Nano Research

, Volume 12, Issue 4, pp 801–808 | Cite as

Self-supporting, eutectic-like, nanoporous biphase bismuth-tin film for high-performance magnesium storage

  • Meijia Song
  • Jiazheng Niu
  • Kuibo Yin
  • Hui Gao
  • Chi Zhang
  • Wensheng Ma
  • Fakui Luo
  • Zhangquan Peng
  • Zhonghua ZhangEmail author
Research Article


Magnesium ion batteries are emerging as promising alternatives to lithium ion batteries because of their advantages including high energy density, dendrite-free features and low cost. Nevertheless, one of the major challenges for magnesium ion batteries is the kinetically sluggish magnesium insertion/extraction and diffusion in electrode materials. Aiming at this issue, biphase eutectic-like bismuth-tin film is designed herein to construct a self-supporting anode with interdigitated phase distribution and hierarchically porous structure, and further fabricated by a facile one-step magnetron cosputtering route. As benchmarked with single-phase bismuth or tin film, the biphase bismuth-tin film delivers high specific capacity (538 mAh/g at 50 mA/g), excellent rate performance (417 mAh/g at 1,000 mA/g) and good cycling stability (233 mAh/g at the 200th cycle). The superior magnesium storage performance of the sputtered bismuth-tin film could be attributed to the synergetic effect of the interdigitated bismuth/tin phase distribution, hierarchically porous structure and biphase buffering matrices, which could increase ionic transport channels, shorten diffusion lengths and reduce total volume changes.


magnesium ion batteries alloying-type anode biphase bismuth-tin film hierarchically porous structure magnetron cosputtering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge financial support by National Natural Science Foundation of China (Nos. 51671115 and 51871133), the support of Department of Science and Technology of Shandong Province for Young Tip-top Talent Support Project, and Young Tip-top Talent Support Project (the Organization Department of the Central Committee of the CPC).

Supplementary material

12274_2019_2291_MOESM1_ESM.pdf (2.8 mb)
Self-supporting, eutectic-like, nanoporous biphase bismuth-tin film for high-performance magnesium storage


  1. [1]
    Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.CrossRefGoogle Scholar
  2. [2]
    Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724–727.CrossRefGoogle Scholar
  3. [3]
    Orikasa, Y.; Masese, T.; Koyama, Y.; Mori, T.; Hattori, M.; Yamamoto, K.; Okado, T.; Huang, Z. D.; Minato, T.; Tassel, C. et al. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci. Rep. 2014, 4, 5622.CrossRefGoogle Scholar
  4. [4]
    Mohtadi, R.; Mizuno, F. Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 2014, 5, 1291–1311.CrossRefGoogle Scholar
  5. [5]
    Saha, P.; Datta, M. K.; Velikokhatnyi, O. I.; Manivannan, A.; Alman, D.; Kumta, P. N. Rechargeable magnesium battery: Current status and key challenges for the future. Prog. Mater. Sci. 2014, 66, 1–86.CrossRefGoogle Scholar
  6. [6]
    NuLi, Y.; Yang, J.; Li, Y. S.; Wang, J. L. Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem. Commun. 2010, 46, 3794–3796.CrossRefGoogle Scholar
  7. [7]
    NuLi, Y.; Zheng, Y. P.; Wang, Y.; Yang, J.; Wang, J. L. Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries. J. Mater. Chem. 2011, 21, 12437–12443.CrossRefGoogle Scholar
  8. [8]
    Ling, C.; Banerjee, D.; Song, W.; Zhang, M. J.; Matsui, M. First-principles study of the magnesiation of olivines: Redox reaction mechanism, electrochemical and thermodynamic properties. J. Mater. Chem. 2012, 22, 13517–13523.CrossRefGoogle Scholar
  9. [9]
    Rasul, S.; Suzuki, S.; Yamaguchi, S.; Miyayama, M. High capacity positive electrodes for secondary Mg-ion batteries. Electrochim. Acta 2012, 82, 243–249.CrossRefGoogle Scholar
  10. [10]
    Zhang, R. G.; Arthur, T. S.; Ling, C.; Mizuno, F. Manganese dioxides as rechargeable magnesium battery cathode; synthetic approach to understand magnesiation process. J. Power Sources 2015, 282, 630–638.CrossRefGoogle Scholar
  11. [11]
    Nam, K. W.; Kim, S.; Lee, S.; Salama, M.; Shterenberg, I.; Gofer, Y.; Kim, J. S.; Yang, E.; Park, C. S.; Kim, J. S. et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 2015, 15, 4071–4079.CrossRefGoogle Scholar
  12. [12]
    Gershinsky, G.; Yoo, H. D.; Gofer, Y.; Aurbach, D. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 2013, 29, 10964–10972.CrossRefGoogle Scholar
  13. [13]
    Wang, Z. G.; Su, Q. L.; Deng, H. Q. Single-layered V2O5 a promising cathode material for rechargeable Li and Mg ion batteries: An ab initio study. Phys. Chem. Chem. Phys. 2013, 15, 8705–8709.CrossRefGoogle Scholar
  14. [14]
    Tepavcevic, S.; Liu, Y. Z.; Zhou, D. H.; Lai, B.; Maser, J.; Zuo, X. B.; Chan, H.; Král, P.; Johnson, C. S.; Stamenkovic, V. et al. Nanostructured layered cathode for rechargeable Mg-ion batteries. ACS Nano 2015, 9, 8194–8205.CrossRefGoogle Scholar
  15. [15]
    Liu, Y. C.; Jiao, L. F.; Wu, Q.; Du, J.; Zhao, Y. P.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries. J. Mater. Chem. A 2013, 1, 5822–5826.CrossRefGoogle Scholar
  16. [16]
    Liu, Y. C.; Jiao, L. F.; Wu, Q.; Zhao, Y. P.; Cao, K. Z.; Liu, H. Q.; Wang, Y. J.; Yuan, H. T. Synthesis of rGO-supported layered MoS2 for highperformance rechargeable Mg batteries. Nanoscale 2013, 5, 9562–9567.CrossRefGoogle Scholar
  17. [17]
    Liang, Y. L.; Feng, R. J.; Yang, S. Q.; Ma, H.; Liang, J.; Chen, J. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall mg nanoparticle anode. Adv. Mater. 2011, 23, 640–643.CrossRefGoogle Scholar
  18. [18]
    Song, J.; Sahadeo, E.; Noked, M.; Lee, S. B. Mapping the challenges of magnesium battery. J. Phys. Chem. Lett. 2016, 7, 1736–1749.CrossRefGoogle Scholar
  19. [19]
    Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 2013, 6, 2265–2279.CrossRefGoogle Scholar
  20. [20]
    Shterenberg, I.; Salama, M.; Gofer, Y.; Levi, E.; Aurbach, D. The challenge of developing rechargeable magnesium batteries. MRS Bull. 2014, 39, 453–460.CrossRefGoogle Scholar
  21. [21]
    Yoo, H. D.; Liang, Y. L.; Dong, H.; Lin, J. H.; Wang, H.; Liu, Y. S.; Ma, L.; Wu, T. P.; Li, Y. F.; Ru, Q. et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat. Commun. 2017, 8, 339.CrossRefGoogle Scholar
  22. [22]
    Pei, C. Y.; Xiong, F. Y.; Sheng, J. Z.; Yin, Y. M.; Tan, S. S.; Wang, D. D.; Han, C. H.; An, Q. Y.; Mai, L. Q. VO2 nanoflakes as the cathode material of hybrid magnesium-lithium-ion batteries with high energy density. ACS Appl. Mater. Interfaces 2017, 9, 17060–17066.CrossRefGoogle Scholar
  23. [23]
    Muldoon, J.; Bucur, C. B.; Oliver, A. G.; Sugimoto, T.; Matsui, M.; Kim, H. S.; Allred, G. D.; Zajicek, J.; Kotani, Y. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 2012, 5, 5941–5950.CrossRefGoogle Scholar
  24. [24]
    Chakrabarti, S.; Biswas, K. DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application. J. Mater. Sci. 2017, 52, 10972–10980.CrossRefGoogle Scholar
  25. [25]
    Liu, M.; Rong, Z. Q.; Malik, R.; Canepa, P.; Jain, A.; Ceder, G.; Persson, K. A. Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations. Energy Environ. Sci. 2015, 8, 964–974.CrossRefGoogle Scholar
  26. [26]
    Ichitsubo, T.; Adachi, T.; Yagi, S.; Doi, T. Potential positive electrodes for high-voltage magnesium-ion batteries. J. Mater. Chem. 2011, 21, 11764–11772.CrossRefGoogle Scholar
  27. [27]
    Arthur, T. S.; Singh, N.; Matsui, M. Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries. Electrochem. Commun. 2012, 16, 103–106.CrossRefGoogle Scholar
  28. [28]
    Singh, N.; Arthur, T. S.; Ling, C.; Matsui, M.; Mizuno, F. A high energydensity tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 2013, 49, 149–151.CrossRefGoogle Scholar
  29. [29]
    Shao, Y. Y.; Gu, M.; Li, X. L.; Nie, Z. M.; Zuo, P. J.; Li, G. S.; Liu, T. B.; Xiao, J.; Cheng, Y. W.; Wang, C. M. et al. Highly reversible mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett. 2014, 14, 255–260.CrossRefGoogle Scholar
  30. [30]
    Cheng, Y. W.; Shao, Y. Y.; Parent, L. R.; Sushko, M. L.; Li, G. S.; Sushko, P. V.; Browning, N. D.; Wang, C. M.; Liu, J. Interface promoted reversible Mg insertion in nanostructured tin-antimony alloys. Adv. Mater. 2015, 27, 6598–6605.CrossRefGoogle Scholar
  31. [31]
    Tan, Y. H.; Yao, W. T.; Zhang, T. W.; Ma, T.; Lu, L. L.; Zhou, F.; Yao, H. B.; Yu, S. H. High voltage magnesium-ion battery enabled by nanocluster Mg3Bi2 alloy anode in noncorrosive electrolyte. ACS Nano 2018, 12, 5856–5865.CrossRefGoogle Scholar
  32. [32]
    Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763.CrossRefGoogle Scholar
  33. [33]
    Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.CrossRefGoogle Scholar
  34. [34]
    Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.CrossRefGoogle Scholar
  35. [35]
    Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.CrossRefGoogle Scholar
  36. [36]
    Levi, E.; Levi, M. D.; Chasid, O.; Aurbach, D. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J. Electroceram. 2009, 22, 13–19.CrossRefGoogle Scholar
  37. [37]
    Zhou, X. J.; Tian, J.; Hu, J. L.; Li, C. L. High rate magnesium-sulfur battery with improved cyclability based on metal-organic framework derivative carbon host. Adv. Mater. 2018, 30, 1704166.CrossRefGoogle Scholar
  38. [38]
    Benmayza, A.; Ramanathan, M.; Singh, N.; Mizuno, F.; Prakash, J. Electrochemical and thermal studies of bismuth electrodes for magnesiumion cells. J. Electrochem. Soc. 2015, 162, A1630–A1635.CrossRefGoogle Scholar
  39. [39]
    Murgia, F.; Stievano, L.; Monconduit, L.; Berthelot, R. Insight into the electrochemical behavior of micrometric Bi and Mg3Bi2 as high performance negative electrodes for Mg batteries. J. Mater. Chem. A 2015, 3, 16478–16485.CrossRefGoogle Scholar
  40. [40]
    Dileo, R. A.; Zhang, Q.; Marschilok, A. C.; Takeuchi, K. J.; Takeuchi, E. S. Composite anodes for secondary magnesium ion batteries prepared via electrodeposition of nanostructured bismuth on carbon nanotube substrates. ECS Electrochem. Lett. 2015, 4, A10–A14.CrossRefGoogle Scholar
  41. [41]
    Ramanathan, M.; Benmayza, A.; Prakash, J.; Singh, N.; Mizuno, F. A porous electrode model for the magnesiation and demagnesiation of a bismuth electrode in rechargeable magnesium-ion cells. J. Electrochem. Soc. 2016, 163, A477–A487.CrossRefGoogle Scholar
  42. [42]
    Wang, W.; Liu, L.; Wang, P. F.; Zuo, T. T.; Yin, Y. X.; Wu, N.; Zhou, J. M.; Wei, Y.; Guo, Y. G. A novel bismuth-based anode material with a stable alloying process by the space confinement of an in situ conversion reaction for a rechargeable magnesium ion battery. Chem. Commun. 2018, 54, 1714–1717.CrossRefGoogle Scholar
  43. [43]
    Penki, T. R.; Valurouthu, G.; Shivakumara, S.; Sethuraman, V. A.; Munichandraiah, N. In situ synthesis of bismuth (Bi)/reduced graphene oxide (RGO) nanocomposites as high-capacity anode materials for a Mg-ion battery. New J. Chem. 2018, 42, 5996–6004.CrossRefGoogle Scholar
  44. [44]
    Murgia, F.; Weldekidan, E. T.; Stievano, L.; Monconduit, L.; Berthelot, R. First investigation of indium-based electrode in Mg battery. Electrochem. Commun. 2015, 60, 56–59.CrossRefGoogle Scholar
  45. [45]
    Periyapperuma, K.; Tran, T. T.; Purcell, M. I.; Obrovac, M. N. The reversible magnesiation of Pb. Electrochim. Acta 2015, 165, 162–165.CrossRefGoogle Scholar
  46. [46]
    Kitada, A.; Kang, Y.; Uchimoto, Y.; Murase, K. Electrochemical reactivity of magnesium ions with Sn-based binary alloys (Cu-Sn, Pb-Sn, and In-Sn). ECS Trans. 2014, 58, 75–80.CrossRefGoogle Scholar
  47. [47]
    Murgia, F.; Monconduit, L.; Stievano, L.; Berthelot, R. Electrochemical magnesiation of the intermetallic InBi through conversion-alloying mechanism. Electrochim. Acta 2016, 209, 730–736.CrossRefGoogle Scholar
  48. [48]
    Murgia, F.; Laurencin, D.; Weldekidan, E. T.; Stievano, L.; Monconduit, L.; Doublet, M. L.; Berthelot, R. Electrochemical Mg alloying properties along the Sb1-xBix solid solution. Electrochim. Acta 2018, 259, 276–283.CrossRefGoogle Scholar
  49. [49]
    Li, X.; Lai, C.; Xiao, C. W.; Gao, X. P. Enhanced high rate capability of dual-phase Li4Ti5O12-TiO2 induced by pseudocapacitive effect. Electrochim. Acta 2011, 56, 9152–9158.CrossRefGoogle Scholar
  50. [50]
    Rahman, M. M.; Wang, J. Z.; Hassan, M. F.; Wexler, D.; Liu, H. K. Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: A nanocomposite anode material for Li-ion batteries. Adv. Energy Mater. 2011, 1, 212–220.CrossRefGoogle Scholar
  51. [51]
    Liu, G. Y.; Wang, H. Y.; Liu, G. Q.; Yang, Z. Z.; Jin, B.; Jiang, Q. C. Synthesis and electrochemical performance of high-rate dual-phase Li4Ti5O12-TiO2 nanocrystallines for Li-ion batteries. Electrochim. Acta 2013, 87, 218–223.CrossRefGoogle Scholar
  52. [52]
    Gu, Y. X.; Zhu, Y. J.; Tang, Z. L.; Zhang, Y. H.; Yang, Y.; Wang, L. Design and synthesis of dual-phase Li4Ti5O12-TiO2 nanoparticles as anode material for lithium ion batteries. Mater. Lett. 2014, 131, 118–121.CrossRefGoogle Scholar
  53. [53]
    Liao, J. Y.; Chabot, V.; Gu, M.; Wang, C. M.; Xiao, X. C.; Chen, Z. W. Dual phase Li4Ti5O12-TiO2 nanowire arrays as integrated anodes for high-rate lithium-ion batteries. Nano Energy 2014, 9, 383–391.CrossRefGoogle Scholar
  54. [54]
    Wu, Q. L.; Xu, J. G.; Yang, X. F.; Lu, F. Q.; He, S. M.; Yang, J. L.; Fan, H. J.; Wu, M. M. Ultrathin anatase TiO2 nanosheets embedded with TiO2-B nanodomains for lithium-ion storage: Capacity enhancement by phase boundaries. Adv. Energy Mater. 2015, 5, 1401756.CrossRefGoogle Scholar
  55. [55]
    Chen, S. H.; Chen, C. C.; Chao, C. G. Novel morphology and solidification behavior of eutectic bismuth-tin (Bi–Sn) nanowires. J. Alloys Compd. 2009, 481, 270–273.CrossRefGoogle Scholar
  56. [56]
    Chadwick, G. A. Eutectic alloy solidification. Prog. Mater. Sci. 19631965, 12, 99–182.CrossRefGoogle Scholar
  57. [57]
    Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.CrossRefGoogle Scholar
  58. [58]
    Liu, Z. G.; Lee, J.; Xiang, G. L.; Glass, H. F. J.; Keyzer, E. N.; Dutton, S. E.; Grey, C. P. Insights into the electrochemical performances of Bi anodes for Mg ion batteries using 25Mg solid state NMR spectroscopy. Chem. Commun. 2017, 53, 743–746.CrossRefGoogle Scholar
  59. [59]
    Ellis, L. D.; Hatchard, T. D.; Obrovac, M. N. Reversible insertion of sodium in tin. J. Electrochem. Soc. 2012, 159, A1801–A1805.CrossRefGoogle Scholar
  60. [60]
    Beattie, S. D.; Hatchard, T.; Bonakdarpour, A.; Hewitt, K. C.; Dahn, J. R. Anomalous, high-voltage irreversible capacity in tin electrodes for lithium batteries. J. Electrochem. Soc. 2003, 150, A701–A705.CrossRefGoogle Scholar
  61. [61]
    Zhang, H. Y.; Ye, K.; Zhu, K.; Cang, R. B.; Yan, J.; Cheng, K.; Wang, G. L.; Cao, D. X. High-energy-density aqueous magnesium-ion battery based on a carbon-coated FeVO4 anode and a Mg-OMS-1 cathode. Chem. Eur.— J. 2017, 23, 17118–17126.CrossRefGoogle Scholar
  62. [62]
    Du, H. P.; Zhang, Z. H.; He, J. J.; Cui, Z. L.; Chai, J. C.; Ma, J.; Yang, Z.; Huang, C. S.; Cui, G. L. A delicately designed sulfide graphdiyne compatible cathode for high-performance lithium/magnesium-sulfur batteries. Small 2017, 13, 1702277.CrossRefGoogle Scholar
  63. [63]
    Tutusaus, O.; Mohtadi, R.; Singh, N.; Arthur, T. S.; Mizuno, F. Study of electrochemical phenomena observed at the Mg metal/electrolyte interface. ACS Energy Lett. 2017, 2, 224–229.CrossRefGoogle Scholar
  64. [64]
    Li, X. G.; Gao, T.; Han, F. D.; Ma, Z. H.; Fan, X. L.; Hou, S.; Eidson, N.; Li, W. S.; Wang, C. S. Reducing Mg anode overpotential via ion conductive surface layer formation by iodine additive. Adv. Energy Mater. 2018, 8, 1701728.CrossRefGoogle Scholar
  65. [65]
    Wu, Y. A.; Yin, Z. W.; Farmand, M.; Yu, Y. S.; Shapiro, D. A.; Liao, H. G.; Liang, W. I.; Chu, Y. H.; Zheng, H. M. In-situ multimodal imaging and spectroscopy of Mg electrodeposition at electrode-electrolyte interfaces. Sci. Rep. 2017, 7, 42527.CrossRefGoogle Scholar
  66. [66]
    Hu, X. C.; Shi, Y.; Lang, S. Y.; Zhang, X.; Gu, L.; Guo, Y. G.; Wen, R.; Wan, L. J. Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries. Nano Energy 2018, 49, 453–459.CrossRefGoogle Scholar
  67. [67]
    Jin, W.; Li, Z. J.; Wang, Z. G.; Fu, Y. Q. Mg ion dynamics in anode materials of Sn and Bi for Mg-ion batteries. Mater. Chem. Phys. 2016, 182, 167–172.CrossRefGoogle Scholar
  68. [68]
    Sun, X. Q.; Bonnick, P.; Duffort, V.; Liu, M.; Rong, Z. Q.; Persson, K. A.; Ceder, G.; Nazar, L. F. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci. 2016, 9, 2273–2277.CrossRefGoogle Scholar
  69. [69]
    Nguyen, D. T.; Tran, X. M.; Kang, J.; Song, S. W. Magnesium storage performance and surface film formation behavior of Tin anode material. ChemElectroChem 2016, 3, 1813–1819.CrossRefGoogle Scholar
  70. [70]
    Jung, S. C.; Han, Y. K. Fast magnesium ion transport in the Bi/Mg3Bi2 two-phase electrode. J. Phys. Chem. C 2018, 122, 17643–17649.CrossRefGoogle Scholar
  71. [71]
    Tanaka, Y.; Ikeda, M.; Sumita, M.; Ohno, T.; Takada, K. First-principles analysis on role of spinel (111) phase boundaries in Li4+3xTi5O12 Li-ion battery anodes. Phys. Chem. Chem. Phys. 2016, 18, 23383–23388.CrossRefGoogle Scholar
  72. [72]
    Chu, C. X.; Yang, J.; Zhang, Q. Q.; Wang, N. N.; Niu, F. E.; Xu, X. N.; Yang, J.; Fan, W. L.; Qian, Y. T. Biphase-interface enhanced sodium storage and accelerated charge transfer: Flower-like anatase/bronze TiO2/C as an advanced anode material for Na-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 43648–43656.CrossRefGoogle Scholar
  73. [73]
    Ding, X. K.; Zhang, L. L.; Yang, X. L.; Fang, H.; Zhou, Y. X.; Wang, J. Q.; Ma, D. Anthracite-derived dual-phase carbon-coated Li3V2(PO4)3 as highperformance cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 42788–42796.CrossRefGoogle Scholar
  74. [74]
    Li, K. K.; Li, B. H.; Wu, J. X.; Kang, F. Y.; Kim, J. K.; Zhang, T. Y. Ultrafast-charging and long-life Li-ion battery anodes of TiO2-B and anatase dual-phase nanowires. ACS Appl. Mater. Interfaces 2017, 9, 35917–35926.CrossRefGoogle Scholar
  75. [75]
    Tian, Y.; Xu, G. B.; Wu, Z. L.; Zhong, J. X.; Yang, L. W. Dual-phase spinel Li4Ti5O12/anatase TiO2 nanosheet anchored 3D reduced graphene oxide aerogel scaffolds as self-supporting electrodes for high-performance Naand Li-ion batteries. RSC Adv. 2017, 7, 52702–52711.CrossRefGoogle Scholar
  76. [76]
    Wang, S. T.; Yang, Y.; Quan, W.; Hong, Y.; Zhang, Z. T.; Tang, Z. L.; Li, J. Ti3+-free three-phase Li4Ti5O12/TiO2 for high-rate lithium ion batteries: Capacity and conductivity enhancement by phase boundaries. Nano Energy 2017, 32, 294–301.CrossRefGoogle Scholar
  77. [77]
    Parent, L. R.; Cheng, Y. W.; Sushko, P. V.; Shao, Y. Y.; Liu, J.; Wang, C. M.; Browning, N. D. Realizing the full potential of insertion anodes for Mg-ion batteries through the nanostructuring of Sn. Nano Lett. 2015, 15, 1177–1182.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Meijia Song
    • 1
  • Jiazheng Niu
    • 1
  • Kuibo Yin
    • 2
  • Hui Gao
    • 1
  • Chi Zhang
    • 3
  • Wensheng Ma
    • 1
  • Fakui Luo
    • 1
  • Zhangquan Peng
    • 4
  • Zhonghua Zhang
    • 1
    Email author
  1. 1.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and EngineeringShandong UniversityJinanChina
  2. 2.SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of EducationSoutheast UniversityNanjingChina
  3. 3.School of Applied Physics and MaterialsWuyi UniversityJiangmenChina
  4. 4.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina

Personalised recommendations