Nano Research

, Volume 12, Issue 4, pp 785–789 | Cite as

Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands

  • Yan LiEmail author
  • Xiaoyan Wang
  • Weinan Xue
  • Wei Wang
  • Wei Zhu
  • Lianjing Zhao
Research Article


All-inorganic cesium lead halide perovskite quantum dots (QDs) have been a promising candidate for optoelectronic devices in recent years, such as light-emitting diodes, photodetectors and solar cells, owing to their superb optoelectronic properties. Still, the stability issue of nanocrystals is a bottleneck for their practical application. Herein, we report a facile method for the synthesis of a series of phosphine ligand modified CsPbBr3 QDs with high PL intensity. By introducing organic phosphine ligands, the tolerance of CsPbBr3 QDs to ethanol, water and UV light was dramatically improved. Moreover, the phosphine ligand modified QD films deposited on the glass subtracts exhibit superior PL intensity and optical stability to those of pristine QD based films.


perovskite quantum dots organic phosphine ligands optical and structure stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research is supported by National Natural Science Foundation of China (No. 21771063), the State Key Research Development Program of China (No. 2016YFA0204200), and the Fundamental Research Funds for the Central Universities in China (Nos. WJ1714046 and 222201717003). This article is dedicated to Professor Jin-shun Huang on the occasion of his 80th birthday.

Supplementary material

12274_2019_2289_MOESM1_ESM.pdf (3.3 mb)
Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands


  1. [1]
    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.CrossRefGoogle Scholar
  2. [2]
    Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Sun, H. D. Allinorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.CrossRefGoogle Scholar
  3. [3]
    Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem. 2015, 127, 15644–15648.CrossRefGoogle Scholar
  4. [4]
    Akkerman, Q. A.; D–Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.CrossRefGoogle Scholar
  5. [5]
    Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.CrossRefGoogle Scholar
  6. [6]
    Palazon, F.; di Stasio, F.; Akkerman, Q. A.; Krahne, R.; Prato, M.; Manna, L. Polymer-free films of inorganic halide perovskite nanocrystals as UV-to-white color-conversion layers in LEDs. Chem. Mater. 2016, 28, 2902–2906.CrossRefGoogle Scholar
  7. [7]
    Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; de Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.CrossRefGoogle Scholar
  8. [8]
    Chen, X.; Hu, H. W.; Xia, Z. M.; Gao, W.; Gou, W. Y.; Qu, Y. Q.; Ma, Y. Y. CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous HCl detection. J. Mater. Chem. C 2017, 5, 309–313.CrossRefGoogle Scholar
  9. [9]
    Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.CrossRefGoogle Scholar
  10. [10]
    He, M.; Li, B.; Cui, X.; Jiang, B. B.; He, Y. J.; Chen, Y. H.; O’Neil, D.; Szymanski, P.; EI-Sayed, M. A.; Huang, J. S. et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nat. Commun. 2017, 8, 16045.CrossRefGoogle Scholar
  11. [11]
    Huang, H.; Chen, B. K.; Wang, Z. G.; Hung, T. F.; Susha, A. S.; Zhong, H. Z.; Rogach, A. L. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci. 2016, 7, 5699–5703.CrossRefGoogle Scholar
  12. [12]
    Huang, S. Q.; Li, Z. C.; Wang, B.; Zhu, N. W.; Zhang, C. Y.; Kong, L.; Zhang, Q.; Shan, A. D.; Li, L. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination. ACS Appl. Mater. Interfaces 2017, 9, 7249–7258.CrossRefGoogle Scholar
  13. [13]
    Wang, C. J.; Chesman, A. S. R.; Jasieniak, J. J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chem. Commun. 2017, 53, 232–235.CrossRefGoogle Scholar
  14. [14]
    de Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.CrossRefGoogle Scholar
  15. [15]
    Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N. et al. 50–fold EQE improvement up to 6.27% of solution–processed all–inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.CrossRefGoogle Scholar
  16. [16]
    Li, Z. C.; Kong, L.; Huang, S. Q.; Li, L. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith. Angew. Chem., Int. Ed. 2017, 56, 8134–8138.CrossRefGoogle Scholar
  17. [17]
    Pan, A. Z.; Wang, J. L.; Jurow, M. J.; Jia, M. J.; Liu, Y.; Wu, Y. S.; Zhang, Y. F.; He, L.; Liu, Y. General strategy for the preparation of stable luminous nanocomposite inks using chemically addressable CsPbX3 peroskite nanocrystals. Chem. Mater. 2018, 30, 2771–2780.CrossRefGoogle Scholar
  18. [18]
    Tan, Y. S.; Zou, Y. T.; Wu, L. Z.; Huang, Q.; Yang, D.; Chen, M.; Ban, M. Y.; Wu, C.; Wu, T.; Bai, S. et al. Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient lightemitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 3784–3792.CrossRefGoogle Scholar
  19. [19]
    Xuan, T. T.; Yang, X. F.; Lou, S. Q.; Huang, J. J.; Liu, Y.; Yu, J. B.; Li, H. L.; Wong, K. L.; Wang, C. X.; Wang, J. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes. Nanoscale 2017, 9, 15286–15290.CrossRefGoogle Scholar
  20. [20]
    Wu, L. Z.; Zhong, Q. X.; Yang, D.; Chen, M.; Hu, H. C.; Pan, Q.; Liu, H. Y.; Cao, M. H.; Xu, Y.; Sun, B. Q. et al. Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand. Langmuir 2017, 33, 12689–12696.CrossRefGoogle Scholar
  21. [21]
    Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.CrossRefGoogle Scholar
  22. [22]
    Sun, L. F.; Bao, L.; Hyun, B. R.; Bartnik, A. C.; Zhong, Y. W.; Reed, J. C.; Pang, D. W.; Abruña, H. D.; Malliaras, G. G.; Wise, F. W. Electrogenerated chemiluminescence from PbS quantum dots. Nano Lett. 2009, 9, 789–793.CrossRefGoogle Scholar
  23. [23]
    Panthani, M. G.; Stolle, C. J.; Reid, D. K.; Rhee, D. J.; Harvey, T. B.; Akhavan, V. A.; Yu, Y. X.; Korgel, B. A. CuInSe2 quantum dot solar cells with high open-circuit voltage. J. Phys. Chem. Lett. 2013, 4, 2030–2034.CrossRefGoogle Scholar
  24. [24]
    Wang, W.; Feng, W. L.; Du, J.; Xue, W. N.; Zhang, L. L.; Zhao, L. L.; Li, Y.; Zhong, X. H. Cosensitized quantum dot solar cells with conversion efficiency over 12%. Adv. Mater. 2018, 30, 1705746.CrossRefGoogle Scholar
  25. [25]
    Li, Y.; Zhao, L. L.; Du, Z. L.; Du, J.; Wang, W.; Wang, Y.; Zhao, L. J.; Cao, X. M.; Zhong, X. H. Metal–organic framework derived Co, N-bidoped carbons as superior electrode catalysts for quantum dot sensitized solar cells. J. Mater. Chem. A 2018, 6, 2129–2138.CrossRefGoogle Scholar
  26. [26]
    Green, M. The nature of quantum dot capping ligands. J. Mater. Chem. 2010, 20, 5797–5809.CrossRefGoogle Scholar
  27. [27]
    Liu, F.; Zhang, Y. H.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 2017, 11, 10373–10383.CrossRefGoogle Scholar
  28. [28]
    Lu, C.; Li, H.; Kolodziejski, K.; Dun, C. C.; Huang, W. X.; Carroll, D.; Geyer, S. M. Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Res. 2018, 11, 762–768.CrossRefGoogle Scholar
  29. [29]
    Wu, Y.; Wei, C. T.; Li, X. M.; Li, Y. L.; Qiu, S. C.; Shen, W.; Cai, B.; Sun, Z. G.; Yang, D. D.; Deng, Z. T. et al. In situ passivation of PbBr6 4− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Lett. 2018, 3, 2030–2037.CrossRefGoogle Scholar
  30. [30]
    Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.CrossRefGoogle Scholar
  31. [31]
    Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.CrossRefGoogle Scholar
  32. [32]
    Zhang, X. Y.; Bai, X.; Wu, H.; Zhang, X. T.; Sun, C.; Zhang, Y.; Zhang, W.; Zheng, W. T.; Yu, W. W.; Rogach, A. L. Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals. Angew. Chem., Int. Ed. 2018, 57, 3337–3342.CrossRefGoogle Scholar
  33. [33]
    Huang, S. Q.; Li, Z. C.; Kong, L.; Zhu, N. W.; Shan, A. D.; Li, L. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene. J. Am. Chem. Soc. 2016, 138, 5749–5752.CrossRefGoogle Scholar
  34. [34]
    di Stasio, F.; Christodoulou, S.; Huo, N. J.; Konstantatos, G. Near-unity photoluminescence quantum yield in CsPbBr3 nanocrystal solid-state films via postsynthesis treatment with lead bromide. Chem. Mater. 2017, 29, 7663–7667.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yan Li
    • 1
    Email author
  • Xiaoyan Wang
    • 1
  • Weinan Xue
    • 1
  • Wei Wang
    • 1
  • Wei Zhu
    • 1
  • Lianjing Zhao
    • 1
  1. 1.Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations