Advertisement

Nano Research

, Volume 12, Issue 4, pp 791–799 | Cite as

Thermal bridging of graphene nanosheets via covalent molecular junctions: A non-equilibrium Green’s functions–density functional tight-binding study

  • Diego Martinez Gutierrez
  • Alessandro Di Pierro
  • Alessandro Pecchia
  • Leonardo Medrano Sandonas
  • Rafael Gutierrez
  • Mar Bernal
  • Bohayra Mortazavi
  • Gianaurelio Cuniberti
  • Guido Saracco
  • Alberto FinaEmail author
Research Article

Abstract

Despite the uniquely high thermal conductivity of graphene is well known, the exploitation of graphene into thermally conductive nanomaterials and devices is limited by the inefficiency of thermal contacts between the individual nanosheets. A fascinating yet experimentally challenging route to enhance thermal conductance at contacts between graphene nanosheets is through molecular junctions, allowing covalently connecting nanosheets, otherwise interacting only via weak Van der Waals forces. Beside the bare existence of covalent connections, the choice of molecular structures to be used as thermal junctions should be guided by their vibrational properties, in terms of phonon transfer through the molecular junction. In this paper, density functional tight-binding combined with Green’s functions formalism was applied for the calculation of thermal conductance and phonon spectra of several different aliphatic and aromatic molecular junctions between graphene nanosheets. Effects of molecular junction length, conformation, and aromaticity were studied in detail and correlated with phonon tunnelling spectra. The theoretical insight provided by this work can guide future experimental studies to select suitable molecular junctions, in order to enhance the thermal transport by suppressing the interfacial thermal resistances. This is attractive for various systems, including graphene nanopapers and graphene polymer nanocomposites, as well as related devices. In a broader view, the possibility to design molecular junctions to control phonon transport currently appears as an efficient way to produce phononic devices and controlling heat management in nanostructures.

Keywords

thermal conductance molecular junctions Green’s functions density functional tight-binding (DFTB) graphene heat transport phonon transmission function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme grant agreement 639495 — INTHERM — ERC-2014-STG. L. M. S. thanks the Deutscher Akademischer Austauschdienst (DAAD) for the financial support. This work has also been partly supported by the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden”. B. M. greatly acknowledges the financial support by European Research Council for COMBAT project (Grant number 615132).

Supplementary material

12274_2019_2290_MOESM1_ESM.pdf (2.5 mb)
Thermal bridging of graphene nanosheets via covalent molecular junctions: A non-equilibrium Green’s functions–density functional tight-binding study

References

  1. [1]
    Swartz, E. T.; Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 1989, 61, 605–668.CrossRefGoogle Scholar
  2. [2]
    Estrada, D.; Pop. E. Imaging dissipation and hot spots in carbon nanotube network transistors. Appl. Phys. Lett. 2011, 98, 073102.CrossRefGoogle Scholar
  3. [3]
    Welsh, J. P. Design Manual of Natural Methods of Cooling Electronic Equipment, Report No. HF-845-D-8; Dept. of the Navy, Bureau of Ships: Washington, 1962.Google Scholar
  4. [4]
    Ellison, G. N. Thermal Computations for Electronic Equipment; Van Nostrand Reinhold Co: New York, 1984.Google Scholar
  5. [5]
    Seebeck, T. J. Magnetische polarisation der metalle und erze durch temperatur-differenz. Royal Academy of Sciences in Berlin, Berlin, 1825.Google Scholar
  6. [6]
    Seebeck, T. J. Ueber die magnetische polarisation der metalle und erze durch temperaturdifferenz. Ann. Phys. 1826, 82, 253–286.CrossRefGoogle Scholar
  7. [7]
    Zhou, Y.; Paul, S.; Bhunia, S. Harvesting wasted heat in a microprocessor using thermoelectric generators: Modeling, analysis and measurement. In Proceedings of 2008 Design, Automation and Test in Europe, Munich, Germany, 2008, pp 98–103.CrossRefGoogle Scholar
  8. [8]
    Han, H. X.; Zhang, Y.; Wang, N.; Samani, M. K.; Ni, Y. X.; Mijbil, Z. Y.; Edwards, M.; Xiong, S. Y.; Sääskilahti, K.; Murugesan, M. et al. Functionalization mediates heat transport in graphene nanoflakes. Nat. Commun. 2016, 7, 11281.CrossRefGoogle Scholar
  9. [9]
    Martínez-Gutiérrez, D.; Velasco, V. R. Acoustic breathing mode frequencies in cylinders, cylindrical shells and composite cylinders of general anisotropic crystals: Application to nanowires. Phys. E Low-Dimens. Syst. Nanostruct. 2013, 54, 86–92.CrossRefGoogle Scholar
  10. [10]
    Martínez-Gutiérrez, D.; Velasco, V. R. Acoustic waves of GaN nitride nanowires. Surf. Sci. 2011, 605, 24–31.CrossRefGoogle Scholar
  11. [11]
    Lü, J. T.; Wang, J. S. Quantum phonon transport of molecular junctions amide-linked with carbon nanotubes: A first-principles study. Phys. Rev. B 2008, 78, 235436.CrossRefGoogle Scholar
  12. [12]
    Sevik, C.; Sevinçli, H.; Cuniberti, G.; Çagin, T. Phonon engineering in carbon nanotubes by controlling defect concentration. Nano Lett. 2011, 11, 4971–4977.CrossRefGoogle Scholar
  13. [13]
    Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.CrossRefGoogle Scholar
  14. [14]
    Ghosh, S.; Bao, W. Z.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Dimensional crossover of thermal transport in few-layer grapheme. Nat. Mater. 2010, 9, 555–558.CrossRefGoogle Scholar
  15. [15]
    Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.CrossRefGoogle Scholar
  16. [16]
    Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of grapheme. Rev. Mod. Phys. 2009, 81, 109–162.CrossRefGoogle Scholar
  17. [17]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  18. [18]
    Kuzmenko, A. B.; van Heumen, E.; Carbone, F.; van der Marel, D. Universal optical conductance of graphite. Phys. Rev. Lett. 2008, 100, 117401.CrossRefGoogle Scholar
  19. [19]
    Li, Z. L.; Chen, L. L.; Meng, S.; Guo, L. W.; Huang, J.; Liu, Y.; Wang, W. J.; Chen, X. L. Field and temperature dependence of intrinsic diamagnetism in graphene: Theory and experiment. Phys. Rev. B 2015, 91, 094429.CrossRefGoogle Scholar
  20. [20]
    Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.CrossRefGoogle Scholar
  21. [21]
    Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271.CrossRefGoogle Scholar
  22. [22]
    Hone, J.; Whitney, M.; Piskoti, C.; Zettl, A. Thermal conductivity of singlewalled carbon nanotubes. Phys. Rev. B 1999, 59, R2514–R2516.CrossRefGoogle Scholar
  23. [23]
    Khan, A. I.; Navid, I. A.; Noshin, M.; Uddin, H. M. A.; Hossain, F. F.; Subrina, S. Equilibrium molecular dynamics (MD) simulation study of thermal conductivity of graphene nanoribbon: A comparative study on MD potentials. Electronics 2015, 4, 1109–1124.CrossRefGoogle Scholar
  24. [24]
    Sadeghi, H.; Sangtarash, S.; Lambert, C. J. Oligoyne molecular junctions for efficient room temperature thermoelectric power generation. Nano Lett. 2015, 15, 7467–7472.CrossRefGoogle Scholar
  25. [25]
    Faist, J.; Capasso, F.; Sirtori, C.; West, K. W.; Pfeiffer, L. N. Controlling the sign of quantum interference by tunnelling from quantum wells. Nature 1997, 390, 589–591.CrossRefGoogle Scholar
  26. [26]
    Klöckner, J. C.; Cuevas, J. C.; Pauly, F. Tuning the thermal conductance of molecular junctions with interference effects. Phys. Rev. B 2017, 96, 245419.CrossRefGoogle Scholar
  27. [27]
    Famili, M.; Grace, I.; Sadeghi, H.; Lambert, C. J. Suppression of phonon transport in molecular Christmas trees. Chemphyschem 2017, 18, 1234–1241.CrossRefGoogle Scholar
  28. [28]
    Pop, E.; Varshney, V.; Roy, A. K. Thermal properties of graphene: Fundamentals and applications. MRS Bull. 2012, 37, 1273–1281.CrossRefGoogle Scholar
  29. [29]
    Klöckner, J. C.; Siebler, R.; Cuevas, J. C.; Pauly, F. Thermal conductance and thermoelectric figure of merit of C60-based single-molecule junctions: Electrons, phonons, and photons. Phys. Rev. B 2017, 95, 245404.CrossRefGoogle Scholar
  30. [30]
    Markussen, T.; Palsgaard, M.; Stradi, D.; Gunst, T.; Brandbyge, M.; Stokbro, K. Electron-phonon scattering from Green’s function transport combined with molecular dynamics: Applications to mobility predictions. Phys. Rev. B 2017, 95, 245210.CrossRefGoogle Scholar
  31. [31]
    Klöckner, J. C.; Bürkle, M.; Cuevas, J. C.; Pauly, F. Length dependence of the thermal conductance of alkane-based single-molecule junctions: An ab initio study. Phys. Rev. B 2016, 94, 205425.CrossRefGoogle Scholar
  32. [32]
    Arroyo, C. R.; Tarkuc, S.; Frisenda, R.; Seldenthuis, J. S.; Woerde, C. H. M.; Eelkema, R.; Grozema, F. C.; van der Zant, H. S. J. Signatures of quantum interference effects on charge transport through a single benzene ring. Angew. Chem. 2013, 125, 3234–3237.CrossRefGoogle Scholar
  33. [33]
    Aradhya, S. V.; Meisner, J. S.; Krikorian, M.; Ahn, S.; Parameswaran, R.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives. Nano Lett. 2012, 12, 1643–1647.CrossRefGoogle Scholar
  34. [34]
    Guédon, C. M.; Valkenier, H.; Markussen, T.; Thygesen, K. S.; Hummelen, J. C.; van der Molen, S. J. Observation of quantum interference in molecular charge transport. Nat. Nanotechnol. 2012, 7, 305–309.CrossRefGoogle Scholar
  35. [35]
    Hong, W. J.; Valkenier, H.; Mészáros, G.; Manrique, D. Z.; Mishchenko, A.; Putz, A.; García, P. M.; Lambert, C. J.; Hummelen, J. C.; Wandlowski, T. An MCBJ case study: The influence of p-conjugation on the single-molecule conductance at a solid/liquid interface. Beilstein J. Nanotechnol. 2011, 2, 699–713.CrossRefGoogle Scholar
  36. [36]
    Fracasso, D.; Valkenier, H.; Hummelen, J. C.; Solomon, G. C.; Chiechi, R. C. Evidence for quantum interference in SAMs of arylethynylene thiolates in tunneling junctions with eutectic Ga–In (EGaIn) top-contacts. J. Am. Chem. Soc. 2011, 133, 9556–9563.CrossRefGoogle Scholar
  37. [37]
    Taylor, J. Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 2001, 63, 245407.CrossRefGoogle Scholar
  38. [38]
    Taraschi, G.; Mozos, J. L.; Wan, C. C.; Guo, H.; Wang, J. Structural and transport properties of aluminum atomic wires. Phys. Rev. B 1998, 58, 13138–13145.CrossRefGoogle Scholar
  39. [39]
    Wan, C. C.; Mozos, J. L.; Wang, J.; Guo, H. Dynamic admittance of atomic wires. Phys. Rev. B 1997, 55, R13393–R13396.CrossRefGoogle Scholar
  40. [40]
    Markussen, T. Phonon interference effects in molecular junctions. J. Chem. Phys. 2013, 139, 244101.CrossRefGoogle Scholar
  41. [41]
    Sasikumar, K.; Keblinski, P. Effect of chain conformation in the phonon transport across a Si-polyethylene single-molecule covalent junction. J. Appl. Phys. 2011, 109, 114307.CrossRefGoogle Scholar
  42. [42]
    Ranganathan, R.; Sasikumar, K.; Keblinski, P. Realizing tunable molecular thermal devices based on photoisomerism—Is it possible? J. Appl. Phys. 2015, 117, 025305.CrossRefGoogle Scholar
  43. [43]
    Li, Q.; Duchemin, I.; Xiong, S. Y.; Solomon, G. C.; Donadio, D. Mechanical tuning of thermal transport in a molecular junction. J. Phys. Chem. C 2015, 119, 24636–24642.CrossRefGoogle Scholar
  44. [44]
    Li, Q.; Strange, M.; Duchemin, I.; Donadio, D.; Solomon, G. C. A strategy to suppress phonon transport in molecular junctions using p-stacked systems. J. Phys. Chem. C 2017, 121, 7175–7182.CrossRefGoogle Scholar
  45. [45]
    Koskinen, P.; Mäkinen, V. Density-functional tight-binding for beginners. Comput. Mater. Sci. 2009, 47, 237–253.CrossRefGoogle Scholar
  46. [46]
    Aradi, B.; Hourahine, B.; Frauenheim, T. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A 2007, 111, 5678–5684.CrossRefGoogle Scholar
  47. [47]
    DFTB+. www.dftb-plus.info (accessed Dec 19, 2018).Google Scholar
  48. [48]
    Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268.CrossRefGoogle Scholar
  49. [49]
    Zhang, W.; Fisher, T. S.; Mingo, N. The atomistic green’s function method: An efficient simulation approach for nanoscale phonon transport. Numer. Heat Transf. Part B Fundam. 2007, 51, 333–349.CrossRefGoogle Scholar
  50. [50]
    Sandonas, L. M.; Gutierrez, R.; Pecchia, A.; Seifert, G.; Cuniberti, G. Tuning quantum electron and phonon transport in two-dimensional materials by strain engineering: A Green’s function based study. Phys. Chem. Chem. Phys. 2017, 19, 1487–1495.CrossRefGoogle Scholar
  51. [51]
    Medrano Sandonas, L.; Teich, D.; Gutierrez, R.; Lorenz, T.; Pecchia, A.; Seifert, G.; Cuniberti, G. Anisotropic thermoelectric response in twodimensional puckered structures. J. Phys. Chem. C 2016, 120, 18841–18849.CrossRefGoogle Scholar
  52. [52]
    Medrano Sandonas, L.; Gutierrez, R.; Pecchia A.; Dianat, A.; Cuniberti, G. Thermoelectric properties of functionalized graphene grain boundaries. J. Self-Assembly Mol. Electron. 2015, 3, 1–20.CrossRefGoogle Scholar
  53. [53]
    Bernal, M. M.; di Pierro, A.; Novara, C.; Giorgis, F.; Mortazavi, B.; Saracco, G.; Fina, A. Edge-grafted molecular junctions between graphene nanoplatelets: Applied chemistry to enhance heat transfer in nanomaterials. Adv. Funct. Mater. 2018, 28, 1706954.CrossRefGoogle Scholar
  54. [54]
    di Pierro, A.; Saracco, G.; Fina, A. Molecular junctions for thermal transport between graphene nanoribbons: Covalent bonding vs. interdigitated chains. Comput. Mater. Sci. 2018, 142, 255–260.CrossRefGoogle Scholar
  55. [55]
    Foulkes, W. M. C.; Haydock, R. Tight-binding models and density-functional theory. Phys. Rev. B 1989, 39, 12520–12536.CrossRefGoogle Scholar
  56. [56]
    Frauenheim, T.; Seifert, G.; Elstner, M.; Niehaus, T.; Köhler, C.; Amkreutz, M.; Sternberg, M.; Hajnal, Z.; di Carlo, A.; Suhai, S. Atomistic simulations of complex materials: Ground-state and excited-state properties. J. Phys. Condens. Matter. 2002, 14, 3015–3047.CrossRefGoogle Scholar
  57. [57]
    Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, UK, 2005.CrossRefGoogle Scholar
  58. [58]
    Sadasivam, S.; Che, Y. H.; Huang, Z.; Chen, L.; Kumar, S.; Fisher, T. S. The atomistic green’s function method for interfacial phonon transport. Annu. Rev. Heat Transf. 2014, 17, 89–145.CrossRefGoogle Scholar
  59. [59]
    Segal, D.; Nitzan, A.; Hänggi, P. Thermal conductance through molecular wires. J. Chem. Phys. 2003, 119, 6840–6855.CrossRefGoogle Scholar
  60. [60]
    Ozpineci, A.; Ciraci, S. Quantum effects of thermal conductance through atomic chains. Phys. Rev. B 2001, 63, 125415.CrossRefGoogle Scholar
  61. [61]
    Meier, T.; Menges, F.; Nirmalraj, P.; Hölscher, H.; Riel, H.; Gotsmann, B. Length-dependent thermal transport along molecular chains. Phys. Rev. Lett. 2014, 113, 060801.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Diego Martinez Gutierrez
    • 1
  • Alessandro Di Pierro
    • 1
  • Alessandro Pecchia
    • 2
  • Leonardo Medrano Sandonas
    • 3
    • 4
  • Rafael Gutierrez
    • 3
  • Mar Bernal
    • 1
  • Bohayra Mortazavi
    • 5
  • Gianaurelio Cuniberti
    • 3
    • 4
    • 6
  • Guido Saracco
    • 1
  • Alberto Fina
    • 1
    Email author
  1. 1.Dipartimento di Scienza Applicata e TecnologiaPolitecnico di TorinoAlessandriaItaly
  2. 2.Consiglio Nazionale delle RicercheISMNMonterotondoItaly
  3. 3.Institute for Materials Science and Max Bergmann Center of BiomaterialsTU DresdenDresdenGermany
  4. 4.Center for Advancing Electronics DresdenTU DresdenDresdenGermany
  5. 5.Institute of Structural MechanicsBauhaus-Universität WeimarWeimarGermany
  6. 6.Dresden Center for Computational Materials ScienceTU DresdenDresdenGermany

Personalised recommendations