Nano Research

, Volume 12, Issue 4, pp 829–836 | Cite as

Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries

  • Xintao Zuo
  • Mengmeng ZhenEmail author
  • Cheng WangEmail author
Research Article


Lithium-sulfur batteries (LSBs) have been regarded as one of the most promising energy storage systems to break through the upper limit of lithium-ion batteries. However, the rampant diffusions of soluble lithium polysulfides (LiPSs) in the electrolyte induced the shuttle effect between anode and cathode, resulting in low sulfur utilization, low energy efficiency and short cycling life. Herein, we prove the rational design and construction of Ni nanoparticles filled in vertically grown N-doped bamboo-like carbon nanotubes (CNTs) on graphene nanosheets (Ni@NG-CNTs) as efficient polysulfide barrier for high-performance LSBs. The unique design integrates graphene nanosheets and CNTs into hierarchical architectures with one-dimensional (1D) CNTs, two-dimensional (2D) ultrathin nanosheets and abundant carbon nanocages. This design provides large surface area for lithium polysulfides (LiPSs) adsorption, accelerates electron transport and enhances electrochemical redox of LiPSs. Benefiting from the unique structural features, the LSBs with the Ni@NG-CNTs as polysulfide barrier keep high reversible specific capacities of 309.1 and 265.0 mAh·g−1 at 5 and 10 C rates after 500 cycles. This work provides a new strategy for constructing self-assembled hybrids of CNTs and graphene nanosheets with abundant carbon nanocages for high-performance LSBs.


lithium-sulfur batteries self-assembled hierarchical architecture confined Ni nanoparticles abundant carbon nanocages modified separator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by funding from the Postdoctoral Science Foundation of China (No. 2017M611171), the National Natural Science Foundation of China (NSFC) (Nos. 21571170, 21501168, and 51702236), Tianjin Municipal Science and Technology Commission (No. 17JCZDJC38000).

Supplementary material

12274_2019_2298_MOESM1_ESM.pdf (4.8 mb)
Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries


  1. [1]
    Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.CrossRefGoogle Scholar
  2. [2]
    Jiang, J.; Zhu, J. H.; Ai, W.; Wang, X. L.; Wang, Y. L.; Zou, C. J.; Huang, W.; Yu, T. Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium-sulfur cells. Nat. Commun. 2015, 6, 8622.CrossRefGoogle Scholar
  3. [3]
    Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.CrossRefGoogle Scholar
  4. [4]
    Fang, R. P.; Zhao, S. Y.; Pei, S. F.; Cheng, Y. X.; Hou, P. X.; Liu, M.; Cheng, H. M.; Liu, C.; Li, F. An integrated electrode/separator with nitrogen and nickel functionalized carbon hybrids for advanced lithium/polysulfide batteries. Carbon 2016, 109, 719–726.CrossRefGoogle Scholar
  5. [5]
    Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.CrossRefGoogle Scholar
  6. [6]
    Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.CrossRefGoogle Scholar
  7. [7]
    Luo, L.; Chung, S. H.; Manthiram, A. A three-dimensional self-assembled SnS2-nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 7659–7667.CrossRefGoogle Scholar
  8. [8]
    Zhu, S. Y.; Wang, Y. Q.; Jiang, J. C.; Yan, X.; Sun, D. Y.; Jin, Y. C.; Nan, C. W.; Munakata, H.; Kanamura, K. Good low-temperature properties of nitrogen-enriched porous carbon as sulfur hosts for high-performance Li-S batteries. ACS Appl. Mater. Interfaces 2016, 8, 17253–17259.CrossRefGoogle Scholar
  9. [9]
    Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 2016, 1, 16094.CrossRefGoogle Scholar
  10. [10]
    Cao, J.; Chen, C.; Zhao, Q.; Zhang, N.; Lu, Q. Q.; Wang, X. Y.; Niu, Z. Q.; Chen, J. A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations. Adv. Mater. 2016, 28, 9629–9636.CrossRefGoogle Scholar
  11. [11]
    Gnana Kumar, G.; Chung, S. H.; Raj Kumar, T.; Manthiram, A. Threedimensional graphene-carbon nanotube-Ni hierarchical architecture as a polysulfide trap for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 20627–20634.CrossRefGoogle Scholar
  12. [12]
    Chung, S. H.; Chang, C. H.; Manthiram, A. A core-shell electrode for dynamically and statically stable Li–S battery chemistry. Energy Environ. Sci. 2016, 9, 3188–3200.CrossRefGoogle Scholar
  13. [13]
    Chen, C. Y.; Peng, H. J.; Hou, T. Z.; Zhai, P. Y.; Li, B. Q.; Tang, C.; Zhu, W. C.; Huang, J. Q.; Zhang, Q. A quinonoid-imine-enriched nanostructured polymer mediator for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606802.CrossRefGoogle Scholar
  14. [14]
    Cui, Z. M.; Zu, C. X.; Zhou, W. D.; Manthiram, A.; Goodenough, J. B. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 2016, 28, 6926–6931.CrossRefGoogle Scholar
  15. [15]
    Wang, L.; Yang, Z.; Nie, H. G.; Gu, C. C.; Hua, W. X.; Xu, X. J.; Chen, X. A.; Chen, Y.; Huang, S. M. A lightweight multifunctional interlayer of sulfur-nitrogen dual-doped graphene for ultrafast, long-life lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 15343–15352.CrossRefGoogle Scholar
  16. [16]
    Ghazi, Z. A.; He, X.; Khattak, A. M.; Khan, N. A.; Liang, B.; Iqbal, A.; Wang, J. X.; Sin, H.; Li, L. S.; Tang, Z. Y. MoS2/Celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606817.CrossRefGoogle Scholar
  17. [17]
    Li, F.; Kaiser, M. R.; Ma, J. M.; Guo, Z. P.; Liu, H. K.; Wang, J. Z. Freestanding sulfur-polypyrrole cathode in conjunction with polypyrrole-coated separator for flexible Li-S batteries. Energy Storage Mater. 2018, 13, 312–322.CrossRefGoogle Scholar
  18. [18]
    Li, J.; Huang, Y. D.; Zhang, S.; Jia, W.; Wang, X. C.; Guo, Y.; Jia, D. Z.; Wang, L. S. Decoration of silica nanoparticles on polypropylene separator for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 7499–7504.CrossRefGoogle Scholar
  19. [19]
    Song, J. J.; Su, D. W.; Xie, X. Q.; Guo, X.; Bao, W. Z.; Shao, G. J.; Wang, G. X. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 29427–29433.CrossRefGoogle Scholar
  20. [20]
    Balach, J.; Singh, H. K.; Gomoll, S.; Jaumann, T.; Klose, M.; Oswald, S.; Richter, M.; Eckert, J.; Giebeler, L. Synergistically enhanced polysulfide chemisorption using a flexible hybrid separator with N and S dual-doped mesoporous carbon coating for advanced lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 14586–14595.CrossRefGoogle Scholar
  21. [21]
    Su, D. W.; Cortie, M.; Fan, H. B.; Wang, G. X. Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1700587.CrossRefGoogle Scholar
  22. [22]
    Zhang, J.; Yang, C. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.CrossRefGoogle Scholar
  23. [23]
    Jin, F. Y.; Xiao, S.; Lu, L. J.; Wang, Y. Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries. Nano Lett. 2016, 16, 440–447.CrossRefGoogle Scholar
  24. [24]
    Wang, Y.; Kong, D. Z.; Shi, W. H.; Liu, B.; Sim, G. J.; Ge, Q.; Yang, H. Y. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv. Energy Mater. 2016, 6, 1601057.CrossRefGoogle Scholar
  25. [25]
    Su, Y. S.; Manthiram, A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Commun. 2012, 48, 8817–8819.CrossRefGoogle Scholar
  26. [26]
    Pang, Y.; Wei, J. S.; Wang, Y. G.; Xia, Y. Y. Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702288.CrossRefGoogle Scholar
  27. [27]
    Su, D. W.; Cortie, M.; Wang, G. X. Fabrication of N-doped graphenecarbon nanotube hybrids from prussian blue for lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602014.CrossRefGoogle Scholar
  28. [28]
    Liang, J.; Yin, L. C.; Tang, X. N.; Yang, H. C.; Yan, W. S.; Song, L.; Cheng, H. M.; Li, F. Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 25193–25201.CrossRefGoogle Scholar
  29. [29]
    Hu, G. J.; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603–1609.CrossRefGoogle Scholar
  30. [30]
    Zhao, M. Q.; Liu, X. F.; Zhang, Q.; Tian, G. L.; Huang, J. Q.; Zhu, W. C.; Wei, F. Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li-S batteries. ACS Nano 2012, 6, 10759–10769.CrossRefGoogle Scholar
  31. [31]
    Balamurugan, J.; Thanh, T. D.; Kim, N. H.; Lee, J. H. Facile synthesis of 3D hierarchical N-doped graphene nanosheet/cobalt encapsulated carbon nanotubes for high energy density asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 9555–9565.CrossRefGoogle Scholar
  32. [32]
    Su, L. W.; Zhou, Z.; Shen, P. W. Ni/C hierarchical nanostructures with Ni nanoparticles highly dispersed in N-containing carbon nanosheets: Origin of Li storage capacity. J. Phys. Chem. C 2012, 116, 23974–23980.CrossRefGoogle Scholar
  33. [33]
    Yoo, J.; Cho, S. J.; Jung, G. Y.; Kim, S. H.; Choi, K. H.; Kim, J. H.; Lee, C. K.; Kwak, S. K.; Lee, S. Y. COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries. Nano Lett. 2016, 16, 3292–3300.CrossRefGoogle Scholar
  34. [34]
    Xu, J. Q.; Zhou, K.; Chen, F.; Chen, W.; Wei, X. F.; Liu, X. W.; Liu, J. H. Natural integrated carbon architecture for rechargeable lithium–sulfur batteries. ACS Sustain. Chem. Eng. 2016, 4, 666–670.CrossRefGoogle Scholar
  35. [35]
    Yang, J. Q.; Zhou, X. L.; Wu, D. H.; Zhao, X. D.; Zhou, Z. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 2017, 29, 1604108.CrossRefGoogle Scholar
  36. [36]
    Yuan, X. Q.; Wu, L. S.; He, X. L.; Zeinu, K.; Huang, L.; Zhu, X. L.; Hou, H. J.; Liu, B. C.; Hu, J. P.; Yang, J. K. Separator modified with N,S co-doped mesoporous carbon using egg shell as template for high performance lithium-sulfur batteries. Chem. Eng. J. 2017, 320, 178–188.CrossRefGoogle Scholar
  37. [37]
    Zhang, W. L.; Xu, C.; Ma, C. Q.; Li, G. X.; Wang, Y. Z.; Zhang, K. Y.; Li, F.; Liu, C.; Cheng, H. M.; Du, Y. W. et al. Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors. Adv. Mater. 2017, 29, 1701677.CrossRefGoogle Scholar
  38. [38]
    Anantharaj, S.; Karthick, K.; Venkatesh, M.; Simha, T. V. S. V.; Salunke, A. S.; Ma, L.; Liang, H.; Kundu, S. Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano Energy 2017, 39, 30–43.CrossRefGoogle Scholar
  39. [39]
    Chen, G. P.; Song, X.; Wang, S. Q.; Wang, Y.; Gao, T.; Ding, L. X.; Wang, H. H. A multifunctional separator modified with cobalt and nitrogen co-doped porous carbon nanofibers for Li-S batteries. J. Membr. Sci. 2018, 548, 247–253.CrossRefGoogle Scholar
  40. [40]
    Song, X.; Wang, S. Q.; Chen, G. P.; Gao, T.; Bao, Y.; Ding, L. X.; Wang, H. H. Fe-N-doped carbon nanofiber and graphene modified separator for lithium-sulfur batteries. Chem. Eng. J. 2018, 333, 564–571.CrossRefGoogle Scholar
  41. [41]
    Zeng, P.; Huang, L. W.; Zhang, X. L.; Zhang, R. X.; Wu, L.; Chen, Y. G. Long-life and high-areal-capacity lithium-sulfur batteries realized by a honeycomb-like N, P dual-doped carbon modified separator. Chem. Eng. J. 2018, 349, 327–337.CrossRefGoogle Scholar
  42. [42]
    Chen, X. X.; Ding, X. Y.; Wang, C. S.; Feng, Z. Y.; Xu, L. Q.; Gao, X.; Zhai, Y. J.; Wang, D. B. A multi-shelled CoP nanosphere modified separator for highly efficient Li-S batteries. Nanoscale 2018, 10, 13694–13701.CrossRefGoogle Scholar
  43. [43]
    Ding, H. B.; Zhang, Q. F.; Liu, Z. M.; Wang, J.; Ma, R. F.; Fan, L.; Wang, T.; Zhao, J. G.; Ge, J. M.; Lu, X. L. et al. TiO2 quantum dots decorated multi-walled carbon nanotubes as the multifunctional separator for highly stable lithium sulfur batteries. Electrochim. Acta. 2018, 284, 314–320.CrossRefGoogle Scholar
  44. [44]
    Yang, Y. F.; Zhang, J. P. Highly stable lithium-sulfur batteries based on laponite nanosheet-coated celgard separators. Adv. Energy Mater. 2018, 8, 1801778.CrossRefGoogle Scholar
  45. [45]
    Jiang, K.; Gao, S.; Wang, R. X.; Jiang, M.; Han, J.; Gu, T. T.; Liu, M. Y.; Cheng, S. J.; Wang, K. L. Lithium sulfonate/carboxylate-anchored polyvinyl alcohol separators for lithium sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 18310–18315.CrossRefGoogle Scholar
  46. [46]
    Song, X.; Chen, G. P.; Wang, S. Q.; Huang, Y. P.; Jiang, Z. Y.; Ding, L. X.; Wang, H. H. Self-assembled close-packed MnO2 nanoparticles anchored on a polyethylene separator for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 26274–26282.CrossRefGoogle Scholar
  47. [47]
    Wu, F.; Zhao, S. Y.; Chen, L.; Lu, Y.; Su, Y. F.; Jia, Y. N.; Bao, L. Y.; Wang, J.; Chen, S.; Chen, R. J. Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries. Energy Storage Mater. 2018, 14, 383–391.CrossRefGoogle Scholar
  48. [48]
    Zhai, P. Y.; Peng, H. J.; Cheng, X. B.; Zhu, L.; Huang, J. Q.; Zhu, W. C.; Zhang, Q. Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium–sulfur batteries. Energy Storage Mater. 2017, 7, 56–63.CrossRefGoogle Scholar
  49. [49]
    Li, H. P.; Sun, L. C.; Zhang, Y. G.; Tan, T. Z.; Wang, G. K.; Bakenov, Z. Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. J. Energy Chem. 2017, 26, 1276–1281.CrossRefGoogle Scholar
  50. [50]
    Huang, J. Q.; Zhuang, T. Z.; Zhang, Q.; Peng, H. J.; Chen, C. M.; Wei, F. Permselective graphene oxide membrane for highly stable and anti-selfdischarge lithium-sulfur batteries. ACS Nano 2015, 9, 3002–3011.CrossRefGoogle Scholar
  51. [51]
    Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina
  2. 2.Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental EngineeringHebei University of TechnologyTianjinChina

Personalised recommendations