Advertisement

Nano Research

, Volume 12, Issue 4, pp 863–868 | Cite as

Bioengineered magnetoferritin nanozymes for pathological identification of high-risk and ruptured atherosclerotic plaques in humans

  • Tao Wang
  • Jiuyang He
  • Demin Duan
  • Bing Jiang
  • Peixia Wang
  • Kelong Fan
  • Minmin LiangEmail author
  • Xiyun YanEmail author
Research Article
  • 49 Downloads

Abstract

Atherosclerotic plaque rupture results in thrombus formation and vessel occlusion, and is the leading cause of death worldwide. There is a pressing need to identify plaque vulnerability for the treatment of carotid and coronary artery diseases. Nanomaterials with enzyme-like properties have attracted significant interest by providing biological, diagnostic and prognostic information about the diseases. Here we showed that bioengineered magnetoferritin nanoparticles (M-HFn NPs) functionally mimic peroxidase enzyme and can intrinsically recognize plaque-infiltrated active macrophages, which drive atherosclerotic plaque progression and rupture and are significantly associated with the plaque vulnerability. The M-HFn nanozymes catalyze the oxidation of colorimetric substrates to give a color reaction that visualizes the recognized active macrophages for one-step pathological identification of plaque vulnerability. We examined 50 carotid endarterectomy specimens from patients with symptomatic carotid disease and demonstrated that the M-HFn nanozymes could distinguish active macrophage infiltration in ruptured and high-risk plaque tissues, and M-HFn staining displayed a significant correlation with plaque vulnerability (r = 0.89, P < 0.0001).

Keywords

atherosclerosis high-risk plaques ruptured plaques magnetoferritin nanoparticles nanozymes pathological diagnosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the following grants: the National Key R&D Program of China (No. 2017YFA0205501), the National Natural Science Foundation of China (Nos. 81722024 and 81571728), the Key Research of Frontier Sciences (No. QYZDY-SSW-SMC013), and Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2014078).

References

  1. [1]
    Otsuka, F.; Kramer, M. C. A.; Woudstra, P.; Yahagi, K.; Ladich, E.; Finn, A. V.; de Winter, R. J.; Kolodgie, F. D.; Wight, T. N.; Davis, H. R. et al. Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: A pathology study. Atherosclerosis 2015, 241, 772–782.CrossRefGoogle Scholar
  2. [2]
    Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. New Engl. J. Med. 2005, 352, 1685–1695.CrossRefGoogle Scholar
  3. [3]
    Narula, J.; Nakano, M.; Virmani, R.; Kolodgie, F. D.; Petersen, R.; Newcomb, R.; Malik, S.; Fuster, V.; Finn, A. V. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J. Am. Coll. Cardiol. 2013, 61, 1041–1051.CrossRefGoogle Scholar
  4. [4]
    Virmani, R.; Kolodgie, F. D.; Burke, A. P.; Farb, A.; Schwartz, S. M. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1262–1275.CrossRefGoogle Scholar
  5. [5]
    Libby, P.; Ridker, P. M.; Maseri, A. Inflammation and atherosclerosis. Circulation 2002, 105, 1135–1143.CrossRefGoogle Scholar
  6. [6]
    Moore, K. J.; Sheedy, F. J.; Fisher, E. A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol. 2013, 13, 709–721.CrossRefGoogle Scholar
  7. [7]
    Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874.CrossRefGoogle Scholar
  8. [8]
    Moore, K. J.; Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011, 145, 341–355.CrossRefGoogle Scholar
  9. [9]
    Terashima, M.; Uchida, M.; Kosuge, H.; Tsao, P. S.; Young, M. J.; Conolly, S. M.; Douglas, T.; McConnell, M. V. Human ferritin cages for imaging vascular macrophages. Biomaterials 2011, 32, 1430–1437.CrossRefGoogle Scholar
  10. [10]
    Rogers, I. S.; Tawakol, A. Imaging of coronary inflammation with fdg-pet: Feasibility and clinical hurdles. Curr. Cardiol. Rep. 2011, 13, 138–144.CrossRefGoogle Scholar
  11. [11]
    Stone, G. W.; Maehara, A.; Lansky, A. J.; de Bruyne, B.; Cristea, E.; Mintz, G. S.; Mehran, R.; McPherson, J.; Farhat, N.; Marso, S. P. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 2011, 364, 226–235.CrossRefGoogle Scholar
  12. [12]
    Tahara, N.; Mukherjee, J.; De Haas, H. J.; Petrov, A. D.; Tawakol, A.; Haider, N.; Tahara, A.; Constantinescu, C. C.; Zhou, J.; Boersma, H. H. et al. 2-Deoxy-2-[18F] fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat. Med. 2014, 20, 215–219.CrossRefGoogle Scholar
  13. [13]
    Weissleder, R.; Nahrendorf, M.; Pittet, M. J. Imaging macrophages with nanoparticles. Nat. Mater. 2014, 13, 125–138.CrossRefGoogle Scholar
  14. [14]
    Lobatto, M. E.; Claudia, C.; Millon, A.; Senders, M. L.; Fay, F.; Robson, P. M.; Ramachandran, S.; Binderup, T.; Paridaans, M. P. M.; Sensarn, S. et al. Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging. ACS Nano 2015, 9, 1837–1847.CrossRefGoogle Scholar
  15. [15]
    Li, X.; Wang, C.; Tan, H.; Cheng, L. L.; Liu, G. B.; Yang, Y.; Zhao, Y. Z.; Zhang, Y. Q.; Li, Y. L.; Zhang, C. F. et al. Gold nanoparticles-based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques. Biomaterials 2016, 108, 71–80.CrossRefGoogle Scholar
  16. [16]
    Tonga, G. Y.; Jeong, Y.; Duncan, B.; Mizuhara, T.; Mout, R.; Das, R.; Kim, S. T.; Yeh, Y. C.; Yan, B.; Hou, S. et al. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat. Chem. 2015, 7, 597–603.CrossRefGoogle Scholar
  17. [17]
    Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41–60.CrossRefGoogle Scholar
  18. [18]
    Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.CrossRefGoogle Scholar
  19. [19]
    Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.CrossRefGoogle Scholar
  20. [20]
    Gao, N.; Dong, K.; Zhao, A. D.; Sun, H. J.; Wang, Y.; Ren, J. S.; Qu, X. G. Polyoxometalate-based nanozyme: Design of a multifunctional enzyme for multi-faceted treatment of Alzheimer’s disease. Nano Res. 2016, 9, 1079–1090.CrossRefGoogle Scholar
  21. [21]
    Wang, Z. Z.; Zhang, Y.; Ju, E. G.; Liu, Z.; Cao, F. F.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 2018, 9, 3334.CrossRefGoogle Scholar
  22. [22]
    Wei, H.; Wang, E. K. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008, 80, 2250–2254.CrossRefGoogle Scholar
  23. [23]
    Feng, L. Z.; Dong, Z. L.; Liang, C.; Chen, M. C.; Tao, D. L.; Cheng, L.; Yang, K.; Liu, Z. Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials 2018, 181, 81–91.CrossRefGoogle Scholar
  24. [24]
    Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.CrossRefGoogle Scholar
  25. [25]
    Liang, M. M.; Fan, K. L.; Pan, Y.; Jiang, H.; Wang, F.; Yang, D. L.; Lu, D.; Feng, J.; Zhao, J. J.; Yang, L. et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal. Chem. 2012, 85, 308–312.CrossRefGoogle Scholar
  26. [26]
    Zhuang, J.; Fan, K. L.; Gao, L. Z.; Lu, D.; Feng, J.; Yang, D. L.; Gu, N.; Zhang, Y.; Liang, M. M.; Yan, X. Y. Ex vivo detection of iron oxide magnetic nanoparticles in mice using their intrinsic peroxidase-mimicking activity. Mol. Pharm. 2012, 9, 1983–1989.CrossRefGoogle Scholar
  27. [27]
    Fan, K. L.; Cao, C. Q.; Pan, Y. X.; Lu, D.; Yang, D. L.; Feng, J.; Song, L. N.; Liang, M. M.; Yan, X. Y. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 2012, 7, 459–464.CrossRefGoogle Scholar
  28. [28]
    Zhao, Y. Z.; Liang, M. M.; Li, X.; Fan, K. L.; Xiao, J.; Li, Y. L.; Shi, H. C.; Wang, F.; Choi, H. S.; Cheng, D. F. et al. Bioengineered magnetoferritin nanoprobes for single-dose nuclear-magnetic resonance tumor imaging. ACS Nano 2016, 10, 4184–4191.CrossRefGoogle Scholar
  29. [29]
    Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.CrossRefGoogle Scholar
  30. [30]
    Xu, Z. B.; Qiu, Z. Y.; Liu, Q.; Huang, Y. X.; Li, D. D.; Shen, X. G.; Fan, K. L.; Xi, J. Q.; Gu, Y. H.; Tang, Y. et al. Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections. Nat. Commun. 2018, 9, 3713.CrossRefGoogle Scholar
  31. [31]
    Liang, M. M.; Fan, K. L.; Zhou, M.; Duan, D. M.; Zheng, J. Y.; Yang, D. L.; Feng, J.; Yan, X. Y. H-ferritin–nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc. Natl. Acad. Sci. USA 2014, 111, 14900–14905.CrossRefGoogle Scholar
  32. [32]
    Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126.CrossRefGoogle Scholar
  33. [33]
    Ding, J. L.; Wang, Y. H.; Ma, M.; Zhang, Y.; Lu, S. S.; Jiang, Y. N.; Qi, C. M.; Luo, S. H.; Dong, G.; Wen, S. et al. CT/fluorescence dual-modal nanoemulsion platform for investigating atherosclerotic plaques. Biomaterials 2013, 34, 209–216.CrossRefGoogle Scholar
  34. [34]
    Chinetti-Gbaguidi, G.; Colin, S.; Staels, B. Macrophage subsets in atherosclerosis. Nat. Rev. Cardiol. 2015, 12, 10–17.CrossRefGoogle Scholar
  35. [35]
    Li, W.; Xu, L. H.; Forssell, C.; Sullivan, J. L.; Yuan, X. M. Overexpression of transferrin receptor and ferritin related to clinical symptoms and destabilization of human carotid plaques. Exp. Biol. Med. 2008, 233, 818–826.CrossRefGoogle Scholar
  36. [36]
    Fargion, S.; Arosio, P.; Fracanzani, A. L.; Cislaghi, V.; Levi, S.; Cozzi, A.; Piperno, A.; Fiorelli, G. Characteristics and expression of binding sites specific for ferritin h-chain on human cell lines. Blood 1988, 71, 753–757.Google Scholar
  37. [37]
    Liang, M. M.; Tan, H.; Zhou, J.; Wang, T.; Duan, D. M.; Fan, K. L.; He, J. Y.; Cheng, D. F.; Shi, H. C.; Choi, H. S. et al. Bioengineered H-ferritin nanocages for quantitative imaging of vulnerable plaques in atherosclerosis. ACS Nano 2018, 12, 9300–9308.CrossRefGoogle Scholar
  38. [38]
    Salacinski, P. R. P.; McLean, C.; Sykes, J. E. C.; Clement-Jones, V. V.; Lowry, P. J. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3α,6α-diphenyl glycoluril (iodogen). Anal. Biochem. 1981, 117, 136–146.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tao Wang
    • 1
  • Jiuyang He
    • 2
    • 3
  • Demin Duan
    • 3
  • Bing Jiang
    • 3
  • Peixia Wang
    • 3
  • Kelong Fan
    • 3
  • Minmin Liang
    • 3
    Email author
  • Xiyun Yan
    • 3
    Email author
  1. 1.Department of NeurosurgeryPeking University Third HospitalBeijingChina
  2. 2.Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations