Nano Research

, Volume 12, Issue 4, pp 947–954 | Cite as

Direct observation of epitaxial alignment of Au on MoS2 at atomic resolution

  • Yinghui Sun
  • Haofei Zhao
  • Dan Zhou
  • Yuchen Zhu
  • Huanyu Ye
  • Yan Aung Moe
  • Rongming WangEmail author
Research Article


The morphology and structural stability of metal/2D semiconductor interfaces strongly affect the performance of 2D electronic devices and synergistic catalysis. However, the structural evolution at the interfaces has not been well explored particularly at atomic resolution. In this work, we study the structural evolution of Au nanoparticles (NPs) on few-layer MoS2 by high resolution transmission electron microscope (HRTEM) and quantitative high-angle annular dark field scanning TEM. It is found that in the transition of Au from nanoparticles to dendrites, a dynamically epitaxial alignment between Au and MoS2 lattices is formed, and Moiré patterns can be directly observed in HRTEM images due to the mismatch between Au and MoS2 lattices. This epitaxial alignment can occur in ambient conditions, and can also be accelerated by the irradiation of high-energy electron beam. In situ observation clearly reveals the rotation of Au NPs, the atom migration inside Au NPs, and the transfer of Au atoms between neighboring Au NPs, finally leading to the formation of epitaxially aligned Au dendrites on MoS2. The structural evolution of metal/2D semiconductor interfaces at atomic scale can provide valuable information for the design and fabrication of the metal/2D semiconductor nano-devices with desired physical and chemical performances.


atom migration MoS2 in situ TEM metal-semiconductor interface Moiré patterns 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Fangtao Li, Hongsheng Fan, and Sibin Duan for helpful discussions. This work was supported by the National Natural Science Foundation of China (Nos. 11604010 and 11674023), 111 Project (No. B170003), and the Fundamental Research Funds for the Central Universities (No. FRF-BD-18-004A).

Supplementary material

12274_2019_2329_MOESM1_ESM.pdf (5.4 mb)
Direct observation of epitaxial alignment of Au on MoS2 at atomic resolution


  1. [1]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  2. [2]
    Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.CrossRefGoogle Scholar
  3. [3]
    Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.CrossRefGoogle Scholar
  4. [4]
    Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castro e Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003–1009.CrossRefGoogle Scholar
  5. [5]
    Sun, Y. H.; Wang, R. M.; Liu, K. Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering, and applications. Appl. Phys. Rev. 2017, 4, 011301.CrossRefGoogle Scholar
  6. [6]
    Asres, G. A.; Baldovi, J. J.; Dombovari, A.; Järvinen, T.; Lorite, G. S.; Mohl, M.; Shchukarev, A.; Pérez Paz, A.; Xian, L. D.; Mikkola, J. P. et al. Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials. Nano Res. 2018, 11, 4215–4224.CrossRefGoogle Scholar
  7. [7]
    Wang, J. H.; Xu, X. Z.; Qiao, R. X.; Liang, J.; Liu, C.; Zheng, B. H.; Liu, L.; Gao, P.; Jiao, Q. Z.; Yu, D. P. et al. Visualizing grain boundaries in monolayer MoSe2 using mild H2O vapor etching. Nano Res. 2018, 11, 4082–4089.CrossRefGoogle Scholar
  8. [8]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  9. [9]
    Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.CrossRefGoogle Scholar
  10. [10]
    Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102–1120.CrossRefGoogle Scholar
  11. [11]
    Xu, Y.; Cheng, C.; Du, S. C.; Yang, J. Y.; Yu, B.; Luo, J.; Yin, W. Y.; Li, E. P.; Dong, S. R.; Ye, P. D. et al. Contacts between two- and three-dimensional materials: Ohmic, Schottky, and p-n heterojunctions. ACS Nano 2016, 10, 4895–4919.CrossRefGoogle Scholar
  12. [12]
    He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994–2999.CrossRefGoogle Scholar
  13. [13]
    Shi, Y. M.; Huang, J. K.; Jin, L. M.; Hsu, Y. T.; Yu, S. F.; Li, L. J.; Yang, H. Y. Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci. Rep. 2013, 3, 1839.CrossRefGoogle Scholar
  14. [14]
    Sreeprasad, T. S.; Nguyen, P.; Kim, N.; Berry, V. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: Electrical, thermal, and structural properties. Nano Lett. 2013, 13, 4434–4441.CrossRefGoogle Scholar
  15. [15]
    Kang, Y. M.; Najmaei, S.; Liu, Z.; Bao, Y. J.; Wang, Y. M.; Zhu, X.; Halas, N. J.; Nordlander, P.; Ajayan, P. M.; Lou, J. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 2014, 26, 6467–6471.CrossRefGoogle Scholar
  16. [16]
    Li, Z.; Xiao, Y.; Gong, Y.; Wang, Z.; Kang, Y.; Zu, S.; Ajayan, P. M.; Nordlander, P.; Fang, Z. Active light control of the MoS2 monolayer exciton binding energy. ACS Nano 2015, 9, 10158–10164.CrossRefGoogle Scholar
  17. [17]
    Miao, J. S.; Hu, W. D.; Jing, Y. L.; Luo, W. J.; Liao, L.; Pan, A. L.; Wu, S. W.; Cheng, J. X.; Chen, X. S.; Lu, W. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small 2015, 11, 2392–2398.CrossRefGoogle Scholar
  18. [18]
    Gong, L. L.; Zhang, Q.; Wang, L. J.; Wu, J. F.; Han, C.; Lei, B.; Chen, W.; Eda, G.; Goh, K. E. J.; Sow, C. H. Emergence of photoluminescence on bulk MoS2 by laser thinning and gold particle decoration. Nano Res. 2018, 11, 4574–4586.CrossRefGoogle Scholar
  19. [19]
    Kim, J.; Byun, S.; Smith, A. J.; Yu, J.; Huang, J. X. Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J. Phys. Chem. Lett. 2013, 4, 1227–1232.CrossRefGoogle Scholar
  20. [20]
    Wang, J. H.; Yan, M. Y.; Zhao, K. N.; Liao, X. B.; Wang, P. Y.; Pan, X. L.; Yang, W.; Mai, L. Q. Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Adv. Mater. 2017, 29, 1604464.CrossRefGoogle Scholar
  21. [21]
    Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.CrossRefGoogle Scholar
  22. [22]
    Yan, M. Y.; Zhou, X. B.; Pan, X. L.; Wang, J. H.; Xia, L. X.; Yu, K. S.; Liao, X. B.; Xu, X.; He, L.; Mai, L. Q. Electric field and photoelectrical effect bi-enhanced hydrogen evolution reaction. Nano Res. 2018, 11, 3205–3212.CrossRefGoogle Scholar
  23. [23]
    Zhang, J.; Wu, J. J.; Guo, H.; Chen, W. B.; Yuan, J. T.; Martinez, U.; Gupta, G.; Mohite, A.; Ajayan, P. M.; Lou, J. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv. Mater. 2017, 29, 1701955.CrossRefGoogle Scholar
  24. [24]
    Moe, Y. A.; Sun, Y. H.; Ye, H. Y.; Liu, K.; Wang, R. M. Probing evolution of local strain at MoS2-metal boundaries by surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2018, 10, 40246–40254.CrossRefGoogle Scholar
  25. [25]
    Jiang, Y.; Wang, Y.; Zhang, Y. Y.; Zhang, Z. F.; Yuan, W. T.; Sun, C. H.; Wei, X.; Brodsky, C. N.; Tsung, C. K.; Li, J. X. et al. Direct observation of Pt nanocrystal coalescence induced by electron-excitation-enhanced van der Waals interactions. Nano Res. 2014, 7, 308–314.CrossRefGoogle Scholar
  26. [26]
    Jiang, Y.; Zhang, Z. F.; Yuan, W. T.; Zhang, X.; Wang, Y.; Zhang, Z. Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Res. 2018, 11, 42–67.CrossRefGoogle Scholar
  27. [27]
    Perera, M. M.; Lin, M. W.; Chuang, H. J.; Chamlagain, B. P.; Wang, C. Y.; Tan, X. B.; Cheng, M. M. C.; Tománek, D.; Zhou, Z. X. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 2013, 7, 4449–4458.CrossRefGoogle Scholar
  28. [28]
    Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.CrossRefGoogle Scholar
  29. [29]
    Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.CrossRefGoogle Scholar
  30. [30]
    Hussain, M. A.; Yang, M.; Lee, T. J.; Kim, J. W.; Choi, B. G. High density decoration of noble metal nanoparticles on polydopamine-functionalized molybdenum disulphide. J. Colloid Interface Sci. 2015, 451, 216–220.CrossRefGoogle Scholar
  31. [31]
    Yuk, J. M.; Jeong, M.; Kim, S. Y.; Seo, H. K.; Kim, J.; Lee, J. Y. In situ atomic imaging of coalescence of au nanoparticles on graphene: Rotation and grain boundary migration. Chem. Commun. 2013, 49, 11479–11481.CrossRefGoogle Scholar
  32. [32]
    Zhou, H. Q.; Yu, F.; Guo, C. F.; Wang, Z. P.; Lan, Y. C.; Wang, G.; Fang, Z. Y.; Liu, Y.; Chen, S.; Sun, L. F. et al. Well-oriented epitaxial gold nanotriangles and bowties on MoS2 for surface-enhanced raman scattering. Nanoscale 2015, 7, 9153–9157.CrossRefGoogle Scholar
  33. [33]
    Kiriya, D.; Zhou, Y. Z.; Nelson, C.; Hettick, M.; Madhvapathy, S. R.; Chen, K.; Zhao, P. D.; Tosun, M.; Minor, A. M.; Chrzan, D. C. et al. Oriented growth of gold nanowires on MoS2. Adv. Funct. Mater. 2015, 25, 6257–6264.CrossRefGoogle Scholar
  34. [34]
    Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Evolution of gold nanostructures on graphene. Small 2011, 7, 2868–2872.CrossRefGoogle Scholar
  35. [35]
    Pashley, D. W.; Stowell, M. J.; Jacobs, M. H.; Law, T. J. The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope. Philos. Mag. 1964, 10, 127–158.CrossRefGoogle Scholar
  36. [36]
    Pashley, D. W.; Stowell, M. J. Nucleation and growth of thin films as observed in the electron microscope. J. Vac. Sci. Technol. 1966, 3, 156–166.CrossRefGoogle Scholar
  37. [37]
    Takayanagi, K.; Tanishiro, Y.; Yagi, K.; Kobayashi, K.; Honjo, G. UHV-TEM study on the reconstructed surface of Au(111): Metastable p" × p" and stable p × 1 surface structure. Surf. Sci. 1988, 205, 637–651.CrossRefGoogle Scholar
  38. [38]
    Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.CrossRefGoogle Scholar
  39. [39]
    Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.CrossRefGoogle Scholar
  40. [40]
    Wen, J. M.; Evans, J. W.; Bartelt, M. C.; Burnett, J. W.; Thiel, P. A. Coarsening mechanisms in a metal film: From cluster diffusion to vacancy ripening. Phys. Rev. Lett. 1996, 76, 652–655.CrossRefGoogle Scholar
  41. [41]
    Pai, W. W.; Swan, A. K.; Zhang, Z. Y.; Wendelken, J. F. Island diffusion and coarsening on metal (100) surfaces. Phys. Rev. Lett. 1997, 79, 3210–3213.CrossRefGoogle Scholar
  42. [42]
    Stoldt, C. R.; Jenks, C. J.; Thiel, P. A.; Cadilhe, A. M.; Evans, J. W. Smoluchowski ripening of Ag islands on Ag(100). J. Chem. Phys. 1999, 111, 5157–5166.CrossRefGoogle Scholar
  43. [43]
    Sun, Y. H.; Liu, K.; Hong, X. P.; Chen, M.; Kim, J.; Shi, S. F.; Wu, J. Q.; Zettl, A.; Wang, F. Probing local strain at MX2-metal boundaries with surface plasmon-enhanced raman scattering. Nano Lett. 2014, 14, 5329–5334.CrossRefGoogle Scholar
  44. [44]
    Wang, R. M.; Dmitrieva, O.; Farle, M.; Dumpich, G.; Ye, H. Q.; Poppa, H.; Kilaas, R.; Kisielowski, C. Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. Phys. Rev. Lett. 2008, 100, 017205.CrossRefGoogle Scholar
  45. [45]
    Wang, R. M.; Dmitrieva, O.; Farle, M.; Dumpich, G.; Acet, M.; Mejia-Rosales, S.; Perez-Tijerina, E.; Yacaman, M. J.; Kisielowski, C. FePt icosahedra with magnetic cores and catalytic shells. J. Phys. Chem. C 2009, 113, 4395–4400.CrossRefGoogle Scholar
  46. [46]
    Liu, W.; Wang, N.; Wang, R. M.; Kumar, S.; Duesberg, G. S.; Zhang, H. Z.; Sun, K. Atom-resolved evidence of anisotropic growth in ZnS nanotetrapods. Nano Lett. 2011, 11, 2983–2988.CrossRefGoogle Scholar
  47. [47]
    Liu, J. L.; Liu, W.; Sun, Q.; Wang, S. G.; Sun, K.; Schwank, J.; Wang, R. M. In situ tracing of atom migration in Pt/NiPt hollow spheres during catalysis of Co oxidation. Chem. Commun. 2014, 50, 1804–1807.CrossRefGoogle Scholar
  48. [48]
    Alloyeau, D.; Prévot, G.; Le Bouar, Y.; Oikawa, T.; Langlois, C.; Loiseau, A.; Ricolleau, C. Ostwald ripening in nanoalloys: When thermodynamics drives a size-dependent particle composition. Phys. Rev. Lett. 2010, 105, 255901.CrossRefGoogle Scholar
  49. [49]
    Prévot, G.; Nguyen, N. T.; Alloyeau, D.; Ricolleau, C.; Nelayah, J. Ostwald-driven phase separation in bimetallic nanoparticle assemblies. ACS Nano 2016, 10, 4127–4133.CrossRefGoogle Scholar
  50. [50]
    Seel, S. C. Stress and structure evolution during Volmer-Weber growth of thin films. Ph.D. Dissertation, MIT, Cambridge, 2002.Google Scholar
  51. [51]
    Wang, C. Y.; Du, K.; Song, K. P.; Ye, X. L.; Qi, L.; He, S. Y.; Tang, D. M.; Lu, N.; Jin, H. J.; Li, F. et al. Size-dependent grain-boundary structure with improved conductive and mechanical stabilities in sub-10-nm gold crystals. Phys. Rev. Lett. 2018, 120, 186102.CrossRefGoogle Scholar
  52. [52]
    Wang, S. S.; Sawada, H.; Chen, Q.; Han, G. G. D.; Allen, C.; Kirkland, A. I.; Warner, J. H. In situ atomic-scale studies of the formation of epitaxial Pt nanocrystals on monolayer molybdenum disulfide. ACS Nano 2017, 11, 9057–9067.CrossRefGoogle Scholar
  53. [53]
    Yuan, W. T.; Zhang, D. W.; Ou, Y.; Fang, K.; Zhu, B. E.; Yang, H. S.; Hansen, T. W.; Wagner, J. B.; Zhang, Z.; Gao, Y. et al. Direct in situ TEM visualization and insight into the facet-dependent sintering behaviors of gold on TiO2. Angew. Chem., Int. Ed. 2018, 57, 16827–16831.CrossRefGoogle Scholar
  54. [54]
    Jin, Z.; Nackashi, D.; Lu, W.; Kittrell, C.; Tour, J. M. Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets. Chem. Mater. 2010, 22, 5695–5699.CrossRefGoogle Scholar
  55. [55]
    Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Interaction of metals with suspended graphene observed by transmission electron microscopy. J. Phys. Chem. Lett. 2012, 3, 953–958.CrossRefGoogle Scholar
  56. [56]
    Zhang, X.; Meng, J.; Zhu, B. E.; Yuan, W. T.; Yang, H. S.; Zhang, Z.; Gao, Y.; Wang, Y. Unexpected refacetting of palladium nanoparticles under atmospheric N2 conditions. Chem. Commun. 2018, 54, 8587–8590.CrossRefGoogle Scholar
  57. [57]
    LeBeau, J. M.; Findlay, S. D.; Allen, L. J.; Stemmer, S. Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 2008, 100, 206101.CrossRefGoogle Scholar
  58. [58]
    LeBeau, J. M.; Stemmer, S. Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 2008, 108, 1653–1658.CrossRefGoogle Scholar
  59. [59]
    De Wael, A.; De Backer, A.; Jones, L.; Nellist, P. D.; van Aert, S. Hybrid statistics-simulations based method for atom-counting from ADF STEM images. Ultramicroscopy 2017, 177, 69–77.CrossRefGoogle Scholar
  60. [60]
    Kirkland, E. J. Advanced computing in electron microscopy; Boston, MA: Springer, 2010.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yinghui Sun
    • 1
  • Haofei Zhao
    • 1
  • Dan Zhou
    • 2
  • Yuchen Zhu
    • 1
  • Huanyu Ye
    • 1
  • Yan Aung Moe
    • 1
  • Rongming Wang
    • 1
    Email author
  1. 1.Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Stuttgart Center for Electron MicroscopyMax Planck Institute for Solid State ResearchStuttgartGermany

Personalised recommendations