Nano Research

, Volume 12, Issue 4, pp 911–917 | Cite as

Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries

  • Sohyun Park
  • Jinju Song
  • Seyeon Kim
  • Balaji Sambandam
  • Vinod Mathew
  • Sungjin Kim
  • Jeonggeun Jo
  • Seokhun Kim
  • Jaekook KimEmail author
Research Article


In this study, a pseudo-layered Na super-ionic conductor of Na3V2(PO4)2F3 (NVPF)/C cathode for sodium-ion batteries is prepared successfully using a facile polyol refluxing process without any impurity phases. The X-ray diffraction and Rietveld refinement results confirm that NVPF possesses tetragonal NASICON-type lattice with a space group of P42/mnm. In this preparative method, polyol is utilized as a solvent as well as a carbon source. The presence of nanosized NVPF particles in the carbon network is confirmed by field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). The existence of carbon is analyzed by Raman scattering and elemental analysis. When applied as a Na-storage material in a potential window of 2.0–4.3 V, the electrode exhibits two flat voltage plateaus at 3.7 and 4.2 V with an electrochemically active V3+/V4+ redox couple. In addition, Na3V2(PO4)2F3/C composite achieved a retention capacity of ~ 88% even after 1,500 cycles at 15 C. Moreover, at high current densities of 30 and 50 C, Na3V2(PO4)2F3/C cathode retains the specific discharge capacities of 108.4 and 105.9 mAh·g–1, respectively, revealing the structural stability of the material prepared through a facile polyol refluxing method.


fluorophosphate Na3V2(PO4)2F3 polyol process sodium ion batteries long life stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2017R1A2A1A17069397). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1A5A1025224).

Supplementary material

12274_2019_2322_MOESM1_ESM.pdf (2.4 mb)
Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries


  1. [1]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  2. [2]
    Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.CrossRefGoogle Scholar
  3. [3]
    Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614–2624.CrossRefGoogle Scholar
  4. [4]
    Li, H. Q.; Zhou, H. S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217.CrossRefGoogle Scholar
  5. [5]
    Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.CrossRefGoogle Scholar
  6. [6]
    Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517.CrossRefGoogle Scholar
  7. [7]
    Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.CrossRefGoogle Scholar
  8. [8]
    Ding, J. J.; Zhou, Y. N.; Sun, Q.; Fu, Z. W. Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries. Electrochem. Commun. 2012, 22, 85–88.CrossRefGoogle Scholar
  9. [9]
    Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat. Mater. 2011, 10, 74–80.CrossRefGoogle Scholar
  10. [10]
    Oh, S. M.; Myung, S. T.; Hassoun, J.; Scrosati, B.; Sun, Y. K. Reversible NaFePO4 electrode for sodium secondary batteries. Electrochem. Commun. 2012, 22, 149–152.CrossRefGoogle Scholar
  11. [11]
    Zhuo, H. T.; Wang, X. Y.; Tang, A. P.; Liu, Z. M.; Gamboa, S.; Sebastian, P. J. The preparation of NaV1-xCrxPO4F cathode materials for sodium-ion battery. J. Power Sources 2006, 160, 698–703.CrossRefGoogle Scholar
  12. [12]
    Kabbour, H.; Coillot, D.; Colmont, M.; Masquelier, C.; Mentré, O. α-Na3M2(PO4)3 (M = Ti, Fe): Absolute cationic ordering in NASICON-type phases. J. Am. Chem. Soc. 2011, 133, 11900–11903.CrossRefGoogle Scholar
  13. [13]
    Shakoor, R. A.; Seo, D. H.; Kim, H.; Park, Y. U.; Kim, J.; Kim, S. W.; Gwon, H.; Lee, S.; Kang, K. A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem. 2012, 22, 20535–20541.CrossRefGoogle Scholar
  14. [14]
    Song, W. X.; Ji, X. B.; Pan, C. C.; Zhu, Y. R.; Chen, Q. Y.; Banks, C. E. A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 14357–14363.CrossRefGoogle Scholar
  15. [15]
    Le Meins, J. M.; Crosnier-Lopez, M. P.; Hemon-Ribaud, A.; Courbion, G. Phase transitions in the Na3M2(PO4)2F3 family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, thermal, structural, and magnetic studies. J. Solid State Chem. 1999, 148, 260–277.CrossRefGoogle Scholar
  16. [16]
    Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A. M.; Tarascon, J. M. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries. Nat. Commun. 2016, 7, 10308.CrossRefGoogle Scholar
  17. [17]
    Jiang, T.; Chen, G.; Li, A.; Wang, C. Z.; Wei, Y. J. Sol-gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries. J. Alloys Compd. 2009, 478, 604–607.CrossRefGoogle Scholar
  18. [18]
    Kumar, P. R.; Jung, Y. H.; Kim, D. K. Influence of carbon polymorphism towards improved sodium storage properties of Na3V2O2x(PO4)2F3–2x. J. Solid State Electrochem. 2017, 21, 223–232.CrossRefGoogle Scholar
  19. [19]
    Liu, Q.; Wang, D. X.; Yang, X.; Chen, N.; Wang, C. Z.; Bie, X. F.; Wei, Y. J.; Chen, G.; Du, F. Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life. J. Mater. Chem. A 2015, 3, 21478–21485.CrossRefGoogle Scholar
  20. [20]
    Paul, B. J.; Kang, S. W.; Gim, J.; Song, J. J.; Kim, S.; Mathew, V.; Kim, J. Nucleation and growth controlled polyol synthesis of size-focused nanocrystalline LiFePO4 cathode for high performance li-ion batteries. J. Electrochem. Soc. 2014, 161, A1468–A1473.CrossRefGoogle Scholar
  21. [21]
    Mathew, V.; Alfaruqi, M. H.; Gim, J.; Song, J. J.; Kim, S.; Ahn, D.; Kim, J. Morphology-controlled LiFePO4 cathodes by a simple polyol reaction for Li-ion batteries. Mater. Charact. 2014, 89, 93–101.CrossRefGoogle Scholar
  22. [22]
    Long, Y. F.; Zhang, Z. H.; Wu, Z.; Su, J.; Lv, X. Y.; Wen, Y. X. Microwaveassisted polyol synthesis of LiMnPO4/C and its use as a cathode material in lithium-ion batteries. Particuology 2017, 33, 42–49.CrossRefGoogle Scholar
  23. [23]
    Uchaker, E.; Zhou, N.; Li, Y. W.; Cao, G. Z. Polyol-mediated solvothermal synthesis and electrochemical performance of nanostructured V2O5 hollow microspheres. J. Phys. Chem. C 2013, 117, 1621–1626.CrossRefGoogle Scholar
  24. [24]
    Cui, Y. T.; Xu, N.; Kou, L. Q.; Wu, M. T.; Chen, L. Enhanced electrochemical performance of different morphological C/LiMnPO4 nanoparticles from hollow-sphere Li3PO4 precursor via a delicate polyol-assisted hydrothermal method. J. Power Sources 2014, 249, 42–47.CrossRefGoogle Scholar
  25. [25]
    Kim, D. H.; Kim, J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid-State Lett. 2006, 9, A439–A442.CrossRefGoogle Scholar
  26. [26]
    Liu, Z. G.; Hu, Y. Y.; Dunstan, M. T.; Huo, H.; Hao, X. G.; Zou, H.; Zhong, G. M.; Yang, Y.; Grey, C. P. Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3. Chem. Mater. 2014, 26, 2513–2521.CrossRefGoogle Scholar
  27. [27]
    Ferrari, A. C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414.CrossRefGoogle Scholar
  28. [28]
    Doeff, M. M.; Hu, Y. Q.; McLarnon, F.; Kostecki, R. Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem. Solid-State Lett. 2003, 6, A207–A209.CrossRefGoogle Scholar
  29. [29]
    Wilcox, J. D.; Doeff, M. M.; Marcinek, M.; Kostecki, R. Factors influencing the quality of carbon coatings on LiFePO4. J. Electrochem. Soc. 2007, 154, A389–A395.CrossRefGoogle Scholar
  30. [30]
    Song, W. X.; Ji, X. B.; Wu, Z. P.; Yang, Y. C.; Zhou, Z.; Li, F. Q.; Chen, Q. Y.; Banks, C. E. Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries. J. Power Sources 2014, 256, 258–263.CrossRefGoogle Scholar
  31. [31]
    Liu, Q.; Meng, X.; Wei, Z. X.; Wang, D. X.; Gao, Y.; Wei, Y. J.; Du, F.; Chen, G. Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 31709–31715.CrossRefGoogle Scholar
  32. [32]
    Song, W. X.; Cao, X. Y.; Wu, Z. P.; Chen, J.; Zhu, Y. R.; Hou, H. S.; Lan, Q.; Ji, X. B. Investigation of the sodium ion pathway and cathode behavior in Na3V2(PO4)2F3 combined via a first principles calculation. Langmuir 2014, 30, 12438–12446.CrossRefGoogle Scholar
  33. [33]
    Park, Y. U.; Seo, D. H.; Kim, H.; Kim, J.; Lee, S.; Kim, B.; Kang, K. A family of high-performance cathode materials for Na-ion batteries, Na3(VO1-xPO4)2 F1+2x (0 ≤ x ≤ 1): Combined first-principles and experimental study. Adv. Funct. Mater. 2014, 24, 4603–4614.CrossRefGoogle Scholar
  34. [34]
    Bianchini, M.; Xiao, P. H.; Wang, Y.; Ceder, G. Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries. Adv. Energy Mater. 2017, 7, 1700514CrossRefGoogle Scholar
  35. [35]
    Zhu, C. B.; Wu, C.; Chen, C. C.; Kopold, P.; Van Aken, P. A.; Maier, J.; Yu, Y. A high power-high energy Na3V2(PO4)2F3 sodium cathode: Investigation of transport parameters, rational design and realization. Chem. Mater. 2017, 29, 5207–5215.CrossRefGoogle Scholar
  36. [36]
    Yin, S. C.; Grondey, H.; Strobel, P.; Anne, M.; Nazar, L. F. Electrochemical property: Structure relationships in monoclinic Li3-YV2(PO4)3. J. Am. Chem. Soc. 2003, 125, 10402–10411.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sohyun Park
    • 1
  • Jinju Song
    • 2
  • Seyeon Kim
    • 1
  • Balaji Sambandam
    • 1
  • Vinod Mathew
    • 1
  • Sungjin Kim
    • 1
  • Jeonggeun Jo
    • 1
  • Seokhun Kim
    • 1
  • Jaekook Kim
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringChonnam National UniversityGwangjuRepublic of Korea
  2. 2.Gwangju Bio/Energy R&D CenterKorea Institute of Energy Research (KIER)GwangjuRepublic of Korea

Personalised recommendations