Nano Research

, Volume 12, Issue 4, pp 925–930 | Cite as

Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen

  • Shuyang Zhao
  • Ke Wang
  • Xiaolong ZouEmail author
  • Lin GanEmail author
  • Hongda Du
  • Chengjun Xu
  • Feiyu Kang
  • Wenhui Duan
  • Jia LiEmail author
Research Article


Developing alternative oxygen reduction reaction (ORR) catalysts to replace precious Pt-based metals with abundant materials is the key challenge of commercial application of fuel cells. Owing to their various compositions and tunable electronic properties, transition metal dichalcogenides (TMDs) have the great potential to realize high-efficiency catalysts for ORR. Here, various 3R-phase dichalcogenides of group VB and VIB transition metals (MX2, M = Nb, Ta, Mo, W; X = S, Se, Te) are investigated for ORR catalysts by using density functional theory calculations. The computed over-potentials of group VB TMDs are much less than those of group VIB TMDs. For group VB TMDs, a volcano-type plot of ORR catalytic activity is established on the adsorption energies of *OH, and NbS2 and TaTe2 exhibit best ORR activity with an over-potential of 0.54 V. To achieve even better activity, strain engineering is performed to tune ORR catalytic activity, and the minimum over-potential of 0.43 V can be realized. We further demonstrate that the shift of p orbital center of surface chalcogen elements under strain is responsible for tuning the catalytic activity of TMDs.


transition metal dichalcogenides fuel cells oxygen reduction reaction strain density functional theory (DFT) calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program of China (No. 2017YFB0701600), the National Natural Science Foundation of China (Nos. 11874036, 51622103, and 21573123), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (No. 2017BT01N111), Shenzhen Projects for Basic Research (No. JCYJ20170412171430026), and the National Program for Thousand Young Talents of China. Tianjin Supercomputing Center is also acknowledged for allowing the use of computational resources including TIANHE-1.

Supplementary material

12274_2019_2326_MOESM1_ESM.pdf (3.2 mb)
Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen


  1. [1]
    Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.CrossRefGoogle Scholar
  2. [2]
    Wu, J. B.; Yang, H. Platinum–based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.CrossRefGoogle Scholar
  3. [3]
    Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.CrossRefGoogle Scholar
  4. [4]
    Zou, L. L.; Fan, J.; Zhou, Y.; Wang, C. M.; Li, J.; Zou, Z. Q.; Yang, H. Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol–tolerant oxygen reduction reactions. Nano Res. 2015, 8, 2777–2788.CrossRefGoogle Scholar
  5. [5]
    Zheng, F. L.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core–shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.CrossRefGoogle Scholar
  6. [6]
    Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal. 2012, 2, 1654–1660.CrossRefGoogle Scholar
  7. [7]
    Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.CrossRefGoogle Scholar
  8. [8]
    Bai, S.; Wang, C. M.; Jiang, W. Y.; Du, N. N.; Li, J.; Du, J. T.; Long, R.; Li, Z. Q.; Xiong, Y. J. Etching approach to hybrid structures of PtPd nanocages and graphene for efficient oxygen reduction reaction catalysts. Nano Res. 2015, 8, 2789–2799.CrossRefGoogle Scholar
  9. [9]
    De Bruijn, F. A.; Dam, V. A. T.; Janssen, G. J. M. Review: Durability and degradation issues of PEM fuel cell components. Fuel Cells 2008, 8, 3–22.CrossRefGoogle Scholar
  10. [10]
    Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen–and hydrogen–involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.CrossRefGoogle Scholar
  11. [11]
    Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen–doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.CrossRefGoogle Scholar
  12. [12]
    Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal–free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.CrossRefGoogle Scholar
  13. [13]
    Zou, X. L.; Wang, L. Q.; Yakobson, B. I. Mechanisms of the oxygen reduction reaction on B–and/or N–doped carbon nanomaterials with curvature and edge effects. Nanoscale 2018, 10, 1129–1134.CrossRefGoogle Scholar
  14. [14]
    Yan, D. F.; Guo, L.; Xie, C.; Wang, Y. Y.; Li, Y. X.; Li, H.; Wang, S. Y. N, P–dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction. Sci. China Mater. 2018, 61, 679–685.CrossRefGoogle Scholar
  15. [15]
    Ma, R. G.; Ren, X. D.; Xia, B. Y.; Zhou, Y.; Sun, C.; Liu, Q.; Liu, J. J.; Wang, J. C. Novel synthesis of N–doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Res. 2016, 9, 808–819.CrossRefGoogle Scholar
  16. [16]
    Shen, M. X.; Wei, C. T.; Ai, K. L.; Lu, L. H. Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. Nano Res. 2017, 10, 1449–1470.CrossRefGoogle Scholar
  17. [17]
    Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N–coordinated dualmetal sites: A stable and active Pt–free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.CrossRefGoogle Scholar
  18. [18]
    Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron–and nitrogen–doped graphene materials. Nat. Mater. 2015, 14, 937–942.CrossRefGoogle Scholar
  19. [19]
    Song, K.; Long, Y.; Wang, X.; Zhou, G. Theoretical investigations of transport properties of organic solvents in cation–functionalized graphene oxide membranes: Implications for drug delivery. Nano Res. 2018, 11, 254–263.CrossRefGoogle Scholar
  20. [20]
    Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High–performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.CrossRefGoogle Scholar
  21. [21]
    Shang, C. Q.; Yang, M. Y.; Wang, Z. Y.; Li, M. C.; Liu, M.; Zhu, J.; Zhu, Y. G.; Zhou, L. J.; Cheng, H.; Gu, Y. Y. et al. Encapsulated MnO in N–doping carbon nanofibers as efficient ORR electrocatalysts. Sci. China Mater. 2017, 60, 937–946.CrossRefGoogle Scholar
  22. [22]
    Liao, W. X.; Zhou G. Conditions for magnetic and electronic properties of ultrathin Ni–Fe hydroxide nanosheets as catalysts: A DFT+U study. Sci. China Mater. 2017, 60, 664–673.CrossRefGoogle Scholar
  23. [23]
    Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non–precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.CrossRefGoogle Scholar
  24. [24]
    Eng, A. Y. S.; Ambrosi, A.; Sofer, Z.; Šimek, P.; Pumera, M. Electrochemistry of transition metal dichalcogenides: Strong dependence on the metalto–chalcogen composition and exfoliation method. ACS Nano 2014, 8, 12185–12198.CrossRefGoogle Scholar
  25. [25]
    Huang, H.; Feng, X.; Du, C. C.; Song, W. B. High–quality phosphorusdoped MoS2 ultrathin nanosheets with amenable ORR catalytic activity. Chem. Commun. 2015, 51, 7903–7906.CrossRefGoogle Scholar
  26. [26]
    Huang, H.; Feng, X.; Du, C.; Wu, S.; Song, W. Incorporated oxygen in MoS2 ultrathin nanosheets for efficient ORR catalysis. J. Mater. Chem. A 2015, 3, 16050–16056.CrossRefGoogle Scholar
  27. [27]
    Zhang, H. Y.; Tian, Y.; Zhao, J. X.; Cai, Q. H.; Chen, Z. F. Small dopants make big differences: Enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction (ORR) by N–and P–doping. Electrochim. Acta 2017, 225, 543–550.CrossRefGoogle Scholar
  28. [28]
    Wang, Z. X.; Zhao, J. X.; Cai, Q. H.; Li, F. Y. Computational screening for high–activity MoS2 monolayer–based catalysts for the oxygen reduction reaction via substitutional doping with transition metal. J. Mater. Chem. A 2017, 5, 9842–9851.CrossRefGoogle Scholar
  29. [29]
    Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.CrossRefGoogle Scholar
  30. [30]
    Ling, T.; Yan, D. Y.; Wang, H.; Jiao, Y.; Hu, Z. P.; Zheng, Y.; Zheng, L. R.; Mao, J.; Liu, H.; Du, X. W. et al. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 2017, 8, 1509.CrossRefGoogle Scholar
  31. [31]
    Noh, S. H.; Han, B.; Ohsaka, T. First–principles computational study of highly stable and active ternary PtCuNi nanocatalyst for oxygen reduction reaction. Nano Res. 2015, 8, 3394–3403.CrossRefGoogle Scholar
  32. [32]
    Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice–strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.CrossRefGoogle Scholar
  33. [33]
    Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.CrossRefGoogle Scholar
  34. [34]
    Luxa, J.; Mazánek, V.; Pumera, M.; Lazar, P.; Sedmidubský, D.; Callisti, M.; Polcar, T.; Sofer, Z. 2H→1T Phase Engineering of layered tantalum disulfides in electrocatalysis: Oxygen reduction reaction. Chem.–Eur. J. 2017, 23, 8082–8091.CrossRefGoogle Scholar
  35. [35]
    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two–dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.CrossRefGoogle Scholar
  36. [36]
    Toh, R. J.; Sofer, Z.; Luxa, J.; Sedmidubský, D.; Pumera, M. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem. Commun. 2017, 53, 3054–3057.CrossRefGoogle Scholar
  37. [37]
    Feng, Y.; Gong, S. J.; Du, E. W.; Chen, X. F.; Qi, R. J.; Yu, K.; Zhu, Z. Q. 3R TaS2 surpasses the corresponding 1T and 2H phases for the hydrogen evolution reaction. J. Phys. Chem. C 2018, 122, 2382–2390.CrossRefGoogle Scholar
  38. [38]
    Kresse, G.; Furthmüller, J. Efficiency of ab–initio total energy calculations for metals and semiconductors using a plane–wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  39. [39]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented–wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  40. [40]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.CrossRefGoogle Scholar
  41. [41]
    Grimme, S. Semiempirical GGA–type density functional constructed with a long–range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.CrossRefGoogle Scholar
  42. [42]
    Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel–cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.CrossRefGoogle Scholar
  43. [43]
    Choi, C. H.; Lim, H. K.; Chung, M. W.; Park, J. C.; Shin, H.; Kim, H.; Woo, S. I. Long–range electron transfer over graphene–based catalyst for high–performing oxygen reduction reactions: Importance of size, N–doping, and metallic impurities. J. Am. Chem. Soc. 2014, 136, 9070–9077.CrossRefGoogle Scholar
  44. [44]
    Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; Sehested, J. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 2004, 224, 206–217.CrossRefGoogle Scholar
  45. [45]
    Che, M. Nobel Prize in chemistry 1912 to Sabatier: Organic chemistry or catalysis. Catal. Today 2013, 218–219, 162–171.CrossRefGoogle Scholar
  46. [46]
    Vojvodic, A.; Hellman, A.; Ruberto, C.; Lundqvist, B. I. From electronic structure to catalytic activity: A single descriptor for adsorption and reactivity on transition–metal carbides. Phys. Rev. Lett. 2009, 103, 146103.CrossRefGoogle Scholar
  47. [47]
    Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen evolution on nano–particulate transition metal sulfides. Faraday Discuss. 2009, 140, 219–231.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at ShenzhenTsinghua UniversityShenzhenChina
  2. 2.Shenzhen Geim Graphene Center, Division of Energy and Environment, Graduate School at ShenzhenTsinghua UniversityShenzhenChina
  3. 3.Tsinghua-Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhenChina
  4. 4.Department of Physics and State Key Laboratory of Low-Dimensional Quantum PhysicsTsinghua UniversityBeijingChina

Personalised recommendations