu, C. B.; Li, X. Y.; Xu, Z. L.; Liu, Y.; Wang, H. Luminescence properties of a new Mn2+-activated red long-afterglow phosphor. J. Phys. Chem. Solids 2008, 69, 2091–2095.

    Google Scholar 

  85. [85]

    Li, P. F.; Peng, M. Y.; Wondraczek, L.; Zhao, Y. Q.; Viana, B. Red to near infrared ultralong lasting luminescence from Mn2+-doped sodium gallium aluminum germanate glasses and (Al, Ga)-albite glass-ceramics. J. Mater. Chem. C 2015, 3, 3406–3415.

    Google Scholar 

  86. [86]

    Zhou, Z.; Zhou, N.; Xia, M.; Yokoyama, M.; Hintzen, H. T. Research progress and application prospects of transition metal Mn4+-activated luminescent materials. J. Mater. Chem. C 2016, 4, 9143–9161.

    Google Scholar 

  87. [87]

    Adachi, S.; Takahashi, T. Photoluminescent properties of K2GeF6: Mn4+ red phosphor synthesized from aqueous HF/KMnO4 solution. J. Appl. Phys. 2009, 106, 013516.

    Google Scholar 

  88. [88]

    Hiltunen, L.; Hölsä, J.; Strek, W.; Jezowska-Trzebiatowska, B. Crystal structure of ((C4H9)4N)3(Pr(NCS)6). J. Less-Common Met. 1987, 127, 225–230.

    Google Scholar 

  89. [89]

    Jia, W.; Jia, D.; Rodriguez, T.; Evans, D. R.; Meltzer, R. S.; Yen, W. M. UV excitation and trapping centers in CaTiO3: Pr3+. J. Lumin. 2006, 119–120, 13–18.

    Google Scholar 

  90. [90]

    Yin, S. Y.; Chen, D. H.; Tang, W. J. Combustion synthesis and luminescent properties of CaTiO3: Pr, Al persistent phosphors. J. Alloys Compd. 2007, 441, 327–331.

    Google Scholar 

  91. [91]

    Li, Y.; Li, Y. Y.; Sharafudeen, K.; Dong, G. P.; Zhou, S. F.; Ma, Z. J.; Peng, M. Y.; Qiu, J. R. A strategy for developing near infrared long-persistent phosphors: Taking MAlO3: Mn4+, Ge4+ (M = La, Gd) as an example. J. Mater. Chem. C 2014, 2, 2019–2027.

    Google Scholar 

  92. [92]

    Du, J. R.; De Clercq, Q. O.; Korthout, K.; Poelman, D. LaAlO3: Mn4+ as near-infrared emitting persistent luminescence phosphor for medical imaging: A charge compensation study. Materials 2017, 10, 1422.

    Google Scholar 

  93. [93]

    Zhang, X. W.; Nie, J. M.; Liu, S. S.; Li, Y.; Qiu, J. R. Deep-red photoluminescence and long persistent luminescence in double perovstkite-type La2MgGeO6: Mn4+. J. Am. Ceram. Soc. 2018, 101, 1576–1584.

    Google Scholar 

  94. [94]

    Xue, F. H.; Hu, Y. H.; Chen, L.; Wu, H. Y.; Ju, G. F.; Wang, T.; Yang, L. A novel rare-earth free red long-persistent phosphor: Mg2GeO4: Mn4+. Ceram. Int. 2017, 43, 15141–15145.

    Google Scholar 

  95. [95]

    Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 2009, 109, 4283–4374.

    Google Scholar 

  96. [96]

    Bünzli, J. C. G. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 2006, 39, 53–61.

    Google Scholar 

  97. [97]

    Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161–5214.

    Google Scholar 

  98. [98]

    Zhu, X. J.; Su, Q. Q.; Feng, W.; Li, F. Y. Anti-Stokes shift luminescent materials for bio-applications. Chem. Soc. Rev. 2017, 46, 1025–1039.

    Google Scholar 

  99. [99]

    Wang, F.; Liu, X. G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res. 2014, 47, 1378–1385.

    Google Scholar 

  100. [100]

    Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 2013, 42, 6924–6958.

    Google Scholar 

  101. [101]

    Gai, S. L.; Li, C. X.; Yang, P. P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343–2389.

    Google Scholar 

  102. [102]

    Bünzli, J. C. G.; Eliseeva, S. V. Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J. Rare Earths 2010, 28, 824–842.

    Google Scholar 

  103. [103]

    Bünzli, J. C. G.; Pecharsky V. K. Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Oxford, 2013.

    Google Scholar 

  104. [104]

    Smet, P.; Avci, N.; Poelman, D. Red persistent luminescence in Ca2SiS4: Eu, Nd. J. Electrochem. Soc. 2009, 156, H243–H248.

    Google Scholar 

  105. [105]

    Liang, Y. J.; Liu, F.; Chen, Y. F.; Wang, X. L.; Sun, K. N.; Pan, Z. W. Red/near-infrared/short-wave infrared multi-band persistent luminescence in Pr3+-doped persistent phosphors. Dalton Trans. 2017, 46, 11149–11153.

    Google Scholar 

  106. [106]

    Dai, W. B.; Lei, Y. F.; Zhou, J.; Xu, M.; Chu, L. L.; Li, L.; Zhao, P.; Zhang, Z. H. Near-infrared quantum-cutting and long-persistent phosphor Ca3Ga2Ge3O12: Pr3+, Yb3+ for application in in vivo bioimaging and dye-sensitized solar cells. J. Alloys Compd. 2017, 726, 230–239.

    Google Scholar 

  107. [107]

    Kamimura, S.; Xu, C. N.; Yamada, H.; Marriott, G.; Hyodo, K.; Ohno, T. Near-infrared luminescence from double-perovskite Sr3Sn2O7: Nd3+: A new class of probe for in vivo imaging in the second optical window of biological tissue. J. Ceram. Soc. Jpn. 2017, 125, 591–595.

    Google Scholar 

  108. [108]

    Liang, Y. J.; Liu, F.; Chen, Y. F.; Wang, X. J.; Sun, K. N.; Pan, Z. W. New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared. Light: Sci. Appl. 2016, 5, e16124.

    Google Scholar 

  109. [109]

    Zou, Z. H.; Wu, C.; Li, X. D.; Zhang, J. C.; Li, H. H.; Wang, D. Y.; Wang, Y. H. Near-infrared persistent luminescence of Yb3+ in perovskite phosphor. Opt. Lett. 2017, 42, 4510–4512.

    Google Scholar 

  110. [110]

    Lv, Y.; Wang, L.; Zhuang, Y. X.; Zhou, T. L.; Xie, R. J. Discovery of the Yb2+-Yb3+ couple as red-to-NIR persistent luminescence emitters in Yb-activated (Ba1−xSrx)AlSi5O2N7 phosphors. J. Mater. Chem. C 2017, 5, 7095–7101.

    Google Scholar 

  111. [111]

    Caratto, V.; Locardi, F.; Costa, G. A.; Masini, R.; Fasoli, M.; Panzeri, L.; Martini, M.; Bottinelli, E.; Gianotti, E.; Miletto, I. NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: The effect of dopants. ACS Appl. Mater. Interfaces 2014, 6, 17346–17351.

    Google Scholar 

  112. [112]

    Gong, X. Y.; Cui, R. R.; Li, X. C.; Huang, W. C.; Deng, C. Y. The photoluminescence and afterglow properties of Ca2SnO4: Sm3+ phosphor. J. Mater. Sci.: Mater. Electron. 2018, 29, 5668–5674.

    Google Scholar 

  113. [113]

    Ju, G. F.; Hu, Y. H.; Chen, L.; Jin, Y. H.; Li, Y. Persistent luminescence in BaGd2O4: Dy3+: From blue to infrared. Appl. Phys. A 2018, 124, 39.

    Google Scholar 

  114. [114]

    Chen, W. B.; Wang, Y. H.; Zeng, W.; Li, G.; Guo, H. J. Design, synthesis and characterization of near-infrared long persistent phosphors Ca4 (PO4)2O: Eu2+, R3+ (R = Lu, La, Gd, Ce, Tm, Y). RSC Adv. 2016, 6, 331–337.

    Google Scholar 

  115. [115]

    Zhang, X. M.; Zhang, J. H.; Zhang, X.; Chen, L.; Lu, S. Z.; Wang, X. J. Enhancement of red fluorescence and afterglow in CaTiO3: Pr3+ by addition of Lu2O3. J. Lumin. 2007, 122–123, 958–960.

    Google Scholar 

  116. [116]

    Takasaki, H; Tanabe, S.; Hanada, T. Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor. J. Ceram. Soc. Jpn. 1996, 104, 322–326.

    Google Scholar 

  117. [117]

    Yu, N. Y.; Liu, F.; Li, X. F.; Pan, Z. W. Near infrared long-persistent phosphorescence in SrAl2O4: Eu2+, Dy3+, Er3+ phosphors based on persistent energy transfer. Appl. Phys. Lett. 2009, 95, 231110.

    Google Scholar 

  118. [118]

    Klink, S. I.; Grave, L.; Reinhoudt, D. N.; van Veggel, F. C. J. M.; Werts, M. H. V.; Geurts, F. A. J.; Hofstraat, J. W. A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ complexes. J. Phys. Chem. A 2000, 104, 5457–5468.

    Google Scholar 

  119. [119]

    Vicentini, G.; Zinner, L. B.; Zukerman-Schpector, J.; Zinner, K. Luminescence and structure of europium compounds. Coord. Chem. Rev. 2000, 196, 353–382.

    Google Scholar 

  120. [120]

    Adam, J. L.; Docq, A. D.; Lucas, J. Optical transitions of Dy3+ ions in fluorozirconate glass. J. Solid State Chem. 1988, 75, 403–412.

    Google Scholar 

  121. [121]

    Welsher, K.; Sherlock, S. P.; Dai, H. J. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA 2011, 108, 8943–8948.

    Google Scholar 

  122. [122]

    Hong, G. S.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L. M.; Huang, N. F.; Cooke, J. P.; Dai, H. J. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 2012, 18, 1841–1846.

    Google Scholar 

  123. [123]

    Dorenbos, P. Systematic behaviour in trivalent lanthanide charge transfer energies. J. Phys.: Condens. Matter 2003, 15, 8417–8434.

    Google Scholar 

  124. [124]

    Bos, A. J. J.; Dorenbos, P.; Bessière, A.; Viana, B. Lanthanide energy levels in YPO4. Radiat. Meas. 2008, 43, 222–226.

    Google Scholar 

  125. [125]

    Lyu, T. S.; Dorenbos, P. Charge carrier trapping processes in lanthanide doped LaPO4, GdPO4, YPO4, and LuPO4. J. Mater. Chem. C 2018, 6, 369–379.

    Google Scholar 

  126. [126]

    Luo, H. D.; Bos, A. J. J.; Dorenbos, P. Controlled electron-hole trapping and detrapping process in GdAlO3 by valence band engineering. J. Phys. Chem. C 2016, 120, 5916–5925.

    Google Scholar 

  127. [127]

    Xia, Z. G.; Li Q.; Sun J. Y. Greenish-yellow light-emitting, long-lasting phosphorescence in Eu2+-doped CaO-CaBr2-SiO2 phosphor system. Chem. Lett. 2006, 35, 764–765.

    Google Scholar 

  128. [128]

    Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 1953, 21, 836–850.

    Google Scholar 

  129. [129]

    Főrster T. 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 1959, 27, 7–17.

    Google Scholar 

  130. [130]

    Jinnai, K.; Kabe, R.; Adachi, C. Wide-range tuning and enhancement of organic long-persistent luminescence using emitter dopants. Adv. Mater. 2018, 30, 1800365.

    Google Scholar 

  131. [131]

    Zhu, C. L.; Liu, L. B.; Yang, Q.; Lv, F. T.; Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 2012, 112, 4687–4735.

    Google Scholar 

  132. [132]

    Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570–6597.

    Google Scholar 

  133. [133]

    Wu, C. F.; Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem., Int. Ed. 2013, 52, 3086–3109.

    Google Scholar 

  134. [134]

    Pu, K. Y.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J. G.; Gambhir, S. S.; Bao, Z. N.; Rao, J. H. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 2014, 9, 233–239.

    Google Scholar 

  135. [135]

    Shuhendler, A. J.; Pu, K. Y.; Cui, L. N.; Uetrecht, J. P.; Rao, J. H. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol. 2014, 32, 373–380.

    Google Scholar 

  136. [136]

    Pu, K. Y.; Shuhendler, A. J.; Rao, J. H. Semiconducting polymer nanoprobe for in vivo imaging of reactive oxygen and nitrogen species. Angew. Chem., Int. Ed. 2013, 52, 10325–10329.

    Google Scholar 

  137. [137]

    Palner, M.; Pu, K. Y.; Shao, S.; Rao, J. H. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem. 2015, 127, 11639–11642.

    Google Scholar 

  138. [138]

    Miao, Q. Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H, W.; Liu, X. G.; Jokerst, J. V.; Pu, K. Y. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 2017, 35, 1102–1110.

    Google Scholar 

  139. [139]

    Xie, C.; Zhen, X.; Miao, Q. Q.; Lyu, Y.; Pu, K. Y. Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv. Mater. 2018, 30, 1801331.

    Google Scholar 

  140. [140]

    Katayama, Y.; Kayumi, T.; Ueda, J.; Tanabe, S. Enhanced persistent red luminescence in Mn2+-doped (Mg, Zn)GeO3 by electron trap and conduction band engineering. Opt. Mater. 2018, 79, 147–151.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21675120), the National Key R&D Program of China (Nos. 2017YFA0208000, 2016YFF0100800), Foundation for Innovative Research Groups of NSFC (No. 21521063), and National Basic Research Program of China (No. 2015CB932600).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Quan Yuan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Chen, N., Jia, Y. et al. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Res. 12, 1279–1292 (2019). https://doi.org/10.1007/s12274-019-2343-6

Download citation

Keywords

  • near-infrared
  • persistent luminescence nanoprobes
  • biosensing
  • bioimaging