Skip to main content

Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3

Abstract

Industrial production of NH3 from N2 and H2 significantly relies on Haber–Bosch process, which suffers from high energy consume and CO2 emission. As a sustainable and environmentally-benign alternative process, electrochemical artificial N2 fixation at ambient conditions, however, is highly required efficient electrocatalysts. In this study, we demonstrate that hexagonal boron nitride nanosheet (h-BNNS) is able to electrochemically catalyze N2 to NH3. In acidic solution, h-BNNS catalyst attains a high NH3 formation rate of 22.4 μg·h–1·mg–1cat. and a high Faradic efficiency of 4.7% at–0.75 V vs. reversible hydrogen electrode, with excellent stability and durability. Density functional theory calculations reveal that unsaturated boron at the edge site can activate inert N2 molecule and significantly reduce the energy barrier for NH3 formation.

References

  1. [1]

    Smil, V. Detonator of the population explosion. Nature 1999, 400, 415.

    Article  Google Scholar 

  2. [2]

    Schlögl, R. Catalytic synthesis of ammonia—A “never–ending story”? Angew. Chem., Int. Ed. 2003, 42, 2004–2008.

    Article  Google Scholar 

  3. [3]

    Rosca, V.; Duca, M.; De Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

    Article  Google Scholar 

  4. [4]

    Vegge, T.; Sørensen, R. Z.; Klerke, A.; Hummelshøj, J. S.; Johannessen, T.; Nørskov, J. K.; Christensen, C. H. Indirect hydrogen storage in metal ammines. In Solid–State Hydrogen Storage. Walker, G., Ed.; Woodhead Publishing Limited: Cambridge, 2008; pp 533–564.

    Google Scholar 

  5. [5]

    Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal–free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

    Article  Google Scholar 

  6. [6]

    Fryzuk, M. D.; Love, J. B.; Rettig, S. J.; Young, V. G. Transformation of coordinated dinitrogen by reaction with dihydrogen and primary silanes. Science 1997, 275, 1445–1447.

    Article  Google Scholar 

  7. [7]

    Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis—The selectivity challenge. ACS Catal. 2017, 7, 706–709.

    Article  Google Scholar 

  8. [8]

    Jennings, J. R. Catalytic Ammonia Synthesis; Plenum: New York, 1991.

    Book  Google Scholar 

  9. [9]

    Dybkjaer, I. Ammonia production processes. In Ammonia: Catalysis and Manufacture. Nielsen, A., Ed.; Springer: Berlin, Heidelberg, 1995; pp 199–327.

    Google Scholar 

  10. [10]

    Chan, M. K.; Kim, J.; Rees, D. C. The nitrogenase FeMo–cofactor and P–cluster pair: 2.2 a resolution structures. Science 1993, 260, 792–794.

    Article  Google Scholar 

  11. [11]

    Burgess, B. K.; Lowe, D. J. Mechanism of molybdenum nitrogenase. Chem. Rev. 1996, 96, 2983–3011.

    Article  Google Scholar 

  12. [12]

    Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C.; King, P. W. Light–driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450.

    Article  Google Scholar 

  13. [13]

    Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  14. [14]

    Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

    Article  Google Scholar 

  15. [15]

    Cao, N.; Zheng, G. F. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992–3008.

    Article  Google Scholar 

  16. [16]

    Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.

    Article  Google Scholar 

  17. [17]

    Nazemi, M.; Panikkanvalappil, S. R.; El–Sayed, M. A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy 2018, 49, 316–323.

    Article  Google Scholar 

  18. [18]

    Kordali, V.; Kyriacou, G.; Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 2000, 1673–1674.

    Google Scholar 

  19. [19]

    Kordali, V.; Kyriacou, G.; Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 2000, 1673–1674.

    Google Scholar 

  20. [20]

    Huang, H. H.; Xia, L.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 2018, 54, 11427–11430.

    Article  Google Scholar 

  21. [21]

    Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon–nanotube–based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699–2703.

    Article  Google Scholar 

  22. [22]

    Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Room–temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas–liquid–solid three–phase reactor. ACS Sustainable Chem. Eng. 2017, 5, 7393–7400.

    Article  Google Scholar 

  23. [23]

    Yang, D. S.; Chen, T.; Wang, Z. J. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)–oriented Mo nanofilm. J. Mater. Chem. A 2017, 5, 18967–18971.

    Article  Google Scholar 

  24. [24]

    Lv, C.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble–metal–free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073–6076.

    Article  Google Scholar 

  25. [25]

    Liu, Q.; Zhang, X. X.; Zhang, B.; Luo, Y. L.; Cui, G. W.; Xie, F. Y.; Sun, X. P. Ambient N2 fixation to NH3 Electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386–14389.

    Article  Google Scholar 

  26. [26]

    Zhang, R.; Zhang, Y.; Ren, X.; Cui, G. W.; Asiri, A. M.; Zheng, B. Z.; Sun, X. P. High–efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array. ACS Sustainable Chem. Eng. 2018, 6, 9545–9549.

    Article  Google Scholar 

  27. [27]

    Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L.; Tang, B.; Sun, X. P. High–performance artificial nitrogen fixation at ambient conditions using a metal–free electrocatalyst. Nat. Commun. 2018, 9, 3485.

    Article  Google Scholar 

  28. [28]

    Han, J. R.; Liu, Z. C.; Ma, Y. J.; Cui, G. W.; Xie, F. Y.; Wang, F. X.; Wu, Y. P.; Gao, S. Y.; Xu, Y. H.; Sun, X. P. Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high–performance electrocatalyst. Nano Energy 2018, 52, 264–270.

    Article  Google Scholar 

  29. [29]

    Zhang, Y.; Qiu, W. B.; Ma, Y. J.; Luo, Y. L.; Tian, Z. Q.; Cui, G. W.; Xie, F. Y.; Chen, L.; Li, T. S.; Sun, X. P. High–performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions. ACS Catal. 2018, 8, 8540–8544.

    Article  Google Scholar 

  30. [30]

    Zhang, L.; Ji, X. Q.; Ren, X.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Zheng, B. Z.; Sun, X. P. Efficient electrochemical N2 reduction to NH3 on MoN nanosheets array under ambient conditions. ACS Sustainable Chem. Eng. 2018, 6, 9550–9554.

    Article  Google Scholar 

  31. [31]

    Li, X. H.; Li, T. S.; Ma, Y. J.; Wei, Q.; Qiu, W. B.; Guo, H. R.; Shi, X. F.; Zhang, P.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Boosted electrocatalytic N2 reduction to NH3 by defect–rich MoS2 nanoflower. Adv. Energy Mater. 2018, 8, 1801357.

    Article  Google Scholar 

  32. [32]

    Wang, Z.; Gong, F.; Zhang, L.; Wang, R.; Ji, L.; Liu, Q.; Luo, Y. L.; Guo, H. R.; Li, Y. H.; Gao, P.; Shi, X. F.; Li, B. H.; Tang, B.; Sun, X. P. Electrocatalytic hydrogenation of N2 to NH3 by MnO: Experimental and theoretical investigations. Adv. Sci. 2018, 5, 1801182.

    Google Scholar 

  33. [33]

    Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Zhao, J. J. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N–doped porous carbon. ACS Catal. 2018, 8, 1186–1191.

    Article  Google Scholar 

  34. [34]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  35. [35]

    Mirehi, A.; Heidari–Semiromi, E. Effects of the interplay between electronelectron interaction and intrinsic spin–orbit interaction on the indirect RKKY coupling in graphene nanoflakes. Phys. Chem. Chem. Phys. 2019, 21, 1324–1335.

    Article  Google Scholar 

  36. [36]

    Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two–dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    Article  Google Scholar 

  37. [37]

    Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene–like twodimensional materials. Chem. Rev. 2013, 113, 3766–3798.

    Article  Google Scholar 

  38. [38]

    Sun, Y. F.; Gao, S.; Lei, F. C.; Xie, Y. Atomically–thin two–dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623–636.

    Article  Google Scholar 

  39. [39]

    Chen, Y.; Tan, C. L.; Zhang, H.; Wang, L. Z. Two–dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 2015, 44, 2681–2701.

    Article  Google Scholar 

  40. [40]

    Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Two–dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 2017, 46, 6746–6763.

    Article  Google Scholar 

  41. [41]

    Kong, X. K.; Liu, Q. C.; Zhang, C. L.; Peng, Z. M.; Chen, Q. W. Elemental two–dimensional nanosheets beyond graphene. Chem. Soc. Rev. 2017, 46, 2127–2157.

    Article  Google Scholar 

  42. [42]

    Zhang, K. L.; Feng, Y. L.; Wang, F.; Yang, Z. C.; Wang, J. Two dimensional hexagonal boron nitride (2D–hBN): Synthesis, properties and applications. J. Mater. Chem. C 2017, 5, 11992–12022.

    Article  Google Scholar 

  43. [43]

    Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes and nanosheets. ACS Nano 2010, 4, 2979–2993.

    Article  Google Scholar 

  44. [44]

    Zeng, H. B.; Zhi, C. Y.; Zhang, Z. H.; Wei, X. L.; Wang, X. B.; Guo, W. L.; Bando, Y.; Golberg, D. “White graphenes”: Boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 2010, 10, 5049–5055.

    Article  Google Scholar 

  45. [45]

    Zobelli, A.; Gloter, A.; Ewels, C. P.; Seifert, G.; Colliex, C. Electron knock–on cross section of carbon and boron nitride nanotubes. Phys. Rev. B 2007, 75, 245402.

    Article  Google Scholar 

  46. [46]

    Zhang, Z. H.; Guo, W. L. Energy–gap modulation of BN ribbons by transverse electric fields: First–principles calculations. Phys. Rev. B 2008, 77, 075403.

    Article  Google Scholar 

  47. [47]

    Barone, V.; Peralta, J. E. Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Lett. 2008, 8, 2210–2214.

    Article  Google Scholar 

  48. [48]

    Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. R. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707–1710.

    Article  Google Scholar 

  49. [49]

    Wang, Z. F.; Tang, Z. J.; Xue, Q.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Jiang, H. B.; Fu, C. X.; Zhi, C. Y. Fabrication of boron nitride nanosheets by exfoliation. Chem. Rec. 2016, 16, 1204–1215.

    Article  Google Scholar 

  50. [50]

    Bao, J.; Jeppson, K.; Edwards, M.; Fu, Y. F.; Ye, L. L.; Lu, X. Z.; Liu, J. Synthesis and applications of two–dimensional hexagonal boron nitride in electronics manufacturing. Electron. Mater. Lett. 2016, 12, 1–16.

    Article  Google Scholar 

  51. [51]

    Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Nørskov, J. K.; Abild–Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022–3029.

    Article  Google Scholar 

  52. [52]

    Grahame, D. C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 1947, 41, 441–501.

    Article  Google Scholar 

  53. [53]

    Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498.

    Article  Google Scholar 

  54. [54]

    Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo–illuminated diamond as a solid–state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.

    Article  Google Scholar 

  55. [55]

    Watt, G. W.; Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 1952, 24, 2006–2008.

    Article  Google Scholar 

  56. [56]

    Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First–principles simulation: Ideas, illustrations and the castep code. J. Phys.: Condens. Matter 2002, 14, 2717–2744.

    Google Scholar 

  57. [57]

    Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    Article  Google Scholar 

  58. [58]

    Blöchl, P. E. Projector augmented–wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  59. [59]

    Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT–D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

  60. [60]

    Thangasamy, P.; Sathish, M. Supercritical fluid processing: A rapid, one–pot exfoliation process for the production of surfactant–free hexagonal boron nitride nanosheets. CrystEngComm 2015, 17, 5895–5899.

    Article  Google Scholar 

  61. [61]

    Sun, W. L.; Meng, Y.; Fu, Q. R.; Wang, F.; Wang, G. J.; Gao, W. H.; Huang, X. C.; Lu, F. S. High–yield production of boron nitride nanosheets and its uses as a catalyst support for hydrogenation of nitroaromatics. ACS Appl. Mater. Interfaces 2016, 8, 9881–9888.

    Article  Google Scholar 

  62. [62]

    Zhong, B.; Wu, Y.; Huang, X. X.; Wen, G. W.; Yu, H. M.; Zhang, T. Hollow BN microspheres constructed by nanoplates: Synthesis, growth mechanism and cathodoluminescence property. CrystEngComm 2011, 13, 819–826.

    Article  Google Scholar 

  63. [63]

    Xu, Z. G.; Tian, H.; Khanaki, A.; Zheng, R. J.; Suja, M.; Liu, J. L. Largearea growth of multi–layer hexagonal boron nitride on polished cobalt foils by plasma–assisted molecular beam epitaxy. Sci. Rep. 2017, 7, 43100.

    Article  Google Scholar 

  64. [64]

    Légaré, M. A.; Bélanger–Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Nitrogen fixation and reduction at boron. Science 2018, 359, 896–900.

    Article  Google Scholar 

  65. [65]

    Zhou, F. L.; Azofra, L. M.; Ali, M.; Kar, M.; Simonov, A. N.; McDonnell–Worth, C.; Sun, C. H.; Zhang, X. Y.; MacFarlane, D. R. Electro–synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 2017, 10, 2516–2520.

    Article  Google Scholar 

  66. [66]

    Xia, L.; Wu, X. F.; Wang, Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. S–doped carbon nanospheres: An efficient electrocatalyst toward artificial N2 fixation to NH3. Small Methods 2018, 2, 1800251.

    Article  Google Scholar 

  67. [67]

    Kong, J. M.; Lim, A.; Yoon, C.; Jang, J. H.; Ham, H. C.; Han, J.; Nam, S.; Kim, D.; Sung, Y. E.; Choi, J.; Park, H. S. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ–Fe2O3 catalyst. ACS Sustainable Chem. Eng. 2017, 5, 10986–10995.

    Article  Google Scholar 

  68. [68]

    Ren, X; Zhao, J. X.; Wei, Q.; Ma, Y. J.; Guo, H. R.; Liu, Q.; Wang, Y.; Cui, G. W.; Asiri, A. M.; Li, B. H.; Tang, B.; Sun, X. P. High–performance N2–to–NH3 conversion electrocatalyzed by Mo2C nanorod. ACS Cent. Sci. 2019, 5, 116–121.

    Article  Google Scholar 

  69. [69]

    Guo, C. X.; Zhang, L. Y.; Miao, J. W.; Zhang, J. T.; Li, C. M. DNAfunctionalized graphene to guide growth of highly active Pd nanocrystals as efficient electrocatalyst for direct formic acid fuel cells. Adv. Energy Mater. 2013, 3, 167–171.

    Article  Google Scholar 

  70. [70]

    Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild–Pedersen, F.; Vegge, T.; Jónssonac, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro–catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.

    Article  Google Scholar 

  71. [71]

    Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21575137, 21775089, and 21375076), the Key Research and Development Program of Shandong Province (No. 2015GSF121031) and the Natural Science Foundation Projects of Shandong Province (Nos. ZR2017JL010, ZR2017QB008, and ZR2017LEE006).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fengli Qu, Liang Chen or Xuping Sun.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Du, H., Ma, Y. et al. Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res. 12, 919–924 (2019). https://doi.org/10.1007/s12274-019-2323-x

Download citation

Keywords

  • boron nitride nanosheet
  • N2 reduction reaction
  • NH3 electrosynthesis
  • ambient conditions
  • density functional theory