Skip to main content
Log in

Rational design of three-phase interfaces for electrocatalysis

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Gas-involving electrochemical reactions, like oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER), are critical processes for energy-saving, environment-friendly energy conversion and storage technologies which gain increasing attention. The development of according electrocatalysts is key to boost their electrocatalytic performances. Dramatic efforts have been put into the development of advanced electrocatalysts to overcome sluggish kinetics. On the other hand, the electrode interfaces-architecture construction plays an equally important role for practical applications because these imperative electrode reactions generally proceed at triple-phase interfaces of gas, liquid electrolyte, and solid electrocatalyst. A desirable architecture should facilitate the complicate reactions occur at the triple-phase interfaces, which including mass diffusion, surface reaction and electron transfer. In this review, we will summarize some design principles and synthetic strategies for optimizing triple-phase interfaces of gas-involving electrocatalysis systematically, based on the electrode reaction process at the three-phase interfaces. It can be divided into three main optimization directions: exposure of active sites, promotion of mass diffusion and acceleration of electron transfer. Furthermore, we especially highlight several remarkable works with comprehensive optimization about specific energy conversion devices, including metal-air batteries, fuel cells, and water-splitting devices are demonstrated with superb efficiency. In the last section, the perspectives and challenges in the future are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Google Scholar 

  2. Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel–driven nitrogen transformations. Science 2018, 360, eaar6611.

    Google Scholar 

  3. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355.

    Google Scholar 

  4. Armaroli, N.; Balzani, V. The future of energy supply: Challenges and opportunities. Angew. Chem., Int. Ed. 2007, 46, 52–66.

    Google Scholar 

  5. Wang, S. Y; Jiang, S. P. Prospects of fuel cell technologies. Natl. Sci. Rev. 2017, 4, 163–166.

    Google Scholar 

  6. Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel cells–fundamentals and applications. Fuel Cells 2001, 1, 5–39.

    Google Scholar 

  7. Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B. Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014, 43, 7746–7786.

    Google Scholar 

  8. Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.

    Google Scholar 

  9. Kaeffer, N.; Chavarot-Kerlidou, M.; Artero, V. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes. Acc. Chem. Res. 2015, 48, 1286–1295.

    Google Scholar 

  10. Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

    Google Scholar 

  11. Zhang, R. R.; Zhang, Y. C.; Pan, L.; Shen, G. Q.; Mahmood, N.; Ma, Y. H.; Shi, Y.; Jia, W. Y.; Wang, L.; Zhang, X. W. et al. Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution. ACS Catal. 2018, 8, 3803–3811.

    Google Scholar 

  12. Shahraei, A.; Martinaiou, I.; Creutz, K. A.; Kübler, M.; Weidler, N.; Ranecky, S. T.; Wallace, W. D. Z.; Nowroozi, M. A.; Clemens, O.; Stark, R. W. et al. Exploring active sites in multi-heteroatom-doped Co-based catalysts for hydrogen evolution reactions. Chem.–Eur. J. 2018, 24, 12480–12484.

    Google Scholar 

  13. Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem., Int. Ed. 2014, 53, 102–121.

    Google Scholar 

  14. Safizadeh, F.; Ghali, E.; Houlachi, G. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions—a review. Int. J. Hydrogen Energy 2015, 40, 256–274.

    Google Scholar 

  15. Stoerzinger, K. A.; Qiao, L.; Biegalski, M. D.; Shao-Horn, Y. Orientationdependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 2014, 5, 1636–1641.

    Google Scholar 

  16. Escudero-Escribano, M.; Pedersen, A. F.; Paoli, E. A.; Frydendal, R.; Friebel, D.; Malacrida, P.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Importance of surface IrOx in stabilizing RuO2 for oxygen evolution. J. Phys. Chem. B 2018, 122, 947–955.

    Google Scholar 

  17. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

    Google Scholar 

  18. Sheng, W. C.; Zhuang, Z. B.; Gao, M. R.; Zheng, J.; Chen, J. G.; Yan, Y. S. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 2015, 6, 5848.

    Google Scholar 

  19. Wang, Z. Q.; Ren, X.; Luo, Y. L.; Wang, L.; Cui, G. W.; Xie, F. Y.; Wang, H. J.; Xie, Y.; Sun, X. P. An ultrafine platinum-cobalt alloy decorated cobalt nanowire array with superb activity toward alkaline hydrogen evolution. Nanoscale 2018, 10, 12302–12307.

    Google Scholar 

  20. Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solutioncast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.

    Google Scholar 

  21. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

    Google Scholar 

  22. Zhu, Y. L.; Zhou, W.; Chen, Z. G.; Chen, Y. B.; Su, C.; Tade, M. O.; Shao, Z. P. SrNb0.1Co0.7Fe0.2O3–δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. Angew. Chem., Int. Ed. 2015, 54, 3897–3901.

    Google Scholar 

  23. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

    Google Scholar 

  24. Jung, J. I.; Jeong, H. Y.; Lee, J. S.; Kim, M. G.; Cho, J. A bifunctional perovskite catalyst for oxygen reduction and evolution. Angew. Chem., Int. Ed. 2014, 53, 4582–4586.

    Google Scholar 

  25. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Google Scholar 

  26. Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.

    Google Scholar 

  27. Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186–19192.

    Google Scholar 

  28. You, B.; Jiang, N.; Sheng, M. L.; Bhushan, M. W.; Sun, Y. J. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catal. 2016, 6, 714–721.

    Google Scholar 

  29. Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889.

    Google Scholar 

  30. Kinoshita, K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J. Electrochem. Soc. 1990, 137, 845–848.

    Google Scholar 

  31. Dou, S.; Dong, C. L.; Hu, Z.; Huang, Y. C.; Chen, J. L.; Tao, L.; Yan, D. F.; Chen, D. W.; Shen, S. H.; Chou, S. L. et al. Atomic-scale CoOx species in metal–organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1702546.

    Google Scholar 

  32. Kibler, L. A.; El-Aziz, A. M.; Hoyer, R.; Kolb, D. M. Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem., Int. Ed. 2005, 44, 2080–2084.

    Google Scholar 

  33. Yang, D. S.; Chen, T.; Wang, Z. J. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented mo nanofilm. J. Mater. Chem. A 2017, 5, 18967–18971.

    Google Scholar 

  34. Xie, C.; Wang, Y. Y.; Hu, K.; Tao, L.; Huang, X. B.; Huo, J.; Wang, S. Y. In situ confined synthesis of molybdenum oxide decorated nickel–iron alloy nanosheets from MoO4 2− intercalated layered double hydroxides for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 87–91.

    Google Scholar 

  35. Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867–5871.

    Google Scholar 

  36. Wang, S. Y.; Yu, D. S.; Dai, L. M. Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2011, 133, 5182–5185.

    Google Scholar 

  37. Dou, S.; Shen, A. L.; Tao, L.; Wang, S. Y. Molecular doping of graphene as metal-free electrocatalyst for oxygen reduction reaction. Chem. Commun. 2014, 50, 10672–10675.

    Google Scholar 

  38. Wang, S. Y.; Zhang, L. P.; Xia, Z. H.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. M. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2012, 124, 4285–4288.

    Google Scholar 

  39. Shen, A. L.; Zou, Y. Q.; Wang, Q.; Dryfe, R. A. W.; Huang, X. B.; Dou, S.; Dai, L. M.; Wang, S. Y. Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane. Angew. Chem., Int. Ed. 2014, 126, 10980–10984.

    Google Scholar 

  40. Tao, L.; Qiao, M.; Jin, R.; Li, Y.; Xiao, Z. H.; Wang, Y. Q.; Zhang, N. N.; Xie, C.; He, Q. G.; Jiang, D. C. et al. Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst. Angew. Chem., Int. Ed. 2019, 58, 1019–1024.

    Google Scholar 

  41. Zhang, Y. Q.; Guo, L.; Tao, L.; Lu, Y. B.; Wang, S. Y. Defect-based singleatom electrocatalysts. Small Methods 2018, 1800406.

    Google Scholar 

  42. Paraknowitsch, J. P.; Thomas, A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013, 6, 2839–2855.

    Google Scholar 

  43. Bondarenko, A. S.; Stephens, I. E. L.; Hansen, H. A.; Pérez-Alonso, F. J.; Tripkovic, V.; Johansson, T. P.; Rossmeisl, J.; Nørskov, J. K.; Chorkendorff, I. The Pt(111)/electrolyte interface under oxygen reduction reaction conditions: An electrochemical impedance spectroscopy study. Langmuir 2011, 27, 2058–2066.

    Google Scholar 

  44. Tang, C.; Wang, H. F.; Zhang, Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis. Acc. Chem. Res. 2018, 51, 881–889.

    Google Scholar 

  45. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Google Scholar 

  46. Sheng, X.; Liu, Z.; Zeng, R. S.; Chen, L. P.; Feng, X. J.; Jiang, L. Enhanced photocatalytic reaction at air–liquid–solid joint interfaces. J. Am. Chem. Soc. 2017, 139, 12402–12405.

    Google Scholar 

  47. Jiao, Y.; Zheng, Y.; Davey, K.; Qiao, S. Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 2016, 1, 16130.

    Google Scholar 

  48. Buurmans, I. L. C.; Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 2012, 4, 873–886.

    Google Scholar 

  49. Shao, Y. Y.; Yin, G. P.; Wang, Z. B.; Gao, Y. Z. Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges. J. Power Sources 2007, 167, 235–242.

    Google Scholar 

  50. Wei, Z. D.; Chen, S. G.; Liu, Y.; Sun, C. X.; Shao, Z. G.; Shen, P. K. Electrodepositing Pt by modulated pulse current on a nafion-bonded carbon substrate as an electrode for PEMFC. J. Phys. Chem. C 2007, 111, 15456–15463.

    Google Scholar 

  51. Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517–6524.

    Google Scholar 

  52. Zhang, J. T.; Xia, Z. H.; Dai, L. M. Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1, e1500564.

    Google Scholar 

  53. Wang, X. J.; Zhou, J. W.; Fu, H.; Li, W.; Fan, X. X.; Xin, G. B.; Zheng, J.; Li, X. G. MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2014, 2, 14064–14070.

    Google Scholar 

  54. Ma, Z. L.; Tao, L.; Liu, D. D.; Li, Z.; Zhang, Y. Q.; Liu, Z. J.; Liu, H. W.; Chen, R.; Huo, J.; Wang, S. Y. Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium–sulfur batteries. J. Mater. Chem. A 2017, 5, 9412–9417.

    Google Scholar 

  55. Yang, S. B.; Feng, X. L.; Wang, X. C.; Müllen, K. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem. 2011, 123, 5451–5455.

    Google Scholar 

  56. Thomas, A. Functional materials: From hard to soft porous frameworks. Angew. Chem., Int. Ed. 2010, 49, 8328–8344.

    Google Scholar 

  57. Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320–1326.

    Google Scholar 

  58. Yang, M. J.; Hu, X. H.; Fang, Z. S.; Sun, L.; Yuan, Z. K.; Wang, S. Y.; Hong, W.; Chen, X. D.; Yu, D. S. Bifunctional MOF-derived carbon photonic crystal architectures for advanced Zn–air and Li–S batteries: Highly exposed graphitic nitrogen matters. Adv. Funct. Mater. 2017, 27, 1701971.

    Google Scholar 

  59. Li, K.; Li, Y.; Wang, Y. M.; Ge, J. J.; Liu, C. P.; Xing, W. Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium in situ embedded in carbon. Energy Environ. Sci. 2018, 11, 1232–1239.

    Google Scholar 

  60. Tian, G. L.; Zhang, Q.; Zhang, B. S.; Jin, Y. G.; Huang, J. Q.; Su, D. S.; Wei, F. Toward full exposure of “active sites”: Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 24, 5956–5961.

    Google Scholar 

  61. Chen, C.; Khosrowabadi Kotyk, J. F.; Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem. 2018, 4, 2571–2586.

    Google Scholar 

  62. Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590–1598.

    Google Scholar 

  63. Park, S.; Lee, J. W.; Popov, B. N. A review of gas diffusion layer in PEM fuel cells: Materials and designs. Int. J. Hydrogen Energy 2012, 37, 5850–5865.

    Google Scholar 

  64. Kreuer, K. D. Proton conductivity: Materials and applications. Chem. Mater. 1996, 8, 610–641.

    Google Scholar 

  65. Lu, Z. Y.; Xu, W. W.; Ma, J.; Li, Y. J.; Sun, X. M.; Jiang, L. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction. Adv. Mater. 2016, 28, 7155–7161.

    Google Scholar 

  66. Li, J.; Chen, G. X.; Zhu, Y. Y.; Liang, Z.; Pei, A.; Wu, C. L.; Wang, H. X.; Lee, H. R.; Liu, K.; Chu, S. et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 2018, 1, 592–600.

    Google Scholar 

  67. Du, L.; Shao, Y. Y.; Sun, J. M.; Yin, G. P.; Liu, J.; Wang, Y. Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy 2016, 29, 314–322.

    Google Scholar 

  68. Cindrella, L.; Kannan, A. M.; Lin, J. F.; Saminathan, K.; Ho, Y.; Lin, C. W.; Wertz, J. Gas diffusion layer for proton exchange membrane fuel cells— a review. J. Power Sources 2009, 194, 146–160.

    Google Scholar 

  69. Lin, G. Y.; van Nguyen, T. Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC. J. Electrochem. Soc. 2005, 152, A1942–A1948.

    Google Scholar 

  70. Snyder, J.; Fujita, T.; Chen, M. W.; Erlebacher, J. Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nat. Mater. 2010, 9, 904–907.

    Google Scholar 

  71. Snyder, J.; Livi, K.; Erlebacher, J. Oxygen reduction reaction performance of [MTBD][beti]-encapsulated nanoporous nipt alloy nanoparticles. Adv. Funct. Mater. 2013, 23, 5494–5501.

    Google Scholar 

  72. Zhang, G. R.; Munoz, M.; Etzold, B. J. M. Boosting performance of low temperature fuel cell catalysts by subtle ionic liquid modification. ACS Appl. Mater. Interfaces 2015, 7, 3562–3570.

    Google Scholar 

  73. Qiao, M.; Tang, C.; Tanase, L. C.; Teodorescu, C. M.; Chen, C. M.; Zhang, Q.; Titirici, M. M. Oxygenophilic ionic liquids promote the oxygen reduction reaction in Pt-free carbon electrocatalysts. Mater. Horiz. 2017, 4, 895–899.

    Google Scholar 

  74. Tan, Y. M.; Xu, C. F.; Chen, G. X.; Zheng, N. F.; Xie, Q. J. A graphene–platinum nanoparticles–ionic liquid composite catalyst for methanol-tolerant oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 6923–6927.

    Google Scholar 

  75. Li, W.; Liu, J.; Zhao, D. Y. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, 16023.

    Google Scholar 

  76. Li, S. L.; Xu, Q. Metal–organic frameworks as platforms for clean energy. Energy Environ. Sci. 2013, 6, 1656–1683.

    Google Scholar 

  77. Dou, S.; Wang, X.; Wang, S. Y. Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods 2019, 3, 1800211.

    Google Scholar 

  78. Wang, X.; Li, X. Y.; Ouyang, C. B.; Li, Z.; Dou, S.; Ma, Z. L.; Tao, L.; Huo, J.; Wang, S. Y. Nonporous MOF-derived dopant-free mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 9370–9374.

    Google Scholar 

  79. Pampel, J.; Fellinger, T. P. Opening of bottleneck pores for the improvement of nitrogen doped carbon electrocatalysts. Adv. Energy Mater. 2016, 6, 1502389.

    Google Scholar 

  80. Xia, W.; Zou, R. Q.; An, L.; Xia, D. G.; Guo, S. J. A metal–organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568–576.

    Google Scholar 

  81. Mazloomi, S. K.; Sulaiman, N. Influencing factors of water electrolysis electrical efficiency. Renew. Sust. Energ. Rev. 2012, 16, 4257–4263.

    Google Scholar 

  82. Wang, S.; Jiang, L. Definition of superhydrophobic states. Adv. Mater. 2007, 19, 3423–3424.

    Google Scholar 

  83. Lu, Z. Y.; Zhu, W.; Yu, X. Y.; Zhang, H. C.; Li, Y. J.; Sun, X. M.; Wang, X. W.; Wang, H.; Wang, J. M.; Luo, J. et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683–2687.

    Google Scholar 

  84. Wu, D.; Wu, S. Z.; Chen, Q. D.; Zhang, Y. L.; Yao, J.; Yao, X.; Niu, L. G.; Wang, J. N.; Jiang, L.; Sun, H. B. Curvature-driven reversible in situ switching between pinned and roll-down superhydrophobic states for water droplet transportation. Adv. Mater. 2011, 23, 545–549.

    Google Scholar 

  85. Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

    Google Scholar 

  86. Harrison, J. A.; Kuhn, A. T. The role of gas bubble formation in the electrocatalysis of the hydrogen evolution reaction. Surf. Technol. 1983, 19, 249–259.

    Google Scholar 

  87. Li, Y. J.; Zhang, H. C.; Xu, T. H.; Lu, Z. Y.; Wu, X. C.; Wan, P. B.; Sun, X. M.; Jiang, L. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1737–1744.

    Google Scholar 

  88. He, J. L.; Hu, B. B.; Zhao, Y. Superaerophobic electrode with metal@metaloxide powder catalyst for oxygen evolution reaction. Adv. Funct. Mater. 2016, 26, 5998–6004.

    Google Scholar 

  89. Wang, Z. J.; Lu, Y. Z.; Yan, Y.; Larissa, T. Y. P.; Zhang, X.; Wuu, D.; Zhang, H.; Yang, Y. H.; Wang, X. Core-shell carbon materials derived from metalorganic frameworks as an efficient oxygen bifunctional electrocatalyst. Nano Energy 2016, 30, 368–378.

    Google Scholar 

  90. Dou, S.; Wang, X.; Wang, S. Y. Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods 2019, 3, 1800211.

    Google Scholar 

  91. Zeng, Y. F.; Wang, Y. Y.; Huang, G.; Chen, C.; Huang, L. L.; Chen, R.; Wang, S. Y. Porous CoP nanosheets converted from layered double hydroxides with superior electrochemical activity for hydrogen evolution reactions at wide pH ranges. Chem. Commun. 2018, 54, 1465–1468.

    Google Scholar 

  92. Tao, L.; Shi, Y. L.; Huang, Y. C.; Chen, R.; Zhang, Y. Q.; Huo, J.; Zou, Y. Q.; Yu, G.; Luo, J.; Dong, C. L. et al. Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation. Nano Energy 2018, 53, 604–612.

    Google Scholar 

  93. Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 14235–14239.

    Google Scholar 

  94. Hou, Y.; Wen, Z. H.; Cui, S. M.; Ci, S. Q.; Mao, S.; Chen, J. H. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 2015, 25, 872–882.

    Google Scholar 

  95. Dou, S.; Li, X. Y.; Tao, L.; Huo, J.; Wang, S. Y. Cobalt nanoparticleembedded carbon nanotube/porous carbon hybrid derived from MOFencapsulated Co3O4 for oxygen electrocatalysis. Chem. Commun. 2016, 52, 9727–9730.

    Google Scholar 

  96. Lai, J. P.; Nsabimana, A.; Luque, R.; Xu, G. B. 3D porous carbonaceous electrodes for electrocatalytic applications. Joule 2018, 2, 76–93.

    Google Scholar 

  97. Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.

    Google Scholar 

  98. Yuan, C. Z.; Yang, L.; Hou, L. R.; Shen, L. F.; Zhang, X. G.; Lou, X. W. Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ. Sci. 2012, 5, 7883–7887.

    Google Scholar 

  99. Du, S. C.; Ren, Z. Y.; Zhang, J.; Wu, J.; Xi, W.; Zhu, J. Q.; Fu, H. G. Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chem. Commun. 2015, 51, 8066–8069.

    Google Scholar 

  100. Liu, Z. J.; Zhao, Z. H.; Wang, Y. Y.; Dou, S.; Yan, D. F.; Liu, D. D.; Xia, Z. H.; Wang, S. Y. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 2017, 29, 1606207.

    Google Scholar 

  101. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet–carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2014, 126, 7409–7413.

    Google Scholar 

  102. Xiu, L. Y.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Qiu, J. S. Aggregationresistant 3D Mxene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 8017–8028.

    Google Scholar 

  103. Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.

    Google Scholar 

  104. Duan, J. J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Porous C3N4-nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 2015, 9, 931–940.

    Google Scholar 

  105. Choi, H. J.; Jung, S. M.; Seo, J. M.; Chang, D. W.; Dai, L. M.; Baek, J. B. Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 2012, 1, 534–551.

    Google Scholar 

  106. Liu, Q.; Wang, Y. B.; Dai, L. M.; Yao, J. N. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 2016, 28, 3000–3006.

    Google Scholar 

  107. Hu, C. G.; Dai, L. M. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem., Int. Ed. 2016, 55, 11736–11758.

    Google Scholar 

  108. Wang, Y. Q.; Tao, L.; Xiao, Z. H.; Chen, R.; Jiang, Z. Q.; Wang, S. Y. 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv. Funct. Mater. 2018, 28, 1705356.

    Google Scholar 

  109. Ding, W.; Li, L.; Xiong, K.; Wang, Y.; Li, W.; Nie, Y.; Chen, S. G.; Qi, X. Q.; Wei, Z. D. Shape fixing via salt recrystallization: A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5414–5420.

    Google Scholar 

  110. Xu, W. W.; Lu, Z. Y.; Wan, P. B.; Kuang, Y.; Sun, X. M. High-performance water electrolysis system with double nanostructured superaerophobic electrodes. Small 2016, 12, 2492–2498.

    Google Scholar 

  111. Lee, H. K.; Koh, C. S. L.; Lee, Y. H.; Liu, C.; Phang, I. Y.; Han, X. M.; Tsung, C. K.; Ling, X. Y. Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci. Adv. 2018, 4, eaar3208.

    Google Scholar 

  112. Xiong, K.; Peng, L. S.; Wang, Y.; Liu, L. H.; Deng, Z. H.; Li, L.; Wei, Z. D. In situ growth of RuO2-TiO2 catalyst with flower-like morphologies on the Ti substrate as a binder-free integrated anode for chlorine evolution. J. Appl. Electrochem. 2016, 46, 841–849.

    Google Scholar 

  113. Lu, Z. Y.; Sun, M.; Xu, T. H.; Li, Y. J.; Xu, W. W.; Chang, Z.; Ding, Y.; Sun, X. M.; Jiang, L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015, 27, 2361–2366.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (Nos. 51402100 and 21573066) and the Provincial Natural Science Foundation of Hunan (Nos. 2016JJ1006 and 2016TP1009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuqin Zou or Shuangyin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zou, Y., Tao, L. et al. Rational design of three-phase interfaces for electrocatalysis. Nano Res. 12, 2055–2066 (2019). https://doi.org/10.1007/s12274-019-2310-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2310-2

Keywords

Navigation