Nano Research

, Volume 12, Issue 4, pp 931–938 | Cite as

Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe

  • Judun Zheng
  • Yunxia Wu
  • Da XingEmail author
  • Tao ZhangEmail author
Research Article


Cellular redox status presents broad implications with diverse physiological and pathological processes. Simultaneous detection of both the oxidative and reductive species of redox couples, especially the most representative pair glutathione/hydrogen peroxide (GSH/H2O2), is crucial to accurately map the cellular redox status. However, it still remains challenging to synchronously detect GSH/H2O2in vivo due to lack of a reliable measuring tool. Herein, a ratiometric nanoprobe (UCNP-TB) possessing simultaneous delectability of GSH/H2O2 is established based on a multi-spectral upconverting nanophosphor (UCNP-OA) as the luminescence resonance energy transfer (LRET) donor and two dye molecules as the acceptors, including a GSH-sensitive dye (TCG) and a H2O2-sensitive dye (BCH). With the as-prepared UCNP-TB, real-time and synchronous monitoring the variation of GSH and H2O2in vitro and in living mice can be achieved using the ratio of the upconversion luminescence (UCL) at 540 and 650 nm to that at 800 nm as the detection signal, respectively, providing highly inherent reliability of the sensing results by self-calibration. Moreover, the nanoprobe is capable of mapping the redox status within the drug-resistant tumor and the drug-induced hepatotoxic liver via ratiometric UCL imaging. Thus, this nanoprobe would provide a reliable tool to elucidate the redox state in vivo.


redox status glutathione hydrogen peroxide upconversion imaging nanoprobe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the National Natural Science Foundation of China (Nos. 21771065 and 81630046), the Natural Science Foundation of Guangdong Province, China (No. 2017A020215088), the Science and Technology Planning Project of Guangdong Province, China (Nos. 2015B020233016 and 2014B020215003), the Science and Technology Planning Project of Guangdong Province (Guangdong-Hong Kong Joint Innovation Project), China (No. 2014B050504009) Pearl River Nova Program of Guangzhou, Guangdong Province, China (No. 201806010189), and the Scientific and Technological Planning Project of Guangzhou, Guangdong Province, China (No. 201805010002).

Supplementary material

12274_2019_2327_MOESM1_ESM.pdf (5 mb)
Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe


  1. [1]
    Balaban, R. S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell 2005, 120, 483–495.CrossRefGoogle Scholar
  2. [2]
    Wang, K.; Zhang, T.; Dong, Q.; Nice, E. C.; Huang, C. H.; Wei, Y. Q. Redox homeostasis: The linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 2013, 4, e537.CrossRefGoogle Scholar
  3. [3]
    Tsang, C. K.; Chen, M.; Cheng, X.; Qi, Y. M.; Chen, Y.; Das, I.; Li, X. X.; Vallat, B.; Fu, L. W.; Qian, C. N. et al. SOD1 phosphorylation by mTORC1 couples nutrient sensing and redox regulation. Mol. Cell 2018, 70, 502–515.e8.CrossRefGoogle Scholar
  4. [4]
    Fruehauf, J. P.; Meyskens, F. L., Jr. Reactive oxygen species: A breath of life or death? Clin. Cancer Res. 2007, 13, 789–794.CrossRefGoogle Scholar
  5. [5]
    Breckwoldt, M. O.; Pfister, F. M. J.; Bradley, P. M.; Marinkovic, P.; Williams, P. R.; Brill, M. S.; Plomer, B.; Schmalz, A.; St Clair, D. K.; Naumann, R. et al. Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nat. Med. 2014, 20, 555–560.CrossRefGoogle Scholar
  6. [6]
    Sun, Q. A.; Kirnarsky, L.; Sherman, S.; Gladyshev, V. N. Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc. Natl. Acad. Sci. USA 2001, 98, 3673–3678.CrossRefGoogle Scholar
  7. [7]
    Gutscher, M.; Pauleau, A. L.; Marty, L.; Brach, T.; Wabnitz, G. H.; Samstag, Y.; Meyer, A. J.; Dick, T. P. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 2008, 5, 553–559.CrossRefGoogle Scholar
  8. [8]
    Vaughn, A. E.; Deshmukh, M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat. Cell. Biol. 2008, 10, 1477–1483.CrossRefGoogle Scholar
  9. [9]
    Acharya, A.; Das, I.; Chandhok, D.; Saha, T. Redox regulation in cancer: A double-edged sword with therapeutic potential. Oxid. Med. Cell. Longev. 2010, 3, 23–34.CrossRefGoogle Scholar
  10. [10]
    Ishimoto, T.; Nagano, O.; Yae, T.; Tamada, M.; Motohara, T.; Oshima, H.; Oshima, M.; Ikeda, T.; Asaba, R.; Yagi, H. et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc–and thereby promotes tumor growth. Cancer Cell 2011, 19, 387–400.CrossRefGoogle Scholar
  11. [11]
    Shuhendler, A. J.; Pu, K. Y.; Cui, L. N.; Uetrecht, J. P.; Rao, J. H. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol. 2014, 32, 373–380.CrossRefGoogle Scholar
  12. [12]
    Hassan, Z. K.; Elobeid, M. A.; Virk, P.; Omer, S. A.; ElAmin, M.; Daghestani, M. H.; AlOlayan, E. M. Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxid. Med. Cell. Longev. 2012, 2012, 194829.CrossRefGoogle Scholar
  13. [13]
    Barnham, K. J.; Masters, C. L.; Bush, A. I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004, 3, 205–214.CrossRefGoogle Scholar
  14. [14]
    Ma, B. J.; Wang, S.; Liu, F.; Zhang, S.; Duan, J. Z.; Li, Z.; Kong, Y.; Sang, Y. H.; Liu, H.; Bu, W. B. et al. Self-assembled copper–amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 849–857.CrossRefGoogle Scholar
  15. [15]
    Lou, Z. R.; Li, P.; Han, K. L. Redox-responsive fluorescent probes with different design strategies. Acc. Chem. Res. 2015, 48, 1358–1368.CrossRefGoogle Scholar
  16. [16]
    Yuan, L.; Lin, W. Y.; Xie, Y. N.; Chen, B.; Zhu, S. S. Single fluorescent probe responds to H2O2, NO, and H2O2/NO with three different sets of fluorescence signals. J. Am. Chem. Soc. 2012, 134, 1305–1315.CrossRefGoogle Scholar
  17. [17]
    Yu, F. B.; Li, P.; Song, P.; Wang, B. S.; Zhao, J. Z.; Han, K. L. Facilitative functionalization of cyanine dye by an on-off-on fluorescent switch for imaging of H2O2 oxidative stress and thiols reducing repair in cells and tissues. Chem. Commun. 2012, 48, 4980–4982.CrossRefGoogle Scholar
  18. [18]
    Guo, Z. Q.; Park, S.; Yoon, J. Y.; Shin, I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev. 2014, 43, 16–29.CrossRefGoogle Scholar
  19. [19]
    Koide, Y.; Kawaguchi, M.; Urano, Y.; Hanaoka, K.; Komatsu, T.; Abo, M.; Terai, T.; Nagano, T. A reversible near-infrared fluorescence probe for reactive oxygen species based on Te-rhodamine. Chem. Commun. 2012, 48, 3091–3093.CrossRefGoogle Scholar
  20. [20]
    Yu, F. B.; Li, P.; Li, G. Y.; Zhao, G. J.; Chu, T. S.; Han, K. L. A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells. J. Am. Chem. Soc. 2011, 133, 11030–11033.CrossRefGoogle Scholar
  21. [21]
    Yu, F. B.; Li, P.; Wang, B. S.; Han, K. L. Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo. J. Am. Chem. Soc. 2013, 135, 7674–7680.CrossRefGoogle Scholar
  22. [22]
    Li, N.; Than, A.; Sun, C. C.; Tian, J. Q.; Chen, J.; Pu, K. Y.; Dong, X. C.; Chen, P. Monitoring dynamic cellular redox homeostasis using fluorescenceswitchable graphene quantum dots. ACS Nano 2016, 10, 11475–11482.CrossRefGoogle Scholar
  23. [23]
    Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.CrossRefGoogle Scholar
  24. [24]
    Zhang, Y. L.; Shao, X. M.; Wang, Y.; Pan, F. C.; Kang, R. X.; Peng, F. F.; Huang, Z. T.; Zhang, W. J.; Zhao, W. L. Dual emission channels for sensitive discrimination of Cys/Hcy and GSH in plasma and cells. Chem. Commun. 2015, 51, 4245–4248.CrossRefGoogle Scholar
  25. [25]
    Lim, S. Y.; Hong, K. H.; Kim, D. I.; Kwon, H.; Kim, H. J. Tunable heptamethine-azo dye conjugate as an NIR fluorescent probe for the selective detection of mitochondrial glutathione over cysteine and homocysteine. J. Am. Chem. Soc. 2014, 136, 7018–7025.CrossRefGoogle Scholar
  26. [26]
    Yin, J.; Kwon, Y.; Kim, D.; Lee, D.; Kim, G.; Hu, Y.; Ryu, J. H.; Yoon, J. Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J. Am. Chem. Soc. 2014, 136, 5351–5358.CrossRefGoogle Scholar
  27. [27]
    Xu, K. H.; Qiang, M. M.; Gao, W.; Su, R. X.; Li, N.; Gao, Y.; Xie, Y. X.; Kong, F. P.; Tang, B. A near-infrared reversible fluorescent probe for real-time imaging of redox status changes in vivo. Chem. Sci. 2013, 4, 1079–1086.CrossRefGoogle Scholar
  28. [28]
    McMahon, B. K.; Gunnlaugsson, T. Selective detection of the reduced form of glutathione (GSH) over the oxidized (GSSG) form using a combination of glutathione reductase and a Tb(III)-cyclen maleimide based lanthanide luminescent “switch on” assay. J. Am. Chem. Soc. 2012, 134, 10725–10728.CrossRefGoogle Scholar
  29. [29]
    Lou, Z. R.; Li, P.; Sun, X. F.; Yang, S. Q.; Wang, B. S.; Han, K. L. A fluorescent probe for rapid detection of thiols and imaging of thiols reducing repair and H2O2 oxidative stress cycles in living cells. Chem. Commun. 2013, 49, 391–393.CrossRefGoogle Scholar
  30. [30]
    Huang, X. L.; Song, J. B.; Yung, B. C.; Huang, X. H.; Xiong, Y. H.; Chen, X. Y. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873–2920.CrossRefGoogle Scholar
  31. [31]
    Chu, B. B.; Song, B.; Ji, X. Y.; Su, Y. Y.; Wang, H. Y.; He, Y. Fluorescent silicon nanorods-based ratiometric sensors for long-term and real-time measurements of intracellular pH in live cells. Anal. Chem. 2017, 89, 12152–12159.CrossRefGoogle Scholar
  32. [32]
    Chu, B. B.; Wang, H. Y.; Song, B.; Peng, F.; Su, Y. Y.; He, Y. Fluorescent and photostable silicon nanoparticles sensors for real-time and long-term intracellular pH measurement in live cells. Anal. Chem. 2016, 88, 9235–9242.CrossRefGoogle Scholar
  33. [33]
    Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161–5214.CrossRefGoogle Scholar
  34. [34]
    Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 2015, 115, 10530–10574.CrossRefGoogle Scholar
  35. [35]
    Liu, Y.; Chen, M.; Cao, T. Y.; Sun, Y.; Li, C. Y.; Liu, Q.; Yang, T. S.; Yao, L. M.; Feng, W.; Li, F. Y. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J. Am. Chem. Soc. 2013, 135, 9869–9876.CrossRefGoogle Scholar
  36. [36]
    Li, Z. H.; Yuan, H.; Yuan, W.; Su, Q. Q.; Li, F. Y. Upconversion nanoprobes for biodetections. Coordin. Chem. Rev. 2018, 354, 155–168.CrossRefGoogle Scholar
  37. [37]
    Wang, M.; Mi, C. C.; Wang, W. X.; Liu, C. H.; Wu, Y. F.; Xu, Z. R.; Mao, C. B.; Xu, S. K. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles. ACS Nano 2009, 3, 1580–1586.CrossRefGoogle Scholar
  38. [38]
    Vetrone, F.; Naccache, R.; Zamarrón, A.; de la Fuente, A. J.; Sanz-Rodríguez, F.; Maestro, L. M.; Rodriguez, E. M.; Jaque, D.; Solé, J. G.; Capobianco, J. A. Temperature sensing using fluorescent nanothermometers. ACS Nano 2010, 4, 3254–3258.CrossRefGoogle Scholar
  39. [39]
    Wang, N. N.; Yu, X. Y.; Zhang, K.; Mirkin, C. A.; Li, J. S. Upconversion nanoprobes for the ratiometric luminescent sensing of nitric oxide. J. Am. Chem. Soc. 2017, 139, 12354–12357.CrossRefGoogle Scholar
  40. [40]
    Zhou, Y.; Pei, W. B.; Wang, C. Y.; Zhu, J. X.; Wu, J. S.; Yan, Q. Y.; Huang, L.; Huang, W.; Yao, C.; Loo, J. S. C. et al. Rhodamine-modified upconversion nanophosphors for ratiometric detection of hypochlorous acid in aqueous solution and living cells. Small 2014, 10, 3560–3567.CrossRefGoogle Scholar
  41. [41]
    Park, Y. I.; Lee, K. T.; Suh, Y. D.; Hyeon, T. Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multimodal in vivo imaging. Chem. Soc. Rev. 2015, 44, 1302–1317.CrossRefGoogle Scholar
  42. [42]
    Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416–1448.CrossRefGoogle Scholar
  43. [43]
    Yang, Y. M.; Shao, Q.; Deng, R. R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. G. et al. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 3125–3129.CrossRefGoogle Scholar
  44. [44]
    Ding, Q. W.; Zhan, Q. Q.; Zhou, X. M.; Zhang, T.; Xing, D. Theranostic upconversion nanobeacons for tumor mRNA ratiometric fluorescence detection and imaging-monitored drug delivery. Small 2016, 12, 5944–5953.CrossRefGoogle Scholar
  45. [45]
    Li, Z.; Lv, S. W.; Wang, Y. L.; Chen, S. Y.; Liu, Z. H. Construction of LRET-based nanoprobe using upconversion nanoparticles with confined emitters and bared surface as luminophore. J. Am. Chem. Soc. 2015, 137, 3421–3427.CrossRefGoogle Scholar
  46. [46]
    Yao, L. M.; Zhou, J.; Liu, J. L.; Feng, W.; Li, F. Y. Iridium-complexmodified upconversion nanophosphors for effective LRET detection of cyanide anions in pure water. Adv. Funct. Mater. 2012, 22, 2667–2672.CrossRefGoogle Scholar
  47. [47]
    Liu, Q.; Peng, J. J.; Sun, L. N.; Li, F. Y. High-efficiency upconversion luminescent sensing and bioimaging of Hg(II) by chromophoric ruthenium complex-assembled nanophosphors. ACS Nano 2011, 5, 8040–8048.CrossRefGoogle Scholar
  48. [48]
    Zhou, L.; Wang, R.; Yao, C.; Li, X. M.; Wang, C. L.; Zhang, X. Y.; Xu, C. J.; Zeng, A. J.; Zhao, D. Y.; Zhang, F. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat. Commun. 2015, 6, 6938.CrossRefGoogle Scholar
  49. [49]
    Yuan, Q.; Wu, Y.; Wang, J.; Lu, D. Q.; Zhao, Z. L.; Liu, T.; Zhang, X. B.; Tan, W. H. Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided G-quadruplex DNA carrier and near-infrared light. Angew. Chem., Int. Ed. 2013, 52, 13965–13969.CrossRefGoogle Scholar
  50. [50]
    Xiao, Q. F.; Zheng, X. P.; Bu, W. B.; Ge, W. Q.; Zhang, S. J.; Chen, F.; Xing, H. Y.; Ren, Q. G.; Fan, W. P.; Zhao, K. L. et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc. 2013, 135, 13041–13048.CrossRefGoogle Scholar
  51. [51]
    Uhm, H.; Kang, W.; Ha, K. S.; Kang, C.; Hohng, S. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch. Proc. Natl. Acad. Sci. USA 2018, 115, 331–336.CrossRefGoogle Scholar
  52. [52]
    Liu, J.; Liu, Y.; Bu, W. B.; Bu, J. W.; Sun, Y.; Du, J. L.; Shi, J. L. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J. Am. Chem. Soc. 2014, 136, 9701–9709.CrossRefGoogle Scholar
  53. [53]
    Deng, R. R.; Xie, X. J.; Vendrell, M.; Chang, Y. T.; Liu, X. G. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J. Am. Chem. Soc. 2011, 133, 20168–20171.CrossRefGoogle Scholar
  54. [54]
    Ni, J. K.; Shan, C. X.; Li, B.; Zhang, L. M.; Ma, H. P.; Luo, Y. S.; Song, H. Assembling of a functional cyclodextrin-decorated upconversion luminescence nanoplatform for cysteine-sensing. Chem. Commun. 2015, 51, 14054–14056.CrossRefGoogle Scholar
  55. [55]
    Li, Z.; Liang, T.; Lv, S. W.; Zhuang, Q. G.; Liu, Z. H. A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical. J. Am. Chem. Soc. 2015, 137, 11179–11185.CrossRefGoogle Scholar
  56. [56]
    Liu, Y. X.; Jia, Q.; Guo, Q. W.; Jiang, A. Q.; Zhou, J. In vivo oxidative stress monitoring through intracellular hydroxyl radicals detection by recyclable upconversion nanoprobes. Anal. Chem. 2017, 89, 12299–12305.CrossRefGoogle Scholar
  57. [57]
    Peng, J. J.; Samanta, A.; Zeng, X.; Han, S. Y.; Wang, L.; Su, D. D.; Loong, D. T. B.; Kang, N. Y.; Park, S. J.; All, A. H. et al. Real-time in vivo hepatotoxicity monitoring through chromophore-conjugated photonupconverting nanoprobes. Angew. Chem., Int. Ed. 2017, 56, 4165–4169.CrossRefGoogle Scholar
  58. [58]
    Yuan, J.; Cen, Y.; Kong, X. J.; Wu, S.; Liu, C. L.; Yu, R. Q.; Chu, X. MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl. Mater. Interfaces 2015, 7, 10548–10555.CrossRefGoogle Scholar
  59. [59]
    Guo, Q. W.; Liu, Y. X.; Jia, Q.; Zhang, G.; Fan, H. M.; Liu, L. D.; Zhou, J. Ultrahigh sensitivity multifunctional nanoprobe for the detection of hydroxyl radical and evaluation of heavy metal induced oxidative stress in live hepatocyte. Anal. Chem. 2017, 89, 4986–4993.CrossRefGoogle Scholar
  60. [60]
    Harris, I. S.; Treloar, A. E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K. C.; Yung, K. Y.; Brenner, D.; Knobbe-Thomsen, C. B.; Cox, M. A. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 2015, 27, 211–222.CrossRefGoogle Scholar
  61. [61]
    Rahman, I.; MacNee, W. Regulation of redox glutathione levels and gene transcription in lung inflammation: Therapeutic approaches. Free Radic. Biol. Med. 2000, 28, 1405–1420.CrossRefGoogle Scholar
  62. [62]
    Szatrowski, T. P.; Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991, 51, 794–798.Google Scholar
  63. [63]
    Zhang, W. J.; Liu, T.; Huo, F. J.; Ning, P.; Meng, X. M.; Yin, C. X. Reversible ratiometric fluorescent probe for sensing bisulfate/H2O2 and its application in zebrafish. Anal. Chem. 2017, 89, 8079–8083.CrossRefGoogle Scholar
  64. [64]
    Jiang, X. Q.; Yu, Y.; Chen, J. W.; Zhao, M. K.; Chen, H.; Song, X. Z.; Matzuk, A. J.; Carroll, S. L.; Tan, X.; Sizovs, A. et al. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe. ACS Chem. Biol. 2015, 10, 864–874.CrossRefGoogle Scholar
  65. [65]
    Dong, B. L.; Song, X. Z.; Kong, X. Q.; Wang, C.; Tang, Y. H.; Liu, Y.; Lin, W. Y. Simultaneous near-infrared and two-photon in vivo imaging of H2O2 using a ratiometric fluorescent probe based on the unique oxidative rearrangement of oxonium. Adv. Mater. 2016, 28, 8755–8759.CrossRefGoogle Scholar
  66. [66]
    Godwin, A. K.; Meister, A.; O’Dwyer, P. J.; Huang, C. S.; Hamilton, T. C.; Anderson, M. E. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc. Natl. Acad. Sci. USA 1992, 89, 3070–3074.CrossRefGoogle Scholar
  67. [67]
    Kaplowitz, N. Idiosyncratic drug hepatotoxicity. Nat. Rev. Drug Discov. 2005, 4, 489–499.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhouChina
  2. 2.College of BiophotonicsSouth China Normal UniversityGuangzhouChina

Personalised recommendations