Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO

  • Zheng Zhang
  • Chao Ma
  • Yunchuan Tu
  • Rui Si
  • Jie Wei
  • Shuhong Zhang
  • Zhen Wang
  • Jian-Feng Li
  • Ye Wang
  • Dehui DengEmail author
Research Article


Electrocatalytic CO2 reduction to CO is a sustainable process for energy conversion. However, this process is still hindered by the diffusion-limited mass transfer, low electrical conductivity and catalytic activity. Therefore, new strategies for catalyst design should be adopted to solve these problems and improve the electrocatalytic performance for CO production. Herein, we report a multiscale carbon foam confining single iron atoms prepared with the assistant of SiO2 template. The pore-enriched environment at the macro-scale facilitates the diffusion of reactants and products. The graphene nanosheets at the nano-scale promote the charge transfer during the reaction. The single iron atoms confined in carbon matrix at the atomic-scale provide the active sites for electrocatalytic CO2 reduction to CO. The optimized catalyst achieves a CO Faradaic efficiency of 94.9% at a moderate potential of −0.5 V vs. RHE. Furthermore, the performance can be maintained over 60 hours due to the stable single iron atoms coordinated with four nitrogen atoms in the carbon matrix. This work provides a promising strategy to improve both the activity and stability of single atom catalysts for electrocatalytic CO2 reduction to CO.


CO2 reduction electrocatalysis multiscale structure carbon foam single iron atoms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge the financial support from the Ministry of Science and Technology of China (Nos. 2016YFA0204100 and 2016YFA0200200), the National Natural Science Foundation of China (Nos. 21573220 and 21802124), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (No. QYZDB-SSW-JSC020), and the DNL Cooperation Fund, CAS (No. DNL180201). We thank staff at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facilities (SSRF) for assistance with the X-ray absorption spectroscopy measurements.

Supplementary material

12274_2019_2316_MOESM1_ESM.pdf (5.4 mb)
Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO


  1. [1]
    Bi, W. T.; Wu, C. Z.; Xie, Y. Atomically thin two-dimensional solids: An emerging platform for CO2 electroreduction. ACS Energy Lett. 2018, 3, 624–633.CrossRefGoogle Scholar
  2. [2]
    Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z. S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.CrossRefGoogle Scholar
  3. [3]
    Zhang, B. H.; Zhang, J. T. Rational design of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide. J. Energy Chem. 2017, 26, 1050–1066.CrossRefGoogle Scholar
  4. [4]
    Weng, Z.; Zhang, X.; Wu, Y. S.; Huo, S. J.; Jiang, J. B.; Liu, W.; He, G. J.; Liang, Y. Y.; Wang, H. L. Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons. Angew. Chem., Int. Ed. 2017, 56, 13135–13139.CrossRefGoogle Scholar
  5. [5]
    Genovese, C.; Ampelli, C.; Perathoner, S.; Centi, G. Electrocatalytic conversion of CO2 to liquid fuels using nanocarbon-based electrodes. J. Energy Chem. 2013, 22, 202–213.CrossRefGoogle Scholar
  6. [6]
    Nielsen, D. U.; Hu, X. M.; Daasbjerg, K.; Skrydstrup, T. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 2018, 1, 244–254.CrossRefGoogle Scholar
  7. [7]
    Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.CrossRefGoogle Scholar
  8. [8]
    Zhang, B.; Zhao, T. J.; Feng, W. J.; Liu, Y. X.; Wang, H. H.; Su, H.; Lv, L. B.; Li, X. H.; Chen, J. S. Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2. Nano Res. 2018, 11, 2450–2459.CrossRefGoogle Scholar
  9. [9]
    Wu, Y. S.; Jiang, J. B.; Weng, Z.; Wang, M. Y.; Broere, D. L. J.; Zhong, Y. R.; Brudvig, G. W.; Feng, Z. X.; Wang, H. L. Electroreduction of CO2 catalyzed by a heterogenized Zn–porphyrin complex with a redox-Innocent metal center. ACS Cent. Sci. 2017, 3, 847–852.CrossRefGoogle Scholar
  10. [10]
    Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R. et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065–1068.CrossRefGoogle Scholar
  11. [11]
    Cheng, K.; Gu, B.; Liu, X. L.; Kang, J. C.; Zhang, Q. H.; Wang, Y. Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling. Angew. Chem., Int. Ed. 2016, 55, 4725–4728.CrossRefGoogle Scholar
  12. [12]
    Deng, D. H.; Chen, X. Q.; Yu, L.; Wu, X.; Liu, Q. F.; Liu, Y.; Yang, H. X.; Tian, H. F.; Hu, Y. F.; Du, P. P. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462.CrossRefGoogle Scholar
  13. [13]
    Cui, X. J.; Li, H. B.; Wang, Y.; Hu, Y. L.; Hua, L.; Li, H. Y.; Han, X. W.; Liu, Q. F.; Yang, F.; He, L. M. et al. Room-temperature methane conversion by graphene-confined single iron atoms. Chem 2018, 4, 1902–1910.CrossRefGoogle Scholar
  14. [14]
    Qiao, B. T.; Liang, J. X.; Wang, A. Q.; Xu, C. Q.; Li, J.; Zhang, T.; Liu, J. Y. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924.CrossRefGoogle Scholar
  15. [15]
    Chen, X. Q.; Yu, L.; Wang, S. H.; Deng, D. H.; Bao, X. H. Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy 2017, 32, 353–358.CrossRefGoogle Scholar
  16. [16]
    Cui, X. J.; Xiao, J. P.; Wu, Y. H.; Du, P. P.; Si, R.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Zhang, W. H.; Deng, D. H. et al. A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dyesensitized solar cells. Angew. Chem., Int. Ed. 2016, 55, 6708–6712.CrossRefGoogle Scholar
  17. [17]
    Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Singleatom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.CrossRefGoogle Scholar
  18. [18]
    Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431.CrossRefGoogle Scholar
  19. [19]
    Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297.CrossRefGoogle Scholar
  20. [20]
    Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 3, 1806–1854.CrossRefGoogle Scholar
  21. [21]
    Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.CrossRefGoogle Scholar
  22. [22]
    Wang, Y.; Zhang, W. H.; Deng, D. H.; Bao, X. H. Two-dimensional materials confining single atoms for catalysis. Chin. J. Catal. 2017, 38, 1443–1453.CrossRefGoogle Scholar
  23. [23]
    Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.CrossRefGoogle Scholar
  24. [24]
    Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.CrossRefGoogle Scholar
  25. [25]
    Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.CrossRefGoogle Scholar
  26. [26]
    Deng, J.; Li, H. B.; Wang, S. H.; Ding, D.; Chen, M. S.; Liu, C.; Tian, Z. Q.; Novoselov, K. S.; Ma, C.; Deng, D. H. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 2017, 8, 14430.CrossRefGoogle Scholar
  27. [27]
    Zhang, Z.; Xiao, J. P.; Chen, X. J.; Yu, S.; Yu, L.; Si, R.; Wang, Y.; Wang, S. H.; Meng, X. G.; Wang, Y. et al. Reaction mechanisms of well-defined metal–N4 sites in electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 16339–16342.CrossRefGoogle Scholar
  28. [28]
    Benzigar, M. R.; Talapaneni, S. N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 2680–2721.CrossRefGoogle Scholar
  29. [29]
    Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.CrossRefGoogle Scholar
  30. [30]
    Deng, D. H.; Pan, X. L.; Yu, L.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X. C.; Xue, Q. K. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 2011, 23, 1188–1193.CrossRefGoogle Scholar
  31. [31]
    Ren, H.; Wang, Y.; Yang, Y.; Tang, X.; Peng, Y. Q.; Peng, H. Q.; Xiao, L.; Lu, J. T.; Abruña, H. D.; Zhuang, L. Fe/N/C nanotubes with atomic Fe sites: A highly active cathode catalyst for alkaline polymer electrolyte fuel cells. ACS Catal. 2017, 7, 6485–6492.CrossRefGoogle Scholar
  32. [32]
    Xiao, M. L.; Zhu, J. B.; Ma, L.; Jin, Z.; Ge, J. J.; Deng, X.; Hou, Y.; He, Q. G.; Li, J. K.; Jia, Q. Y. et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 2018, 8, 2824–2832.CrossRefGoogle Scholar
  33. [33]
    Cook, P. L.; Liu, X. S.; Yang, W. L.; Himpsel, F. J. X-ray absorption spectroscopy of biomimetic dye molecules for solar cells. J. Chem. Phys. 2009, 131, 194701.CrossRefGoogle Scholar
  34. [34]
    Huan, T. N.; Ranjbar, N.; Rousse, G.; Sougrati, M.; Zitolo, A.; Mougel, V.; Jaouen, F.; Fontecave, M. Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: A structure–selectivity study. ACS Catal. 2017, 7, 1520–1525.CrossRefGoogle Scholar
  35. [35]
    Pan, F. P.; Zhang, H. G.; Liu, K. X.; Cullen, D.; More, K.; Wang, M. Y.; Feng, Z. X.; Wang, G. F.; Wu, G.; Li, Y. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 2018, 8, 3116–3122.CrossRefGoogle Scholar
  36. [36]
    Zhu, Y. P.; Chen, G.; Zhong, Y. J.; Zhou, W.; Shao, Z. P. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst. Adv. Sci. 2018, 5, 1700603.CrossRefGoogle Scholar
  37. [37]
    Zheng, W. J.; Zhang, Y.; Niu, K. Y.; Liu, T.; Bustillo, K.; Ercius, P.; Nordlund, D.; Wu, J. Q.; Zheng, H. M.; Du, X. W. Selective nitrogen doping of graphene oxide by laser irradiation for enhanced hydrogen evolution activity. Chem. Commun. 2018, 54, 13726–13729.CrossRefGoogle Scholar
  38. [38]
    Fan, X. J.; Peng, Z. W.; Ye, R. Q.; Zhou, H. Q.; Guo, X. M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 2015, 9, 7407–7418.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zheng Zhang
    • 1
    • 2
  • Chao Ma
    • 3
  • Yunchuan Tu
    • 1
    • 2
  • Rui Si
    • 4
  • Jie Wei
    • 1
  • Shuhong Zhang
    • 1
  • Zhen Wang
    • 5
  • Jian-Feng Li
    • 1
  • Ye Wang
    • 1
  • Dehui Deng
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  3. 3.College of Materials Science and EngineeringHunan UniversityChangshaChina
  4. 4.Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  5. 5.Materials and Structural Analysis Division, Thermo Fisher ScientificInternational BioislandGuangzhouChina

Personalised recommendations