Nano Research

, Volume 12, Issue 4, pp 877–887 | Cite as

Albumin-bound paclitaxel dimeric prodrug nanoparticles with tumor redox heterogeneity-triggered drug release for synergistic photothermal/chemotherapy

  • Qing Pei
  • Xiuli HuEmail author
  • Xiaohua Zheng
  • Rui Xia
  • Shi Liu
  • Zhigang XieEmail author
  • Xiabin Jing
Research Article


Inspired by the clinically approved albumin based PTX formulation (Abraxane) and high-drug-loading dimeric prodrug tactics, herein we report a theranostic “Abraxane-like” prodrug formulation, which is comprised of human serum albumin (HSA), a paclitaxel (PTX) dimer bridged with thioether liner (PTX2-S), and photosensitizer IR780 iodide. Nanoparticles (NPs) with PTX2-S and IR780 as the core and HSA as the stealth shell are formed. Compared with HSA-based PTX clinical formulation (Abraxane), the dimeric molecules not only constitute the bulk structure of the particles, but also act as crossing agent, thus realizing drug loading content increasing from 6.6 wt.% to 48.7 wt.% with high loading efficiency (> 90%) and excellent stability in biological conditions. Importantly, the thioether linkage dually responds to the tumor redox heterogeneity and the NPs gradually releases the parent drug PTX for chemotherapy. Meanwhile, PTX2-S facilitates the encapsulation of IR780 iodide due to their π-π stacking interaction and IR780 iodide generates spatio-temporal hyperthermia under light irradiation to kill cancer cells for photothermal therapy. The described craft integrates the biomimetic trait of HSA, high drug loading, tumor redox heterogeneity-initiated on-demand drug release, and combination therapy into one formulation and the developed nanoparticles are promising for cancer treatment.


human serum albumin prodrug nanoparticles tumor redox heterogeneity-responsiveness controlled drug release synergistic cancer therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 51773197 and 51522307).

Supplementary material

12274_2019_2318_MOESM1_ESM.pdf (3.2 mb)
Albumin-bound paclitaxel dimeric prodrug nanoparticles with tumor redox heterogeneity-triggered drug release for synergistic photothermal/chemotherapy


  1. [1]
    Sparreboom, A.; Scripture, C. D.; Trieu, V.; Williams, P. J.; De, T.; Yang, A.; Beals, B.; Figg, W. D.; Hawkins, M.; Desai, N. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin. Cancer Res. 2005, 11, 4136–4143.CrossRefGoogle Scholar
  2. [2]
    Contreras-Cáceres, R.; Leiva, M. C.; Ortiz, R.; Díaz, A.; Perazzoli, G.; Casado-Rodríguez, M. A.; Melguizo, C.; Baeyens, J. M.; López-Romero, J. M.; Prados, J. Paclitaxel-loaded hollow-poly(4-vinylpyridine) nanoparticles enhance drug chemotherapeutic efficacy in lung and breast cancer cell lines. Nano Res. 2017, 10, 856–875.CrossRefGoogle Scholar
  3. [3]
    Bhattacharyya, J.; Bellucci, J. J.; Weitzhandler, I.; McDaniel, J. R.; Spasojevic, I.; Li, X. H.; Lin, C. C.; Chi, J. T. A.; Chilkoti, A. A paclitaxelloaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models. Nat. Commun. 2015, 6, 7939.CrossRefGoogle Scholar
  4. [4]
    Wang, Y.; Cheetham, A. G.; Angacian, G.; Su, H.; Xie, L. S.; Cui, H. G. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv. Drug Del. Rev. 2017, 110–111, 112–126.CrossRefGoogle Scholar
  5. [5]
    Mitragotri, S.; Anderson, D. G.; Chen, X. Y.; Chow, E. K.; Ho, D.; Kabanov, A. V.; Karp, J. M.; Kataoka, K.; Mirkin, C. A.; Petrosko, S. H. et al. Accelerating the translation of nanomaterials in biomedicine. ACS Nano 2015, 9, 6644–6654.CrossRefGoogle Scholar
  6. [6]
    Zhang, Y. M.; Zhang, N. Y.; Xiao, K.; Yu, Q.; Liu, Y. Photo-controlled reversible microtubule assembly mediated by paclitaxel-modified cyclodextrin. Angew. Chem., Int. Ed. 2018, 57, 8649–8653.CrossRefGoogle Scholar
  7. [7]
    Sun, B. Y.; Straubinger, R. M.; Lovell, J. F. Current taxane formulations and emerging cabazitaxel delivery systems. Nano Res. 2018, 11, 5193–5218.CrossRefGoogle Scholar
  8. [8]
    Xu, C. C.; Li, H.; Zhang, K. M.; Binzel, D. W.; Yin, H. R.; Chiu, W.; Guo, P. X. Photo-controlled release of paclitaxel and model drugs from RNA pyramids. Nano Res. 2019, 12, 41–48.CrossRefGoogle Scholar
  9. [9]
    Green, M. R.; Manikhas, G. M.; Orlov, S.; Afanasyev, B.; Makhson, A. M.; Bhar, P.; Hawkins, M. J. Abraxane®, a novel Cremophor®-free, albuminbound particle form of paclitaxel for the treatment of advanced non-smallcell lung cancer. Ann. Oncol. 2006, 17, 1263–1268.CrossRefGoogle Scholar
  10. [10]
    Gradishar, W. J. Albumin-bound paclitaxel: A next-generation taxane. Expert Opin. Pharmacother. 2006, 7, 1041–1053.CrossRefGoogle Scholar
  11. [11]
    Desai, N.; Trieu, V.; Yao, Z. W.; Louie, L.; Ci, S.; Yang, A.; Tao, C. L.; De, T.; Beals, B.; Dykes, D. et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin. Cancer Res. 2006, 12, 1317–1324.CrossRefGoogle Scholar
  12. [12]
    Kasai, H.; Murakami, T.; Ikuta, Y.; Koseki, Y.; Baba, K.; Oikawa, H.; Nakanishi, H.; Okada, M.; Shoji, M.; Ueda, M. et al. Creation of pure nanodrugs and their anticancer properties. Angew. Chem., Int. Ed. 2012, 51, 10315–10318.CrossRefGoogle Scholar
  13. [13]
    Cai, K. M.; He, X.; Song, Z. Y.; Yin, Q.; Zhang, Y. F.; Uckun, F. M.; Jiang, C.; Cheng, J. J. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency. J. Am. Chem. Soc. 2015, 137, 3458–3461.CrossRefGoogle Scholar
  14. [14]
    Huang, P.; Wang, D. L.; Su, Y.; Huang, W.; Zhou, Y. F.; Cui, D. X.; Zhu, X. Y.; Yan, D. Y. Combination of small molecule prodrug and nanodrug delivery: Amphiphilic drug-drug conjugate for cancer therapy. J. Am. Chem. Soc. 2014, 136, 11748–11756.CrossRefGoogle Scholar
  15. [15]
    Guo, X.; Wang, L.; Duval, K.; Fan, J.; Zhou, S. B.; Chen, Z. Dimeric drug polymeric micelles with acid-active tumor targeting and FRET-traceable drug release. Adv. Mater. 2018, 30, 1705436.CrossRefGoogle Scholar
  16. [16]
    Han, X. F.; Chen, J. L.; Jiang, M. J.; Zhang, N.; Na, K. X.; Luo, C.; Zhang, R. S.; Sun, M. C.; Lin, G. M.; Zhang, R. et al. Paclitaxel–paclitaxel prodrug nanoassembly as a versatile nanoplatform for combinational cancer therapy. ACS Appl. Mater. Interfaces 2016, 8, 33506–33513.CrossRefGoogle Scholar
  17. [17]
    Zhang, J. F.; Li, S. L.; An, F. F.; Liu, J.; Jin, S. B.; Zhang, J. C.; Wang, P. C.; Zhang, X. H.; Lee, C. S.; Liang, X. J. Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. Nanoscale 2015, 7, 13503–13510.CrossRefGoogle Scholar
  18. [18]
    Xing, P. Y.; Zhao, Y. L.. Multifunctional nanoparticles self-assembled from small organic building blocks for biomedicine. Adv. Mater. 2016, 28, 7304–7339.CrossRefGoogle Scholar
  19. [19]
    Wang, H.; Xu, M.; Xiong, M. H.; Cheng, J. J. Reduction-responsive dithiomaleimide-based nanomedicine with high drug loading and FRETindicated drug release. Chem. Commun. 2015, 51, 4807–4810.CrossRefGoogle Scholar
  20. [20]
    Lorenz, S. A.; Bigwarfe Jr, P. M.; Balasubramanian, S. V.; Fetterly, G. J.; Straubinger, R. M.; Wood, T. D. Noncovalent dimerization of paclitaxel in solution: Evidence from electrospray ionization mass spectrometry. J. Pharm. Sci. 2002, 91, 2057–2066.CrossRefGoogle Scholar
  21. [21]
    Tam, Y. T.; Gao, J. M.; Kwon, G. S. Oligo(lactic acid)n-paclitaxel prodrugs for poly(ethylene glycol)-block-poly(lactic acid) micelles: Loading, release, and backbiting conversion for anticancer activity. J. Am. Chem. Soc. 2016, 138, 8674–8677.CrossRefGoogle Scholar
  22. [22]
    Pei, Q.; Hu, X. L.; Liu, S.; Li, Y.; Xie, Z. G.; Jing, X. B. Paclitaxel dimers assembling nanomedicines for treatment of cervix carcinoma. J. Control. Release 2017, 254, 23–33.CrossRefGoogle Scholar
  23. [23]
    Pei, Q.; Hu, X. L.; Zheng, X. H.; Liu, S.; Li, Y. W.; Jing, X. B.; Xie, Z. G. Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano 2018, 12, 1630–1641.CrossRefGoogle Scholar
  24. [24]
    Hu, Q. Y.; Chen, Q.; Gu, Z. Advances in transformable drug delivery systems. Biomaterials 2018, 178, 546–558.CrossRefGoogle Scholar
  25. [25]
    Chen, C. K.; Law, W. C.; Aalinkeel, R.; Yu, Y.; Nair, B.; Wu, J. C.; Mahajan, S.; Reynolds, J. L.; Li, Y. K.; Lai, C. K. et al. Biodegradable cationic polymeric nanocapsules for overcoming multidrug resistance and enabling drug-gene co-delivery to cancer cells. Nanoscale 2014, 6, 1567–1572.CrossRefGoogle Scholar
  26. [26]
    Song, M. L.; Liu, N.; He, L.; Liu, G.; Ling, D. S.; Su, X. H.; Sun, X. L. Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy. Nano Res. 2018, 11, 2796–2808.CrossRefGoogle Scholar
  27. [27]
    Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297.CrossRefGoogle Scholar
  28. [28]
    Zhao, P. H.; Jin, Z. K.; Chen, Q.; Yang, T.; Chen, D. Y.; Meng, J.; Lu, X. F.; Gu, Z.; He, Q. J. Local generation of hydrogen for enhanced photothermal therapy. Nat. Commun. 2018, 9, 4241.CrossRefGoogle Scholar
  29. [29]
    Chen, W. F.; Wang, Y.; Qin, M.; Zhang, X. D.; Zhang, Z. R.; Sun, X.; Gu, Z. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 2018, 12, 5995–6005.CrossRefGoogle Scholar
  30. [30]
    Chen, Y. J.; Li, Z. H.; Wang, H. B.; Wang, Y.; Han, H. J.; Jin, Q.; Ji, J. IR-780 loaded phospholipid mimicking homopolymeric micelles for near-ir imaging and photothermal therapy of pancreatic cancer. ACS Appl. Mater. Interfaces 2016, 8, 6852–6858.CrossRefGoogle Scholar
  31. [31]
    Wang, K. K.; Zhang, Y. F.; Wang, J.; Yuan, A. H.; Sun, M. J.; Wu, J. H.; Hu, Y. Q. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 2016, 6, 27421.CrossRefGoogle Scholar
  32. [32]
    Zhang, C.; Liu, T.; Su, Y. P.; Luo, S. L.; Zhu, Y.; Tan, X.; Fan, S.; Zhang, L. L.; Zhou, Y.; Cheng, T. M. et al. A near-infrared fluorescent heptamethine indocyanine dye with preferential tumor accumulation for in vivo imaging. Biomaterials 2010, 31, 6612–6617.CrossRefGoogle Scholar
  33. [33]
    Peng, C. L.; Shih, Y. H.; Lee, P. C.; Hsieh, T. M. H.; Luo, T. Y.; Shieh, M. J. Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano 2011, 5, 5594–5607.CrossRefGoogle Scholar
  34. [34]
    Chen, Q.; Wang, X.; Wang, C.; Feng, L. Z.; Li, Y. G.; Liu, Z. Druginduced self-assembly of modified albumins as nano-theranostics for tumor-targeted combination therapy. ACS Nano 2015, 9, 5223–5233.CrossRefGoogle Scholar
  35. [35]
    Chen, Q.; Liu, Z. Albumin carriers for cancer theranostics: A conventional platform with new promise. Adv. Mater. 2016, 28, 10557–10566.CrossRefGoogle Scholar
  36. [36]
    Rong, P. F.; Huang, P.; Liu, Z. G.; Lin, J.; Jin, A.; Ma, Y.; Niu, G.; Yu, L.; Zeng, W. B.; Wang, W. et al. Protein-based photothermal theranostics for imaging-guided cancer therapy. Nanoscale 2015, 7, 16330–16336.CrossRefGoogle Scholar
  37. [37]
    Paál, K.; Müller, J.; Hegedûs, L. High affinity binding of paclitaxel to human serum albumin. Eur. J. Biochem. 2001, 268, 2187–2191.CrossRefGoogle Scholar
  38. [38]
    Chen, Q.; Liang, C.; Wang, C.; Liu, Z. An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. Adv. Mater. 2015, 27, 903–910.CrossRefGoogle Scholar
  39. [39]
    Desai, N. Nab technology: A drug delivery platform utilising endothelial gp60 receptor-based transport and tumour-derived SPARC for targeting. Drug Deliv. Rep. 2007, 37–41.Google Scholar
  40. [40]
    Shen, Y. Q.; Jin, E. L.; Zhang, B.; Murphy, C. J.; Sui, M. H.; Zhao, J.; Wang, J. Q.; Tang, J. B.; Fan, M. H.; Van Kirk, E. et al. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J. Am. Chem. Soc. 2010, 132, 4259–4265.CrossRefGoogle Scholar
  41. [41]
    Yang, J.; Lv, Q.; Wei, W.; Yang, Z.; Dong, J.; Zhang, R.; Kan, Q.; He, Z.; Xu, Y. Bioresponsive albumin-conjugated paclitaxel prodrugs for cancer therapy. Drug Deliv. 2018, 25, 807–814.CrossRefGoogle Scholar
  42. [42]
    Pei, Q.; Hu, X. L.; Zhou, J. L.; Liu, S.; Xie, Z. G. Glutathione-responsive paclitaxel dimer nanovesicles with high drug content. Biomater. Sci. 2017, 5, 1517–1521.CrossRefGoogle Scholar
  43. [43]
    Luo, C.; Sun, J.; Liu, D.; Sun, B. J.; Miao, L.; Musetti, S.; Li, J.; Han, X. P.; Du, Y. Q.; Li, L. et al. Self-assembled redox dual-responsive prodrugnanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 2016, 16, 5401–5408.CrossRefGoogle Scholar
  44. [44]
    Eetezadi, S.; Ekdawi, S. N.; Allen, C. The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation. Adv. Drug Deliv. Rev. 2015, 91, 7–22.CrossRefGoogle Scholar
  45. [45]
    MacEwan, S. R.; Chilkoti, A. From composition to cure: A systems engineering approach to anticancer drug carriers. Angew. Chem., Int. Ed. 2017, 56, 6712–6733.CrossRefGoogle Scholar
  46. [46]
    Gong, G. M.; Xu, Y.; Zhou, Y. Y.; Meng, Z. J.; Ren, G. Y.; Zhao, Y.; Zhang, X.; Wu, J. H.; Hu, Y. Q. Molecular switch for the assembly of lipophilic drug incorporated plasma protein nanoparticles and in vivo image. Biomacromolecules 2012, 13, 23–28.CrossRefGoogle Scholar
  47. [47]
    Ding, D. W.; Tang, X. L.; Cao, X. L.; Wu, J. H.; Yuan, A. H.; Qiao, Q.; Pan, J.; Hu, Y. Q. Novel self-assembly endows human serum albumin nanoparticles with an enhanced antitumor efficacy. AAPS PharmSciTech 2014, 15, 213–222.CrossRefGoogle Scholar
  48. [48]
    Zhao, S. F.; Wang, W. T.; Huang, Y. B.; Fu, Y. H.; Cheng, Y. Paclitaxel loaded human serum albumin nanoparticles stabilized with intermolecular disulfide bonds. Med. Chem. Comm. 2014, 5, 1658–1663.CrossRefGoogle Scholar
  49. [49]
    Lu, Y.; Zhang, E. S.; Yang, J. H.; Cao, Z. Q. Strategies to improve micelle stability for drug delivery. Nano Res. 2018, 11, 4985–4998.CrossRefGoogle Scholar
  50. [50]
    Wang, J. Q.; Sun, X. R.; Mao, W. W.; Sun, W. L.; Tang, J. B.; Sui, M. H.; Shen, Y. Q.; Gu, Z. W. Tumor redox heterogeneity-responsive prodrug nanocapsules for cancer chemotherapy. Adv. Mater. 2013, 25, 3670–3676.CrossRefGoogle Scholar
  51. [51]
    Xiao, C. S.; Ding, J. X.; Ma, L. L.; Yang, C. G.; Zhuang, X. L.; Chen, X. S. Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release. Polym. Chem. 2015, 6, 738–747.CrossRefGoogle Scholar
  52. [52]
    Jiang, C. X.; Cheng, H.; Yuan, A. H.; Tang, X. L.; Wu, J. H.; Hu, Y. Q. Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy. Acta Biomater. 2015, 14, 61–69.CrossRefGoogle Scholar
  53. [53]
    Zhang, X. H.; Wang, L.; Liu, S.; Zhang, W.; Liu, F.; Xie, Z. G. Nanoparticles of chlorin dimer with enhanced absorbance for photoacoustic imaging and phototherapy. Adv. Funct. Mater. 2018, 28, 1706507.CrossRefGoogle Scholar
  54. [54]
    Hahn, G. M.; Braun, J.; Har-Kedar, I. Thermochemotherapy: Synergism between hyperthermia (42–43 degrees) and adriamycin (of bleomycin) in mammalian cell inactivation. Proc. Natl. Acad. Sci. USA 1975, 72, 937–940.CrossRefGoogle Scholar
  55. [55]
    Tao, Y.; Ling, L.; Deng, Y. B.; Guo, Z. Q.; Zhang, G. B.; Ge, Z. S.; Ke, H. T.; Chen, H. B. Ultrastable near-infrared conjugated-polymer nanoparticles for dually photoactive tumor inhibition. Adv. Mater. 2017, 29, 1700487.CrossRefGoogle Scholar
  56. [56]
    Zhang, J. F.; Yang, C. X.; Zhang, R.; Chen, R.; Zhang, Z. Y.; Zhang, W. J.; Peng, S. H.; Chen, X. Y.; Liu, G.; Hsu, C. S. et al. Biocompatible D-A semiconducting polymer nanoparticle with light-harvesting unit for highly effective photoacoustic imaging guided photothermal therapy. Adv. Funct. Mater. 2017, 27, 1605094.CrossRefGoogle Scholar
  57. [57]
    Ryppa, C.; Mann-Steinberg, H.; Biniossek, M. L.; Satchi-Fainaro, R.; Kratz, F. In vitro and in vivo evaluation of a paclitaxel conjugate with the divalent peptide E-[c(RGDfK)2] that targets integrin αvβ3. Int. J. Pharm. 2009, 368, 89–97.CrossRefGoogle Scholar
  58. [58]
    Rempel, S. A.; Ge, S. G.; Gutiérrez, J. A. SPARC: A potential diagnostic marker of invasive meningiomas. Clin. Cancer Res. 1999, 5, 237–241.Google Scholar
  59. [59]
    Cortes, J.; Saura, C. Nanoparticle albumin-bound (nab™)-paclitaxel: Improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. Eur. J. Cancer Suppl. 2010, 8, 1–10.CrossRefGoogle Scholar
  60. [60]
    Xiao, K.; Luo, J. T.; Fowler, W. L.; Li, Y. P.; Lee, J. S.; Xing, L.; Cheng, R. H.; Wang, L.; Lam, K. S. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials 2009, 30, 6006–6016.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.University of Science and Technology of ChinaHefeiChina

Personalised recommendations