Skip to main content

A tri-layer approach to controlling nanopore formation in oxide supports

Abstract

A novel tri-layer approach for immobilizing metal nanoparticles in SiO2 supports is presented. In this work, we show that under rapid heating to temperatures of approximately 1,000 °C, metal nanoparticles less than 15 nm in size will entrench in the SiO2 layer on a silicon wafer to create pores as deep as 250 nm. We studied and characterized this entrenching behavior and subsequent nanopore formation for a wide variety of metal nanoparticles, including Au, Ag, Pt, Pd, and Cu. We also demonstrate that an Al2O3 layer acts as a barrier to such pore formation. Thus, by creating a tri-layer architecture consisting of SiO2 on Al2O3 on silicon wafers, we can control the depth to which nanoparticles entrench between 3–5 nm. This small range allows one to entrench particles for the purpose of immobilization but still present them above the surface. The two advances of moving into the sub-15 nm size regime and of controlled particle immobilization through entrenchment have important implications in studying site-isolated and stabilized metal nanoparticles for applications in sensing, separations, and catalysis.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Ajayan, P. M.; Marks, L. D. Evidence for sinking of small particles into substrates and implications for heterogeneous catalysis. Nature 1989, 338, 139–141.

    Article  Google Scholar 

  2. [2]

    Bábor, P.; Duda, R.; Polčák, J.; Průša, S.; Potoček, M.; Varga, P.; Čechal, J.; Šikola, T. Real-time observation of self-limiting SiO2/Si decomposition catalysed by gold silicide droplets. RSC Adv. 2015, 5, 101726–101731.

    Article  Google Scholar 

  3. [3]

    Ghetta, V.; Chatain, D. Morphologies adopted by Al2O3 single-crystal surfaces in contact with Cu droplets. J. Am. Ceram. Soc. 2004, 85, 961–964.

    Article  Google Scholar 

  4. [4]

    Curiotto, S.; Chien, H.; Meltzman, H.; Labat, S.; Wynblatt, P.; Rohrer, G. S.; Kaplan, W. D.; Chatain, D. Copper crystals on the (112 _ 0) sapphire plane: Orientation relationships, triple line ridges and interface shape equilibrium. J. Mater. Sci. 2013, 48, 3013–3026.

    Article  Google Scholar 

  5. [5]

    de Vreede, L. J.; Schmidt Muniz, M.; Van Den Berg, A.; Eijkel, J. C. T. Nanopore fabrication in silicon oxynitride membranes by heating Auparticles. J. Micromech. Microeng. 2016, 26, 037001.

    Article  Google Scholar 

  6. [6]

    de Vreede, L. J.; Van Den Berg, A.; Eijkel, J. C. T. Nanopore fabrication by heating au particles on ceramic substrates. Nano Lett. 2015, 15, 727–731.

    Article  Google Scholar 

  7. [7]

    Ilkiv, I.; Kotlyar, K.; Amel’chuk, D.; Lebedev, S.; Cirlin, G.; Bouravleuv, A. Thermal penetration of gold nanoparticles into silicon dioxide. Acta Phys. Pol. A 2017, 132, 366–368.

    Article  Google Scholar 

  8. [8]

    Ono, L. K.; Behafarid, F.; Cuenya, B. R. Nano-gold diggers: Au-Assisted SiO2-decomposition and desorption in supported nanocatalysts. ACS Nano 2013, 7, 10327–10334.

    Article  Google Scholar 

  9. [9]

    Sui, M.; Pandey, P.; Li, M. Y.; Zhang, Q. Z.; Kunwar, S.; Lee, J. Au-assisted fabrication of nano-holes on c-plane sapphire via thermal treatment guided by Au nanoparticles as catalysts. Appl. Surf. Sci. 2017, 393, 23–29.

    Article  Google Scholar 

  10. [10]

    Spatz, J. P.; Mössmer, S.; Hartmann, C.; Möller, M.; Herzog, T.; Krieger, M.; Boyen, H. G.; Ziemann, P.; Kabius, B. Ordered deposition of inorganic clusters from micellar block copolymer films. Langmuir 2000, 16, 407–415.

    Article  Google Scholar 

  11. [11]

    McBrayer, J. D.; Swanson, R. M.; Sigmon, T. W. Diffusion of metals in silicon dioxide. J. Electrochem. Soc. 1986, 133, 1242–1246.

    Article  Google Scholar 

  12. [12]

    Tauster, S. J.; Fung, S. C.; Garten, R. L. Strong metal-support interactions. group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170–175.

    Article  Google Scholar 

  13. [13]

    Pesty, F.; Steinrück, H. P.; Madey, T. E. Thermal stability of Pt films on TiO2(110): Evidence for encapsulation. Surf. Sci. 1995, 339, 83–95.

    Article  Google Scholar 

  14. [14]

    Schleich, B.; Schmeisser, D.; Göpel, W. Structure and reactivity of the system Si/SiO2/Pd: A combined XPS, UPS and HREELS study. Surf. Sci. 1987, 191, 367–384.

    Article  Google Scholar 

  15. [15]

    Kunwar, S.; Pandey, P.; Sui, M.; Zhang, Q. Z.; Li, M. Y.; Lee, J. Effect of systematic control of Pd thickness and annealing temperature on the fabrication and evolution of palladium nanostructures on Si (111) via the solid state dewetting. Nanoscale Res. Lett. 2017, 12, 364.

    Article  Google Scholar 

  16. [16]

    Mei, Q. S.; Lu, K. Melting and superheating of crystalline solids: From bulk to nanocrystals. Prog. Mater. Sci. 2007, 52, 1175–1262.

    Article  Google Scholar 

  17. [17]

    Carnevali, P.; Ercolessi, F.; Tosatti, E. Melting and nonmelting behavior of the Au(111) surface. Phys. Rev. B 1987, 36, 6701–6704.

    Article  Google Scholar 

  18. [18]

    Chatain, D.; Curiotto, S.; Wynblatt, P.; Meltzman, H.; Kaplan, W. D.; Rohrer, G. S. Orientation relationships of copper crystals on sapphire (101 _ 0) m-plane and (101 _ 2) r-plane substrates. J. Cryst. Growth 2015, 418, 57–63.

    Article  Google Scholar 

  19. [19]

    Saiz, E.; Tomsia, A. P.; Cannon, R. M. Ridging effects on wetting and spreading of liquids on solids. Acta Mater. 1998, 46, 2349–2361.

    Article  Google Scholar 

  20. [20]

    Saiz, E.; Cannon, R. M.; Tomsia, A. P. Reactive spreading in ceramic/metal systems. Oil Gas Sci. Technol. 2001, 56, 89–96.

    Article  Google Scholar 

  21. [21]

    Pretorius, R.; Harris, J. M.; Nicolet, M. A. Reaction of thin metal films with SiO2 substrates. Solid-State Electron. 1978, 21, 667–675.

    Article  Google Scholar 

  22. [22]

    Karakouz, T.; Maoz, B. M.; Lando, G.; Vaskevich, A.; Rubinstein, I. Stabilization of gold nanoparticle films on glass by thermal embedding. ACS Appl. Mater. Interfaces 2011, 3, 978–987.

    Article  Google Scholar 

  23. [23]

    Karakouz, T.; Tesler, A. B.; Bendikov, T. A.; Vaskevich, A.; Rubinstein, I. Highly stable localized plasmon transducers obtained by thermal embedding of gold island films on glass. Adv. Mater. 2008, 20, 3893–3899.

    Article  Google Scholar 

  24. [24]

    Karakouz, T.; Tesler, A. B.; Sannomiya, T.; Feldman, Y.; Vaskevich, A.; Rubinstein, I. Mechanism of morphology transformation during annealing of nanostructured gold films on glass. Phys. Chem. Chem. Phys. 2013, 15, 4656–4665.

    Article  Google Scholar 

  25. [25]

    Malyi, O.; Rabkin, E. The effect of evaporation on size and shape evolution of faceted gold nanoparticles on sapphire. Acta Mater. 2012, 60, 261–268.

    Article  Google Scholar 

  26. [26]

    Meng, G.; Yanagida, T.; Kanai, M.; Suzuki, M.; Nagashima, K.; Xu, B.; Zhuge, F. W.; Klamchuen, A.; He, Y.; Rahong, S. et al. Pressure-induced evaporation dynamics of gold nanoparticles on oxide substrate. Phys. Rev. E 2013, 87, 012405.

    Article  Google Scholar 

  27. [27]

    Lee, J.; Pandey, P.; Sui, M.; Li, M. Y.; Zhang, Q. Z.; Kunwar, S. Evolution of self-assembled Au NPs by controlling annealing temperature and dwelling time on sapphire (0001). Nanoscale Res. Lett. 2015, 10, 494.

    Article  Google Scholar 

  28. [28]

    Johnson, L. E.; Sushko, P. V.; Tomota, Y.; Hosono, H. Electron anions and the glass transition temperature. Proc. Natl. Acad. Sci. USA 2016, 113, 10007–10012.

    Article  Google Scholar 

  29. [29]

    Nascimento M. L. F.; Zanotto, E. D. Diffusion processes in vitreous silica revisited. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 2007, 48, 201–217.

    Google Scholar 

  30. [30]

    Ojovan, M. I. Configurons: Thermodynamic parameters and symmetry changes at glass transition. Entropy 2008, 10, 334–364.

    Article  Google Scholar 

  31. [31]

    Rouxel, T.; Sangleboeuf, J. C. The brittle to ductile transition in a sodalime- silica glass. J. Non. Cryst. Solids 2000, 271, 224–235.

    Article  Google Scholar 

  32. [32]

    Perez, J.; Duperray, B.; Lefevre, D. Viscoelastic behaviour of an oxide glass near the glass transition temperature. J. Non. Cryst. Solids 1981, 44, 113–136.

    Article  Google Scholar 

  33. [33]

    Kiyonaga, T.; Jin, Q. L.; Kobayashi, H.; Tada, H. Size-dependence of catalytic activity of gold nanoparticles loaded on titanium (IV) dioxide for hydrogen peroxide decomposition. ChemPhysChem 2009, 10, 2935–2938.

    Article  Google Scholar 

  34. [34]

    Beck, I. E.; Bukhtiyarov, V. I.; Pakharukov, I. Y.; Zaikovsky, V. I.; Kriventsov, V. V.; Parmon, V. N. Platinum nanoparticles on Al2O3: Correlation between the particle size and activity in total methane oxidation. J. Catal. 2009, 268, 60–67.

    Article  Google Scholar 

  35. [35]

    Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

    Article  Google Scholar 

  36. [36]

    Overbury, S. H.; Schwartz, V.; Mullins, D. R.; Yan, W. F.; Dai, S. Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO2. J. Catal. 2006, 241, 56–65.

    Article  Google Scholar 

  37. [37]

    Chai, J. N.; Huo, F. W.; Zheng, Z. J.; Giam, L. R.; Shim, W.; Mirkin, C. A. Scanning probe block copolymer lithography. Proc. Natl. Acad. Sci. USA 2010, 107, 20202–20206.

    Article  Google Scholar 

  38. [38]

    Chen, P. C.; Liu, G. L.; Zhou, Y.; Brown, K. A.; Chernyak, N.; Hedrick, J. L.; He, S.; Xie, Z.; Lin, Q. Y.; Dravid, V. P. et al. Tip-directed synthesis of multimetallic nanoparticles. J. Am. Chem. Soc. 2015, 137, 9167–9173.

    Article  Google Scholar 

  39. [39]

    Chen, P. C.; Liu, X. L.; Hedrick, J. L.; Xie, Z.; Wang, S. Z.; Lin, Y. Q.; Hersam, M. C.; Dravid, V. P.; Mirkin, C. A. Polyelemental nanoparticle libraries. Science 2016, 352, 1565–1569.

    Article  Google Scholar 

  40. [40]

    Hedrick, J. L.; Brown, K. A.; Kluender, E. J.; Cabezas, M. D.; Chen, P. C.; Mirkin, C. A. Hard transparent arrays for polymer pen lithography. ACS Nano 2016, 10, 3144–3148.

    Article  Google Scholar 

  41. [41]

    Huo, F. W.; Zheng, Z. J.; Zheng, G. F.; Giam, L. R.; Zhang, H.; Mirkin, C. A. Polymer pen lithography. Science 2008, 321, 1658–1660.

    Article  Google Scholar 

  42. [42]

    Huang, N.; Xu, Y. H.; Jiang, D. L. High-performance heterogeneous catalysis with surface-exposed stable metal nanoparticles. Sci. Rep. 2014, 4, 7228.

    Article  Google Scholar 

  43. [43]

    Behafarid, F.; Roldan Cuenya, B. Towards the understanding of sintering phenomena at the nanoscale: Geometric and environmental effects. Top. Catal. 2013, 56, 1542–1559.

    Article  Google Scholar 

  44. [44]

    Liao, J. H.; Zhang, Y.; Yu, W.; Xu, L. N.; Ge, C. W.; Liu, J. H.; Gu, N. Linear aggregation of gold nanoparticles in ethanol. Colloids Surf A: Physicochem. Eng. Aspects 2003, 223, 177–183.

    Article  Google Scholar 

  45. [45]

    Jochem, A. R.; Ankah, G. N.; Meyer, L. A.; Elsenberg, S.; Johann, C.; Kraus, T. Colloidal mechanisms of gold nanoparticle loss in asymmetric flow field-flow fractionation. Anal. Chem. 2016, 88, 10065–10073.

    Article  Google Scholar 

  46. [46]

    Striemer, C. C.; Gaborski, T. R.; McGrath, J. L.; Fauchet, P. M. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 2007, 445, 749–753.

    Article  Google Scholar 

  47. [47]

    Howorka, S.; Siwy, Z. Nanopore analytics: Sensing of single molecules. Chem. Soc. Rev. 2009, 38, 2360–2384.

    Article  Google Scholar 

  48. [48]

    Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26, 1135–1145.

    Article  Google Scholar 

  49. [49]

    Li, Y. Q.; Bastakoti, B. P.; Imura, M.; Hwang, S. M.; Sun, Z. Q.; Kim, J. H.; Dou, S. X.; Yamauchi, Y. Synthesis of mesoporous TiO2/SiO2 hybrid films as an efficient photocatalyst by polymeric micelle assembly. Chem.–Eur. J. 2014, 20, 6027–6032.

    Article  Google Scholar 

  50. [50]

    Spinney, P. S.; Howitt, D. G.; Smith, R. L.; Collins, S. D. Nanopore formation by low-energy focused electron beam machining. Nanotechnology 2010, 21, 375301.

    Article  Google Scholar 

  51. [51]

    Tsujino, K.; Matsumura, M. Boring deep cylindrical nanoholes in silicon using silver nanoparticles as a catalyst. Adv. Mater. 2005, 17, 1045–1047.

    Article  Google Scholar 

  52. [52]

    Chartier, C.; Bastide, S.; Lévy-Clément, C. Metal-assisted chemical etching of silicon in HF-H2O2. Electrochim. Acta 2008, 53, 5509–5516.

    Article  Google Scholar 

  53. [53]

    Tsujino, K.; Matsumura, M. Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts. Electrochim. Acta 2007, 53, 28–34.

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Sherman Fairchild Foundation, Inc. and the Air Force Office of Scientific Research under Award number FA9550-16-1-0150. J. L. H. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG). P. C. C. acknowledges support from the Cabell Terminal Year Fellowship from Northwestern University. This work made use of the EPIC and SPID facilities of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. This work utilized Northwestern University Micro/Nano Fabrication Facility (NUFAB), which is partially supported by Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the Materials Research Science and Engineering Center (DMR-1720139), the State of Illinois, and Northwestern University.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Justin M. Notestein or Chad A. Mirkin.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gosavi, A.A., Hedrick, J.L., Chen, PC. et al. A tri-layer approach to controlling nanopore formation in oxide supports. Nano Res. 12, 1223–1228 (2019). https://doi.org/10.1007/s12274-019-2332-9

Download citation

Keywords

  • nanopore formation
  • nanoparticle entrenchment
  • nanoparticle stabilization
  • atomic force microscopy
  • Au nanoparticles