Nano Research

, Volume 12, Issue 4, pp 809–814 | Cite as

Trap and 1/f-noise effects at the surface and core of GaN nanowire gate-all-around FET structure

  • Mallem Siva Pratap Reddy
  • Ki-Sik ImEmail author
  • Jung-Hee LeeEmail author
  • Raphael Caulmione
  • Sorin Cristoloveanu
Research Article


Using capacitance, conductance and noise measurements, we investigate the trapping behavior at the surface and in the core of triangular-shaped one-dimensional (1D) array of GaN nanowire gate-all-around field effect transistor (GAA FET), fabricated via a top-down process. The surface traps in such a low dimensional device play a crucial role in determining the device performance. The estimated surface trap density rapidly decreases with increasing frequency, ranging from 6.07 × 1012 cm−2·eV−1 at 1 kHz to 1.90 × 1011 cm−2·eV−1 at 1 MHz, respectively. The noise results reveal that the power spectral density increases with gate voltage and clearly exhibits 1/f-noise signature in the accumulation region (Vgs > Vth = 3.4 V) for all frquencies. In the surface depletion region (1.5 V < Vgs < Vth), the device is governed by 1/f at lower frequencies and 1/f2 noise at frequencies higher than ~ 5 kHz. The 1/f2 noise characteristics is attributed to additional generation–recombination (G–R), mostly caused by the electron trapping/detrapping process through deep traps located in the surface depletion region of the nanowire. The cutoff frequency for the 1/f2 noise characteristics further shifts to lower frequency of 102–103 Hz when the device operates in deep-subthreshold region (Vgs < 1.5 V). In this regime, the electron trapping/detrapping process through deep traps expands into the totally depleted nanowire core and the G–R noise prevails in the entire nanowire channel.


gate-all-around field effect transistor (FET) nanowire GaN trap 1/f-noise 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Basic Science Research Program through the NRF funded by Ministry of Education (Nos. 2013R1A6A3A04057719 and NRF-2018R1A6A1A03025761) and was also funded by the Ministry of Science, ICT and Fusion Research (No. 2018R1D1A1B07040603) and BK21 Plus funded by the Ministry of Education (No. 21A20131600011).


  1. [1]
    Shirak, O.; Shtempluck, O.; Kotchtakov, V.; Bahir, G.; Yaish, Y. E. High performance horizontal gate-all-around silicon nanowire field-effect transistors. Nanotechnology 2012, 23, 395202.CrossRefGoogle Scholar
  2. [2]
    Mirza, M. M.; Schupp, F. J.; Mol, J. A.; MacLaren, D. A.; Briggs, G. A. D.; Paul, D. J. One dimensional transport in silicon nanowire junction-less field effect transistors. Sci. Rep. 2017, 7, 3004.CrossRefGoogle Scholar
  3. [3]
    Azize, M.; Hsu, A. L.; Saadat, O. I.; Smith, M.; Gao, X.; Guo, S. P.; Gradecak, S.; Palacios, T. High-electron-mobility transistors based on InAlN/GaN nanoribbons. IEEE Electron Device Lett. 2011, 32, 1680–1682.CrossRefGoogle Scholar
  4. [4]
    Liu, S. H.; Cai, Y.; Gu, G. D.; Wang, J. Y.; Zeng, C. H.; Shi, W. H.; Feng, Z. H.; Qin, H.; Cheng, Z. Q.; Chen, K. J. et al. Enhancement-mode operation of nanochannel array (NCA) AlGaN/GaN HEMTs. IEEE Electron Device Lett. 2012, 33, 354–356.CrossRefGoogle Scholar
  5. [5]
    Ohi, K.; Asubar, J. T.; Nishiguchi, K.; Hashizume, T. Current stability in multi-mesa-channel AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2013, 60, 2997–3004.CrossRefGoogle Scholar
  6. [6]
    Lu, B.; Matioli, E.; Palacios, T. Tri-gate normally-off GaN power MISFET. IEEE Electron Device Lett. 2012, 33, 360–362.CrossRefGoogle Scholar
  7. [7]
    Im, K. S.; Kim, R. H.; Kim, K. W.; Kim, D. S.; Lee, C. S.; Cristoloveanu, S.; Lee, J. H. Normally off single-nanoribbon Al2O3/GaN MISFET. IEEE Electron Device Lett. 2013, 34, 27–29.CrossRefGoogle Scholar
  8. [8]
    Takashima, S.; Li Z. D.; Chow, T. P. Sidewall dominated characteristics on fin-gate AlGaN/GAN MOS-channel-HEMTs. IEEE Trans. Electron Devices 2013, 60, 3025–3031.CrossRefGoogle Scholar
  9. [9]
    Lee, D. S.; Wang, H.; Hsu, A.; Azize, M.; Laboutin, O.; Cao, Y.; Johnson, J. W.; Beam, E.; Ketterson, A.; Schuette, M. L. et al. Nanowire channel InAlN/GaN HEMTs with high linearity of g m and f T. IEEE Electron Device Lett. 2013, 34, 969–971.CrossRefGoogle Scholar
  10. [10]
    Im, K. S.; Won, C. H.; Jo, Y. W.; Lee, J. H.; Bawedin, M.; Cristoloveanu, S.; Lee, J. H. High-performance GaN-based nanochannel finFETs with/without AlGaN/GaN heterostructure. IEEE Trans. Electron Devices 2013, 60, 3012–3018.CrossRefGoogle Scholar
  11. [11]
    Im, K. S.; Son, D. H.; Ahn, H. K.; Bae, S. B.; Mun, J. K.; Nam, E. S.; Cristoloveanu, S.; Lee, J. H. Performance improvement of normally off AlGaN/GaN finFETs with fully gate-covered nanochannel. Solid State Electron 2013, 89, 124–127.CrossRefGoogle Scholar
  12. [12]
    Jo, Y. W.; Son, D. H.; Won, C. H.; Im, K. S.; Seo, J. H.; Kang, I. M.; Lee, J. H. AlGaN/GaN finFET with extremely broad transconductance by side-wall wet etch. IEEE Electron Device Lett. 2015, 36, 1008–1010.CrossRefGoogle Scholar
  13. [13]
    Im, K. S.; Sindhuri, V.; Jo, Y. W.; Son, D. H.; Lee, J. H.; Cristoloveanu, S.; Lee, J. H. Fabrication of AlGaN/GaN Ω-shaped nanowire fin-shaped FETs by a top-down approach. Appl. Phys. Express 2015, 8, 066501.CrossRefGoogle Scholar
  14. [14]
    Zhuang, D.; Edgar, J. H. Wet etching of GaN, AlN, and SiC: A review. Mater. Sci. Eng. R 2005, 48, 1–46.CrossRefGoogle Scholar
  15. [15]
    Reddy, C. V.; Balakrishna, K.; Okumura, H.; Yoshida, S. The origin of persistent photoconductivity and its relationship with yellow luminescence in molecular beam epitaxy grown undoped GaN. Appl. Phys. Lett. 1998, 73, 244.CrossRefGoogle Scholar
  16. [16]
    Chen, H. M.; Chen, Y. F.; Lee, M. C.; Feng, M. S. Persistent photoconductivity in n-type GaN. J. Appl. Phys. 1997, 82, 899–901.CrossRefGoogle Scholar
  17. [17]
    Hirsch, M. T.; Wolk, J. A.; Walukiewicz, W.; Haller, E. E. Persistent photoconductivity in n-type GaN. Appl. Phys. Lett. 1997, 71, 1098–1100.CrossRefGoogle Scholar
  18. [18]
    Polenta, L.; Rossi, M.; Cavallini, A.; Calarco, R.; Marso, M.; Meijers, R.; Richter, T.; Stoica, T.; Lüth, H. Investigation on localized states in GaN nanowires. ACS Nano 2008, 2, 287–292.CrossRefGoogle Scholar
  19. [19]
    Reddy, V. R.; Reddy, M. S.; Rao, P. K. Effect of rapid thermal annealing on deep level defects in the Si-doped GaN. Microelectron. Eng. 2010, 87, 117–121.CrossRefGoogle Scholar
  20. [20]
    Huang, H. Y.; Chuang, C. H.; Shu, C. K.; Pan, Y. C.; Lee, W. H.; Chen, W. K.; Lee, M. C. Photoluminescence and photoluminescence excitation studies of as-grown and P-implanted GaN: On the nature of yellow luminescence. Appl. Phys. Lett. 2002, 80, 3349–3351.CrossRefGoogle Scholar
  21. [21]
    Im, K. S.; Won, C. H.; Vodapally, S.; Caulmilone, R.; Cristoloveanu, S.; Kim, Y. T.; Lee, J. H. Fabrication of normally-off GaN nanowire gate-allaround FET with top-down approach. Appl. Phys. Lett. 2016, 109, 143106.CrossRefGoogle Scholar
  22. [22]
    Wong, B. M.; Léonard, F.; Li, Q. M.; Wang, G. T. Nanoscale effects on heterojunction electron gases in GaN/AlGaN core/shell nanowires. Nano Lett. 2011, 11, 3074–3079.CrossRefGoogle Scholar
  23. [23]
    Mastro, M. A.; Simpkins, B.; Wang, G. T.; Hite, J.; Eddy, C. R. Jr.; Kim, H. Y.; Ahn, J.; Kim, J. Polarization fields in III-nitride nanowire devices. Nanotechnology 2010, 21, 145205.CrossRefGoogle Scholar
  24. [24]
    Kang, H. S.; Siva Pratap Reddy, M.; Kim, D. S.; Kim, K. W.; Ha, J. B.; Lee, Y. S.; Choi, H. C.; Lee, J. H. Effect of oxygen species on the positive flatband voltage shift in Al2O3/GaN metal-insulator-semiconductor capacitors with post-deposition annealing. J. Phys. D Appl. Phys. 2013, 46, 155101.CrossRefGoogle Scholar
  25. [25]
    Bülbül, M. M.; Zeyrek, S. Frequency dependent capacitance and conductancevoltage characteristics of Al/Si3N4/p-Si(100) MIS diodes. Microelectron. Eng. 2006, 83, 2522–2526.CrossRefGoogle Scholar
  26. [26]
    Taoka, N.; Kubo, T.; Yamada, T.; Egawa, T.; Shimizu, M. Understanding of frequency dispersion in C–V curves of metal-oxide-semiconductor capacitor with wide-bandgap semiconductor. Microelectron. Eng. 2017, 178, 182–185.CrossRefGoogle Scholar
  27. [27]
    Güçlü, Ç. Ş.; Özdemir, A. F.; Kökce, A.; Altindal, S. Frequency and voltagedependent dielectric properties and AC electrical conductivity of (Au/Ti)/ Al2O3/n-GaAs with thin Al2O3 interfacial layer at room temperature. Acta Phys. Pol. A 2016, 130, 325–330.CrossRefGoogle Scholar
  28. [28]
    Nicollian, E. H.; Brews, J. R. MOS (Metal Oxide Semiconductor) Physics and Technology; John Wiley & Sons: New York, 1982.Google Scholar
  29. [29]
    Hill, W. A.; Coleman, C. C. A single-frequency approximation for interfacestate density determination. Solid State Electron. 1980, 23, 987–993.CrossRefGoogle Scholar
  30. [30]
    Balandin, A.; Cai, S.; Li, R.; Wang, K. L.; Rao, V. R.; Viswanathan, C. R. Flicker noise in GaN/Al/sub 0.15/Ga/sub 0.85/N doped channel heterostructure field effect transistors. IEEE Electron Device Lett. 1998, 19, 475–477.CrossRefGoogle Scholar
  31. [31]
    Levinshtein, M. E.; Rumyantsev, S. L.; Gaska, R.; Yang, J. W.; Shur, M. S. AlGaN/GaN high electron mobility field effect transistors with low 1/f noise. Appl. Phys. Lett. 1998, 73, 1089–1091.CrossRefGoogle Scholar
  32. [32]
    Theodorou, C. G.; Fasarakis, N.; Hoffman, T.; Chiarella, T.; Ghibaudo, G.; Dimitriadis, C. A. Origin of the low-frequency noise in n-channel FinFETs. Solid State Electron. 2013, 82, 21–24.CrossRefGoogle Scholar
  33. [33]
    Theodorou, C. G.; Ioannidis, E. G.; Andrieu, F.; Poiroux, T.; Faynot, O.; Dimitriadis, C. A.; Ghibaudo, G. Low-frequency noise sources in advanced UTBB FD-SOI MOSFETs. IEEE Trans. Electron Devices 2014, 61, 1161–1167.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronics EngineeringKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Advanced Material Research CenterKumoh National Institute of TechnologyGumiRepublic of Korea
  3. 3.SOITECBerninFrance
  4. 4.Institute of Microelectronics, Electromagnetism and Photonics, Grenoble Polytechnic InstituteMinatecGrenobleFrance

Personalised recommendations