Nano Research

, Volume 12, Issue 4, pp 845–853 | Cite as

Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform

  • Xueyao Liu
  • Wendong Liu
  • Bai YangEmail author
Research Article


Elliptical metallic nanohole arrays possess much higher transmission and enhanced sensitivity compared with circular nanohole arrays. However, fabricating elliptical metallic nanohole arrays in large area with highly tunable aspect ratio remains a challenge. Herein, a brand-new method combining stretchable imprinting with colloidal lithography is figured out to fabricate deep-elliptical-silver-nanowell arrays (d-EAgNWAs). In this method, large area highly ordered silicon nanopillar arrays fabricated by colloidal lithography were taken as a master to transfer large area polydimethylsiloxane (PDMS) nanohole arrays. Benefit from the high elasticity of PDMS mold, the aspect ratio of d-EAgNWAs achieved can be facilely regulated from 1.7 to 5.0. Through optimization of polarization direction and the structural parameters including nanowell depth, aspect ratio, and hole size, the sensing performance of d-EAgNWAs was finally improved up to 1,414.1 nm/RIU. The best sensing behaved d-EAgNWAs were employed as an immunoassay platform finally to prove their great potential in label-free biosensing.


plasmonic sensor colloidal lithography nanohole deep-elliptical-silver-nanowell arrays stretchable imprinting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 51433003), the National Key Research and Development Program of China (No. 2016YFB0401701) and JLU Science and Technology Innovative Research Team 2017TD-06.

Supplementary material

12274_2019_2302_MOESM1_ESM.pdf (3.2 mb)
Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform


  1. [1]
    Sun, J.; Li, Z. Y.; Sun, Y. H.; Zhong, L. B.; Huang, J.; Zhang, J. C.; Liang, Z. Q.; Chen, J. M.; Jiang, L. Uniform and reproducible plasmon-enhanced fluorescence substrate based on PMMA-coated, large-area Au@Ag nanorod arrays. Nano Res. 2018, 11, 953–965.CrossRefGoogle Scholar
  2. [2]
    Yang, P. P.; Zheng, J. Z.; Xu, Y.; Zhang, Q.; Jiang, L. Colloidal synthesis and applications of plasmonic metal nanoparticles. Adv. Mater. 2016, 28, 10508–10517.CrossRefGoogle Scholar
  3. [3]
    Baldassarre, L.; Sakat, E.; Frigerio, J.; Samarelli, A.; Gallacher, K.; Calandrini, E.; Isella, G.; Paul, D. J.; Ortolani, M.; Biagioni, P. Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates. Nano Lett. 2015, 15, 7225–7231.CrossRefGoogle Scholar
  4. [4]
    Ma, R. M.; Ota, S.; Li, Y. M.; Yang, S.; Zhang, X. Explosives detection in a lasing plasmon nanocavity. Nat. Nanotechnol. 2014, 9, 600–604.CrossRefGoogle Scholar
  5. [5]
    Li, D.; Song, S. P.; Fan, C. H. Target-responsive structural switching for nucleic acid-based sensors. Acc. Chem. Res. 2010, 43, 631–641.CrossRefGoogle Scholar
  6. [6]
    Du, J. J.; Jiang, J.; Shao, Q.; Liu, X. G.; Marks, R. S.; Ma, J.; Chen, X. D. Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small 2013, 9, 1467–1481.CrossRefGoogle Scholar
  7. [7]
    Yanik, A. A.; Huang, M.; Kamohara, O.; Artar, A.; Geisbert, T. W.; Connor, J. H.; Altug, H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010, 10, 4962–4969.CrossRefGoogle Scholar
  8. [8]
    Brolo, A. G. Plasmonics for future biosensors. Nat. Photonics 2012, 6, 709–713.CrossRefGoogle Scholar
  9. [9]
    Guo, L. H.; Jackman, J. A.; Yang, H. H.; Chen, P.; Cho, N. J.; Kim, D. H. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 2015, 10, 213–239.CrossRefGoogle Scholar
  10. [10]
    Kabashin, A. V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G. A.; Atkinson, R.; Pollard, R.; Podolskiy, V. A.; Zayats, A. V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871.CrossRefGoogle Scholar
  11. [11]
    Wu, C. H.; Khanikaev, A. B.; Adato, R.; Arju, N.; Yanik, A. A.; Altug, H.; Shvets, G. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 2012, 11, 69–75.CrossRefGoogle Scholar
  12. [12]
    Stockman, M. I. Nanoplasmonic sensing and detection. Science 2015, 348, 287–288.CrossRefGoogle Scholar
  13. [13]
    Jin Y. D. Engineering plasmonic gold nanostructures and metamaterials for biosensing and nanomedicine. Adv. Mater. 2012, 24, 5153–5165.CrossRefGoogle Scholar
  14. [14]
    Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.Google Scholar
  15. [15]
    Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225.CrossRefGoogle Scholar
  16. [16]
    Zeng, S. W.; Baillargeat, D.; Hod, H. P.; Yong, K. T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452.CrossRefGoogle Scholar
  17. [17]
    Jiang, L.; Chen, X. D.; Lu, N.; Chi, L. F. Spatially confined assembly of nanoparticles. Acc. Chem. Res. 2014, 47, 3009–3017.CrossRefGoogle Scholar
  18. [18]
    Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631–636.CrossRefGoogle Scholar
  19. [19]
    Gordon, R.; Sinton, D.; Kavanagh, K. L.; Brolo, A. G. A new generation of sensors based on extraordinary optical transmission. Acc. Chem. Res. 2008, 41, 1049–1057.CrossRefGoogle Scholar
  20. [20]
    Ye, S. S.; Zhang, X. M.; Chang, L. X.; Wang, T. Q.; Li, Z. B.; Zhang, J. H.; Yang, B. High-performance plasmonic sensors based on two-dimensional Ag nanowell crystals. Adv. Opt. Mater. 2014, 2, 779–787.CrossRefGoogle Scholar
  21. [21]
    Im, H.; Lindquist, N. C.; Lesuffleur, A.; Oh, S. H. Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. ACS Nano 2010, 4, 947–954.CrossRefGoogle Scholar
  22. [22]
    Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.CrossRefGoogle Scholar
  23. [23]
    Yanik, A. A.; Cetin, A. E.; Huang, M.; Artar, A.; Mousavi, S. H.; Khanikaev, A.; Connor, J. H.; Shvets, G.; Altug, H. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. USA 2011, 108, 11784–11789.CrossRefGoogle Scholar
  24. [24]
    Rindzevicius, T.; Alaverdyan, Y.; Dahlin, A.; Höök, F.; Sutherland, D. S.; Käll, M. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 2005, 5, 2335–2339.CrossRefGoogle Scholar
  25. [25]
    Wu, L. Y.; Ross, B. M.; Lee, L. P. Optical properties of the crescentshaped nanohole antenna. Nano Lett. 2009, 9, 1956–1961.CrossRefGoogle Scholar
  26. [26]
    Bukasov, R.; Shumaker-Parry, J. S. Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett. 2007, 7, 1113–1118.CrossRefGoogle Scholar
  27. [27]
    Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348.CrossRefGoogle Scholar
  28. [28]
    Zhang, Y.; Zhen, Y. R.; Neumann, O.; Day, J. K.; Nordlander, P,; Halas, N. J. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. 2014, 5, 4424.CrossRefGoogle Scholar
  29. [29]
    Yang, S. C.; Hou, J. L.; Finn, A.; Kumar, A.; Ge, Y.; Fischer, W. J. Synthesis of multifunctional plasmonic nanopillar array using soft thermal nanoimprint lithography for highly sensitive refractive index sensing. Nanoscale 2015, 7, 5760–5766.CrossRefGoogle Scholar
  30. [30]
    Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669.CrossRefGoogle Scholar
  31. [31]
    Li, J.; Iu, H.; Wan, J. T. K.; Ong, H. C. The plasmonic properties of elliptical metallic hole arrays. Appl. Phys. Lett. 2009, 94, 033101.CrossRefGoogle Scholar
  32. [32]
    Cervantes Tellez, G. A.; Hassan, S.; Tait, R. N.; Berini, P.; Gordon, R. Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing. Lab Chip 2013, 13, 2541–2546.CrossRefGoogle Scholar
  33. [33]
    Kang, L.; Lan, S. F.; Cui, Y. H.; Rodrigues, S. P.; Liu, Y. M.; Werner, D. H.; Cai, W. S. An active metamaterial platform for chiral responsive optoelectronics. Adv. Mater. 2015, 27, 4377–4383.CrossRefGoogle Scholar
  34. [34]
    Gordon, R.; Hughes, M.; Leathem, B.; Kavanagh, K. L.; Brolo, A. G. Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film. Nano Lett. 2005, 5, 1243–1246.CrossRefGoogle Scholar
  35. [35]
    Lovera, P.; Jones, D.; Corbett, B.; O’Riordan, A. Polarization tunable transmission through plasmonic arrays of elliptical nanopores. Opt. Express 2012, 20, 25325–25332.CrossRefGoogle Scholar
  36. [36]
    Gordon, R.; Brolo, A. G.; McKinnon, A.; Rajora, A.; Leathem, B.; Kavanagh, K. L. Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett. 2004, 92, 037401.CrossRefGoogle Scholar
  37. [37]
    Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249–4269.CrossRefGoogle Scholar
  38. [38]
    Fredriksson, H.; Alaverdyan, Y.; Dmitriev, A.; Langhammer, C.; Sutherland, D. S.; Zäch, M.; Kasemo, B. Hole-mask colloidal lithography. Adv. Mater. 2007, 19, 4297–4302.CrossRefGoogle Scholar
  39. [39]
    Larsson, E. M.; Alegret, J.; Käll, M.; Sutherland, D. S. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett. 2007, 7, 1256–1263.CrossRefGoogle Scholar
  40. [40]
    Langhammer, C.; Schwind, M.; Kasemo, B.; Zorić, I. Localized surface Plasmon resonances in aluminum nanodisks. Nano Lett. 2008, 8, 1461–1471.CrossRefGoogle Scholar
  41. [41]
    Li, Y. F.; Zhang, J. H.; Yang, B. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today 2010, 5, 117–127.CrossRefGoogle Scholar
  42. [42]
    Choi, D. G.; Yu, H. K.; Jang, S. G.; Yang, S. M. Colloidal lithographic nanopatterning via reactive ion etching. J. Am. Chem. Soc. 2004, 126, 7019–7025.CrossRefGoogle Scholar
  43. [43]
    Li, Y.; Duan, G. T.; Liu, G. Q.; Cai, W. P. Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: Fabrication and applications. Chem. Soc. Rev. 2013, 42, 3614–3627.CrossRefGoogle Scholar
  44. [44]
    Lee, S. H.; Bantz, K. C.; Lindquist, N. C.; Oh, S. H.; Haynes, C. L. Selfassembled plasmonic nanohole arrays. Langmuir 2009, 25, 13685–13693.CrossRefGoogle Scholar
  45. [45]
    Ai, B.; Basnet, P.; Larson, S.; Ingram, W.; Zhao, Y. P. Plasmonic sensor with high figure of merit based on differential polarization spectra of elliptical nanohole array. Nanoscale 2017, 9, 14710–14721.CrossRefGoogle Scholar
  46. [46]
    Chang, Y. C.; Lu, S. C.; Chung, H. C.; Wang, S. M.; Tsai, T. D.; Guo, T. F. High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography. Sci. Rep. 2013, 3, 3339.CrossRefGoogle Scholar
  47. [47]
    Wang, T. Q.; Li, X.; Zhang, J. H.; Ren, Z. Y.; Zhang, X. M.; Zhang, X.; Zhu, D. F.; Wang, Z. H.; Han, F.; Wang, X. Z. et al. Morphology-controlled two-dimensional elliptical hemisphere arrays fabricated by a colloidal crystal based micromolding method. J. Mater. Chem. 2010, 20, 152–158.CrossRefGoogle Scholar
  48. [48]
    Cai, Y. J.; Li, Y.; Nordlander, P.; Cremer P. S. Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances. Nano Lett. 2012, 12, 4881–4888.CrossRefGoogle Scholar
  49. [49]
    Liu, X. Y.; Liu, W. D.; Fang, L. P.; Ye, S. S.; Shen, H. Z.; Yang, B. Highly sensitive deep-silver-nanowell arrays (d-AgNWAs) for refractometric sensing. Nano Res. 2017, 10, 908–921.CrossRefGoogle Scholar
  50. [50]
    Si, S. R.; Liang, W. K.; Sun, Y. H.; Huang, J.; Ma, W. L.; Liang, Z. Q.; Bao, Q. L.; Jiang, L. Facile fabrication of high-density sub-1-nm gaps from Au nanoparticle monolayers as reproducible SERS substrates. Adv. Funct. Mater. 2016, 26, 8137–8145.CrossRefGoogle Scholar
  51. [51]
    Chen, J. M.; Sun, Y. H.; Zhong, L. B.; Shao, W. J.; Huang, J.; Liang, F.; Cui, Z. Q.; Liang, Z. Q.; Jiang, L.; Chi, L. F. Scalable fabrication of multiplexed plasmonic nanoparticle structures based on AFM lithography. Small 2016, 12, 5818–5825.CrossRefGoogle Scholar
  52. [52]
    Fang, Z. Y.; Cai, J. Y.; Yan, Z. B.; Nordlander, P.; Halas, N. J.; Zhu, X. Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett. 2011, 11, 4475–4479.CrossRefGoogle Scholar
  53. [53]
    Valsecchi, C.; Brolo, A. G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 2013, 29, 5638–5649.CrossRefGoogle Scholar
  54. [54]
    McFarland, A. D.; Van Duyne, R. P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003, 3, 1057–1062.CrossRefGoogle Scholar
  55. [55]
    Kumari, S.; Moirangthem, R. S. Portable and economical plasmonic capillary sensor for biomolecular detection. Sens. Actuators B Chem. 2016, 231, 203–210.CrossRefGoogle Scholar
  56. [56]
    Abadeer, N. S.; Fulop, G.; Chen, S.; Käll, M.; Murphy, C. J. Interactions of bacterial lipopolysaccharides with gold nanorod surfaces investigated by refractometric sensing. ACS Appl. Mater. Interfaces 2015, 7, 24915–24925.CrossRefGoogle Scholar
  57. [57]
    Jeong, H. H.; Mark, A. G.; Alarcón-Correa, M.; Kim, I.; Oswald, P.; Lee, T. C.; Fischer, P. Dispersion and shape engineered plasmonic nanosensors. Nat. Commun. 2016, 7, 11331.CrossRefGoogle Scholar
  58. [58]
    Lisboa, P.; Valsesia, A.; Mannelli, I.; Mornet, S.; Colpo, P.; Rossi, F. Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols. Adv. Mater. 2008, 20, 2352–2358.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunChina
  2. 2.Max Planck Institute for Polymer ResearchMainz, Rheinland-PfalzGermany

Personalised recommendations