Skip to main content

Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges

Abstract

Discharging dye contaminants into water is a major concern around the world. Among a variety of methods to treat dye-contaminated water, photocatalytic degradation has gained attention as a tool for treating the colored water. Herein, we review the recent advancements in photocatalysis for dye degradation in industrial effluents by categorizing photocatalyst materials into three generations. First generation photocatalysts are composed of single-component materials (e.g., TiO2, ZnO, and CdS), while second generation photocatalysts are composed of multiple components in a suspension (e.g., WO3/NiWO4, BiOI/ZnTiO3, and C3N4/Ag3VO4). Photocatalysts immobilized on solid substrates are regarded as third generation materials (e.g., FTO/WO3-ZnO, Steel/TiO2-WO3, and Glass/P-TiO2). Photocatalytic degradation mechanisms, factors affecting the dye degradation, and the lesser-debated uncertainties related to the photocatalysis are also discussed to offer better insights into environmental applications. Furthermore, quantum yields of different photocatalysts are calculated, and a performance evaluation method is proposed to compare photocatalyst systems for dye degradation. Finally, we discuss the present limitations of photocatalytic dye degradation for field applications and the future of the technology.

References

  1. [1]

    Zeng, G. M.; Chen, M.; Zeng, Z. T. Risks of neonicotinoid pesticides. Science 2013, 340, 1403.

    Google Scholar 

  2. [2]

    Santos-Ebinuma, V. C.; Roberto, I. C.; Teixeira, M. F. S.; Pessoa, A., Jr. Improving of red colorants production by a new Penicillium purpurogenum strain in submerged culture and the effect of different parameters in their stability. Biotechnol. Prog. 2013, 29, 778–785.

    Google Scholar 

  3. [3]

    Anandhan, M.; Prabaharan, T. Environmental impacts of natural dyeing process using pomegranate peel extract as a dye. Int. J. Appl. Eng. Res. 2018, 13, 7765–7771.

    Google Scholar 

  4. [4]

    Kaur, S.; Rani, S.; Mahajan, R. K.; Asif, M.; Gupta, V. K. Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics. J. Ind. Eng. Chem. 2015, 22, 19–27.

    Google Scholar 

  5. [5]

    Ajmal, A.; Majeed, I.; Malik, R. N.; Idriss, H.; Nadeem, M. A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Adv. 2014, 4, 37003–37026.

    Google Scholar 

  6. [6]

    Wang, M. K.; Chamberland, N.; Breau, L.; Moser, J. E.; Humphry-Baker, R.; Marsan, B.; Zakeeruddin, S. M.; Grätzel, M. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2010, 2, 385–389.

    Google Scholar 

  7. [7]

    Muhd Julkapli, N.; Bagheri, S.; Bee Abd Hamid, S. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J. 2014, 2014, 692307.

    Google Scholar 

  8. [8]

    Kommineni, S.; Zoeckler, J.; Stocking, A.; Liang, S.; Flores, A.; Kavanaugh, M.; Rodriguea, R.; Browne, T.; Robert, R.; Brown, A. et al. Advanced oxidation processes (National Water Research Institute, 2011). Google Scholar 2011.

    Google Scholar 

  9. [9]

    Weinberg, N. L.; Weinberg, H. R. Electrochemical oxidation of organic compounds. Chem. Rev. 1968, 68, 449–523.

    Google Scholar 

  10. [10]

    Azbar, N.; Yonar, T.; Kestioglu, K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 2004, 55, 35–43.

    Google Scholar 

  11. [11]

    Deng, Y.; Zhao, R. Z. Advanced oxidation processes (AOPs) in wastewater treatment. Curr. Pollut. Rep. 2015, 1, 167–176.

    Google Scholar 

  12. [12]

    Khan, M. M.; Adil, S. F.; Al-Mayouf, A. Metal oxides as photocatalysts. J. Saudi Chem. Soc. 2015, 19, 462–464.

    Google Scholar 

  13. [13]

    Elsalamony, R. A. Advances in photo-catalytic materials for environmental applications. Res. Rev.: J. Mat. Sci. 2016, 4, 26–50.

    Google Scholar 

  14. [14]

    Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B: Environ. 2001, 31, 145–157.

    Google Scholar 

  15. [15]

    Rauf, M. A.; Meetani, M. A.; Khaleel, A.; Ahmed, A. Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chem. Eng. J. 2010, 157, 373–378.

    Google Scholar 

  16. [16]

    Trandafilovic, L. V.; Jovanovic, D. J.; Zhang, X.; Ptasinska, S.; Dramicanin, M. D. Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles. Appl. Catal. B: Environ. 2017, 203, 740–752.

    Google Scholar 

  17. [17]

    Huang, M. L.; Xu, C. F.; Wu, Z. B.; Huang, Y. F.; Lin, J. M.; Wu, J. H. Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigm. 2008, 77, 327–334.

    Google Scholar 

  18. [18]

    Li, Y. J.; Li, X. D.; Li, J. W.; Yin, J. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res. 2006, 40, 1119–1126.

    Google Scholar 

  19. [19]

    Li, T. T.; Zhao, L. H.; He, Y. M.; Cai, J.; Luo, M. F.; Lin, J. J. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl. Catal. B: Environ. 2013, 129, 255–263.

    Google Scholar 

  20. [20]

    He, Y. M.; Cai, J.; Li, T. T.; Wu, Y.; Lin, H. J.; Zhao, L. H.; Luo, M. F. Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation. Chem. Eng. J. 2013, 215–216, 721–730.

    Google Scholar 

  21. [21]

    Liang, C.; Niu, C.-G.; Wen, X.-J.; Yang, S.-F.; Shen, M.-C.; Zeng, G.-M. Effective removal of colourless pollutants and organic dyes by Ag@AgCl nanoparticle-modified CaSn(OH)6 composite under visible light irradiation. New J. Chem. 2017, 41, 5334–5346.

    Google Scholar 

  22. [22]

    Du, Y.-B.; Niu, C.-G.; Zhang, L.; Ruan, M.; Wen, X.-J.; Zhang, X.-G.; Zeng, G.-M. Synthesis of Ag/AgCl hollow spheres based on the Cu2O nanospheres as template and their excellent photocatalytic property. Mol. Catal. 2017, 436, 100–110.

    Google Scholar 

  23. [23]

    Rochkind, M.; Pasternak, S.; Paz, Y. Using dyes for evaluating photocatalytic properties: A critical review. Molecules 2014, 20, 88–110.

    Google Scholar 

  24. [24]

    Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247–255.

    Google Scholar 

  25. [25]

    Zhang, J. Y.; Xiao, G. C.; Xiao, F.-X.; Liu, B. Revisiting one-dimensional TiO2 based hybrid heterostructures for heterogeneous photocatalysis: A critical review. Mater. Chem. Front. 2017, 1, 231–250.

    Google Scholar 

  26. [26]

    Zhang, X. Y.; Qin, J. Q.; Xue, Y.; Yu, P. F.; Zhang, B.; Wang, L. M.; Liu, R. P. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 2014, 4, 4596.

    Google Scholar 

  27. [27]

    Bhattacharyya, A.; Kawi, S.; Ray, M. B. Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents. Catal. Today 2004, 98, 431–439.

    Google Scholar 

  28. [28]

    Jaiswal, R.; Bharambe, J.; Patel, N.; Dashora, A.; Kothari, D. C.; Miotello, A. Copper and nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl. Catal. B: Environ. 2015, 168–169, 333–341.

    Google Scholar 

  29. [29]

    Zou, J.-P.; Wu, D.-D.; Luo, J. M.; Xing, Q.-J.; Luo, X.-B.; Dong, W.-H.; Luo, S.-L.; Du, H.-M.; Suib, S. L. A strategy for one-pot conversion of organic pollutants into useful hydrocarbons through coupling photodegradation of MB with photoreduction of CO2. ACS Catal. 2016, 6, 6861–6867.

    Google Scholar 

  30. [30]

    Liu, X. Y.; Chen, C. S.; Chen, X. A.; Qian, G. P.; Wang, J. H.; Wang, C.; Cao, Z. S.; Liu, Q. C. WO3 QDs enhanced photocatalytic and electrochemical perfomance of GO/TiO2 composite. Catal. Today 2018, 315, 155–161.

    Google Scholar 

  31. [31]

    Jung, J.-J.; Jang, J.-W.; Park, J.-W. Effect of generation growth on photocatalytic activity of nano TiO2-magnetic cored dendrimers. J. Ind. Eng. Chem. 2016, 44, 52–59.

    Google Scholar 

  32. [32]

    Mosleh, S.; Rahimi, M. R.; Ghaedi, M.; Dashtian, K. Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: Central composite optimization and synergistic effect study. Ultrason. Sonochem. 2016, 32, 387–397.

    Google Scholar 

  33. [33]

    Intarasuwan, K.; Amornpitoksuk, P.; Suwanboon, S.; Graidist, P. Photocatalytic dye degradation by ZnO nanoparticles prepared from X2C2O4 (X = H, Na and NH4) and the cytotoxicity of the treated dye solutions. Sep. Purif. Technol. 2017, 177, 304–312.

    Google Scholar 

  34. [34]

    Yang, J.; Chen, C. C.; Ji, H. W.; Ma, W. H.; Zhao, J. C. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: Photoelectrocatalytic study by TiO2-film electrodes. J. Phys. Chem. B 2005, 109, 21900–21907.

    Google Scholar 

  35. [35]

    Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Google Scholar 

  36. [36]

    Teets, T. S.; Nocera, D. G. Photocatalytic hydrogen production. Chem. Commun. 2011, 47, 9268–9274.

    Google Scholar 

  37. [37]

    Atarod, M.; Nasrollahzadeh, M.; Mohammad Sajadi, S. Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water. J. Colloid Interface Sci. 2016, 462, 272–279.

    Google Scholar 

  38. [38]

    Kyzas, G. Z.; Siafaka, P. I.; Pavlidou, E. G.; Chrissafis, K. J.; Bikiaris, D. N. Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem. Eng. J. 2015, 259, 438–448.

    Google Scholar 

  39. [39]

    Fil, B. A.; Karcioglu, K. Z.; Boncukcuoglu, R.; Yilmaz, A. E. Removal of cationic dye (basic red 18) from aqueous solution using natural Turkish clay. Global Nest J. 2013, 15, 529–541.

    Google Scholar 

  40. [40]

    Huo, Y. N.; Chen, X. F.; Zhang, J.; Pan, G. F.; Jia, J. P.; Li, H. X. Ordered macroporous Bi2O3/TiO2 film coated on a rotating disk with enhanced photocatalytic activity under visible irradiation. Appl. Catal. B: Environ. 2014, 148–149, 550–556.

    Google Scholar 

  41. [41]

    Kim, L.-J.; Jang, J.-W.; Park, J.-W. Nano TiO2-functionalized magnetic-cored dendrimer as a photocatalyst. Appl. Catal. B: Environ. 2014, 147, 973–979.

    Google Scholar 

  42. [42]

    Wang, J.; Lv, Y. H.; Zhang, L. Q.; Liu, B.; Jiang, R. Z.; Han, G. X.; Xu, R.; Zhang, X. D. Sonocatalytic degradation of organic dyes and comparison of catalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites under ultrasonic irradiation. Ultrason. Sonochem. 2010, 17, 642–648.

    Google Scholar 

  43. [43]

    Vinodgopal, K.; Kamat, P. V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ. Sci. Technol. 1995, 29, 841–845.

    Google Scholar 

  44. [44]

    Pouretedal, H. R.; Norozi, A.; Keshavarz, M. H.; Semnani, A. Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J. Hazard. Mater. 2009, 162, 674–681.

    Google Scholar 

  45. [45]

    Daneshvar, N.; Salari, D.; Khataee, A. R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A: Chem. 2004, 162, 317–322.

    Google Scholar 

  46. [46]

    Liu, F. Z.; Leung, Y. H.; Djurišic, A. B.; Ng, A. M. C.; Chan, W. K. Native defects in ZnO: Effect on dye adsorption and photocatalytic degradation. J. Phys. Chem. C 2013, 117, 12218–12228.

    Google Scholar 

  47. [47]

    Tahir, M.; Amin, N. S. Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Appl. Catal. B: Environ. 2015, 162, 98–109.

    Google Scholar 

  48. [48]

    Li, K.; Gao, S. M.; Wang, Q. Y.; Xu, H.; Wang, Z. Y.; Huang, B. B.; Dai, Y.; Lu, J. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl. Mater. Interfaces 2015, 7, 9023–9030.

    Google Scholar 

  49. [49]

    Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.

    Google Scholar 

  50. [50]

    Etacheri, V.; Michlits, G.; Seery, M. K.; Hinder, S. J.; Pillai, S. C. A highly efficient TiO2–xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications. ACS Appl. Mater. Interfaces 2013, 5, 1663–1672.

    Google Scholar 

  51. [51]

    Yan, M.; Wu, Y. L.; Yan, Y.; Yan, X.; Zhu, F. F.; Hua, Y. Q.; Shi, W. D. Synthesis and characterization of novel BiVO4/Ag3VO4 heterojunction with enhanced visible-light-driven photocatalytic degradation of dyes. ACS Sustainable Chem. Eng. 2016, 4, 757–766.

    Google Scholar 

  52. [52]

    Giannakopoulou, T.; Papailias, I.; Todorova, N.; Boukos, N.; Liu, Y.; Yu, J. G.; Trapalis, C. Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal. Chem. Eng. J. 2017, 310, 571–580.

    Google Scholar 

  53. [53]

    Wang, S. M.; Li, D. L.; Sun, C.; Yang, S. G.; Guan, Y.; He, H. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl. Catal. B: Environ. 2014, 144, 885–892.

    Google Scholar 

  54. [54]

    Munshi, A. M.; Shi, M. W.; Thomas, S. P.; Saunders, M.; Spackman, M. A.; Iyer, K. S.; Smith, N. M. Magnetically recoverable Fe3O4@Au-coated nanoscale catalysts for the A3-coupling reaction. Dalton Trans. 2017, 46, 5133–5137.

    Google Scholar 

  55. [55]

    Cole-Hamilton, D. J. Homogeneous catalysis—New approaches to catalyst separation, recovery, and recycling. Science 2003, 299, 1702–1706.

    Google Scholar 

  56. [56]

    Robert, D.; Keller, V.; Keller, N. Immobilization of a semiconductor photocatalyst on solid supports: Methods, materials, and applications. In Photocatalysis and Water Purification: From Fundamentals to Recent Applications; Pichat, P., Ed.; Wiley-VCH: Weinheim, Germany, 2013; pp 145–178.

    Google Scholar 

  57. [57]

    Gao, F. Q.; Yang, Y.; Wang, T. H. Preparation of porous TiO2/Ag heterostructure films with enhanced photocatalytic activity. Chem. Eng. J. 2015, 270, 418–427.

    Google Scholar 

  58. [58]

    Park, S.; Choi, G. R.; Lee, J. C.; Kim, Y. C.; Oh, D.; Cho, S.; Lee, J.-H. Organic and inorganic binder-coating properties for immobilization of photocatalytic ZnO nanopowders. Res. Chem. Intermediat. 2010, 36, 819–825.

    Google Scholar 

  59. [59]

    Nasr-Esfahani, M.; Habibi, M. H. Silver doped TiO2 nanostructure composite photocatalyst film synthesized by sol-gel spin and dip coating technique on glass. Int. J. Photoenergy 2008, 2008, Article ID 628713.

  60. [60]

    Shen, Y. H.; Yu, X.; Lin, W. T.; Zhu, Y.; Zhang, Y. M. A facile preparation of immobilized BiOCl nanosheets/TiO2 arrays on FTO with enhanced photocatalytic activity and reusability. Appl. Surf. Sci. 2017, 399, 67–76.

    Google Scholar 

  61. [61]

    Ohtani, B. Photocatalysis A to Z—What we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C: Photochem. Rev. 2010, 11, 157–178.

    Google Scholar 

  62. [62]

    Tang, J. X.; Lee, C. S.; Lee, S. T. Electronic structures of organic/organic heterojunctions: From vacuum level alignment to Fermi level pinning. J. Appl. Phys. 2007, 101, 064504.

    Google Scholar 

  63. [63]

    Shi, S.; Gondal, M. A.; Rashid, S. G.; Qi, Q.; Al-Saadi, A. A.; Yamani, Z. H.; Sui, Y. H.; Xu, Q. Y.; Shen, K. Synthesis of g-C3N4/BiOClxBr1-x hybrid photocatalysts and the photoactivity enhancement driven by visible light. Colloids Surf. A: Physicochem. Eng. Asp. 2014, 461, 202–211.

    Google Scholar 

  64. [64]

    Huang, H. W.; Han, X.; Li, X. W.; Wang, S. C.; Chu, P. K.; Zhang, Y. H. Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures. ACS Appl. Mater. Interfaces 2015, 7, 482–492.

    Google Scholar 

  65. [65]

    Pan, D. Y.; Jiao, J. K.; Li, Z.; Guo, Y. T.; Feng, C. Q.; Liu, Y.; Wang, L.; Wu, M. H. Efficient separation of electron–hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustainable Chem. Eng. 2015, 3, 2405–2413.

    Google Scholar 

  66. [66]

    Zhang, W.; Hu, C.; Zhai, W.; Wang, Z. L.; Sun, Y. X.; Chi, F. L.; Ran, S. L.; Liu, X. G.; Lv, Y. H. Novel Ag3PO4/CeO2 p–n hierarchical heterojunction with enhanced photocatalytic performance. Mat. Res. 2016, 19, 673–679.

    Google Scholar 

  67. [67]

    Xu, W. C.; Fang, J. Z.; Zhu, X. M.; Fang, Z. Q.; Cen, C. P. Fabricaion of improved novel p–n junction BiOI/Bi2Sn2O7 nanocomposite for visible light driven photocatalysis. Mater. Res. Bull. 2015, 72, 229–234.

    Google Scholar 

  68. [68]

    Ida, S.; Takashiba, A.; Koga, S.; Hagiwara, H.; Ishihara, T. Potential gradient and photocatalytic activity of an ultrathin p–n junction surface prepared with two-dimensional semiconducting nanocrystals. J. Am. Chem. Soc. 2014, 136, 1872–1878.

    Google Scholar 

  69. [69]

    Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141–145.

    Google Scholar 

  70. [70]

    Ma, D.; Wu, J.; Gao, M. C.; Xin, Y. J.; Sun, Y. Y.; Ma, T. J. Hydrothermal synthesis of an artificial Z-scheme visible light photocatalytic system using reduced graphene oxide as the electron mediator. Chem. Eng. J. 2017, 313, 1567–1576.

    Google Scholar 

  71. [71]

    Zangeneh, H.; Zinatizadeh, A. A. L.; Habibi, M.; Akia, M.; Hasnain Isa, M. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem. 2015, 26, 1–36.

    Google Scholar 

  72. [72]

    Shukla, K.; Srivastava, V. C. Diethyl carbonate: Critical review of synthesis routes, catalysts used and engineering aspects. RSC Adv. 2016, 6, 32624–32645.

    Google Scholar 

  73. [73]

    Gaya, U. I.; Abdullah, A. H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C: Photochem. Rev. 2008, 9, 1–12.

    Google Scholar 

  74. [74]

    Guettaï, N.; Amar, H. A. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study. Desalination 2005, 185, 427–437.

    Google Scholar 

  75. [75]

    Anwer, H.; Park, J.-W. Synthesis and characterization of a heterojunction rGO/ZrO2/Ag3PO4 nanocomposite for degradation of organic contaminants. J. Hazard. Mater. 2018, 358, 416–426.

    Google Scholar 

  76. [76]

    Nguyen-Phan, T.-D.; Pham, V. H.; Shin, E. W.; Pham, H.-D.; Kim, S.; Chung, J. S.; Kim, E. J.; Hur, S. H. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem. Eng. J. 2011, 170, 226–232.

    Google Scholar 

  77. [77]

    Bizani, E.; Fytianos, K.; Poulios, I.; Tsiridis, V. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J. Hazard. Mater. 2006, 136, 85–94.

    Google Scholar 

  78. [78]

    Tan, R.; Shen, Y.; Roberts, S. K.; Gee, M. Y.; Blom, D. A.; Greytak, A. B. Reducing competition by coordinating solvent promotes morphological control in alternating layer growth of CdSe/CdS core/shell quantum dots. Chem. Mater. 2015, 27, 7468–7480.

    Google Scholar 

  79. [79]

    Xu, Z.; Liu, X. X.; Wang, W. P.; Liu, C.; Li, Z. C.; Zhang, Z. J. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles. Sci. Technol. Adv. Mater. 2014, 15, 055006.

    Google Scholar 

  80. [80]

    Cassano, A. E.; Alfano, O. M. Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal. Today 2000, 58, 167–197.

    Google Scholar 

  81. [81]

    Muruganandham, M.; Swaminathan, M. TiO2–UV photocatalytic oxidation of Reactive Yellow 14: Effect of operational parameters. J. Hazard. Mater. 2006, 135, 78–86.

    Google Scholar 

  82. [82]

    Bhati, I.; Punjabi, P. B.; Ameta, S. C. Photocatalytic degradation of fast green using nanosized CeCrO3. Maced. J. Chem. Chem. Eng. 2010, 29, 195–202.

    Google Scholar 

  83. [83]

    Elaziouti; Laouedj, N.; Ahmed, B. ZnO-assisted photocatalytic degradation of Congo Red and Benzopurpurine 4B in aqueous solution. J. Chem. Eng. Process Technol. 2011, 2, 106.

    Google Scholar 

  84. [84]

    Lü, W.; Chen, J.; Wu, Y.; Duan, L. F.; Yang, Y.; Ge, X. Graphene-enhanced visible-light photocatalysis of large-sized CdS particles for wastewater treatment. Nanoscale Res. Lett. 2014, 9, 148.

    Google Scholar 

  85. [85]

    Zhang, A.-Y.; Wang, W.-K.; Pei, D.-N.; Yu, H.-Q. Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst. Water Res. 2016, 92, 78–86.

    Google Scholar 

  86. [86]

    Li, X. R.; Wang, J. G.; Men, Y.; Bian, Z. F. TiO2 mesocrystal with exposed (001) facets and CdS quantum dots as an active visible photocatalyst for selective oxidation reactions. Appl. Catal. B: Environ. 2016, 187, 115–121.

    Google Scholar 

  87. [87]

    Bhandari, S.; Vardia, J.; Malkani, R. K.; Ameta, S. C. Effect of transition metal ions on photocatalytic activity of ZnO in bleaching of some dyes. Toxicol. Environ. Chem. 2006, 88, 35–44.

    Google Scholar 

  88. [88]

    Dariani, R. S.; Esmaeili, A.; Mortezaali, A.; Dehghanpour, S. Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik 2016, 127, 7143–7154.

    Google Scholar 

  89. [89]

    Chu, C.-Y.; Huang, M. H. Facet-dependent photocatalytic properties of Cu2O crystals probed by using electron, hole and radical scavengers. J. Mater. Chem. A 2017, 5, 15116–15123.

    Google Scholar 

  90. [90]

    Meng, L. S.; Chen, Z. Y.; Ma, Z. Y.; He, S.; Hou, Y. D.; Li, H.-H.; Yuan, R. S.; Huang, X.-H.; Wang, X. X.; Wang, X. C. et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ. Sci. 2018, 11, 294–298.

    Google Scholar 

  91. [91]

    Mena, E.; Rey, A.; Rodríguez, E. M.; Beltrán, F. J. Reaction mechanism and kinetics of DEET visible light assisted photocatalytic ozonation with WO3 catalyst. Appl. Catal. B: Environ. 2017, 202, 460–472.

    Google Scholar 

  92. [92]

    Chen, C. C.; Zhao, W.; Li, J. Y.; Zhao, J. C.; Hidaka, H.; Serpone, N. Formation and identification of intermediates in the visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous TiO2 dispersion. Environ. Sci. Technol. 2002, 36, 3604–3611.

    Google Scholar 

  93. [93]

    Bui, T. D.; Kimura, A.; Ikeda, S.; Matsumura, M. Lowering of photocatalytic activity of TiO2 particles during oxidative decomposition of benzene in aerated liquid. Appl. Catal. B: Environ. 2010, 94, 186–191.

    Google Scholar 

  94. [94]

    Naeher, L. P.; Brauer, M.; Lipsett, M.; Zelikoff, J. T.; Simpson, C. D.; Koenig, J. Q.; Smith, K. R. Woodsmoke health effects: A review. Inhal. Toxicol. 2007, 19, 67–106.

    Google Scholar 

  95. [95]

    Hao, X. Q.; Jin, Z. L.; Yang, H.; Lu, G. X.; Bi, Y. P. Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2017, 210, 45–56.

    Google Scholar 

  96. [96]

    He, L.; Li, M. X.; Xu, H. X.; Hu, B. Experimental studies on magnetization in the excited state by using the magnetic field effect of light scattering based on multi-layer graphene particles suspended in organic solvents. Nanoscale 2017, 9, 2563–2568.

    Google Scholar 

  97. [97]

    Bolton, J. R.; Bircher, K. G.; Tumas, W.; Tolman, C. A. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems. Pure Appl. Chem. 2001, 73, 627–637.

    Google Scholar 

  98. [98]

    International Atomic Energy Agency. Use of Irradiation for Chemical and Microbial Decontamination of Water, Wastewater and Sludge; International Atomic Energy Agency: Vienna, 2001.

  99. [99]

    Serpone, N. Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J. Photochem. Photobiol. A: Chem. 1997, 104, 1–12.

    Google Scholar 

  100. [100]

    Serpone, N.; Salinaro, A. Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I: Suggested protocol. Pure Appl. Chem. 1999, 71, 303–320.

    Google Scholar 

  101. [101]

    Xing, M. Y.; Zhang, J. H.; Qiu, B. C.; Tian, B. Z.; Anpo, M.; Che, M. A brown mesoporous TiO2–x/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution. Small 2015, 11, 1920–1929.

    Google Scholar 

  102. [102]

    Qu, A. L.; Xie, H. L.; Xu, X. M.; Zhang, Y. Y.; Wen, S. W.; Cui, Y. F. High quantum yield graphene quantum dots decorated TiO2 nanotubes for enhancing photocatalytic activity. Appl. Surf. Sci. 2016, 375, 230–241.

    Google Scholar 

  103. [103]

    Ling, L.; Tugaoen, H.; Brame, J.; Sinha, S.; Li, C. H.; Schoepf, J.; Hristovski, K.; Kim, J.-H.; Shang, C.; Westerhoff, P. Coupling light emitting diodes with photocatalyst-coated optical fibers improves quantum yield of pollutant oxidation. Environ. Sci. Technol. 2017, 51, 13319–13326.

    Google Scholar 

  104. [104]

    Anwer, H.; Park, J.-W. Near-infrared to visible photon transition by upconverting NaYF4: Yb3+, Gd3+, Tm3+@Bi2WO6 core@shell composite for bisphenol A degradation in solar light. Appl. Catal. B: Environ. 2019, 243, 438–447.

    Google Scholar 

  105. [105]

    Schneider, J.; Bahnemann, D.; Ye, J. H.; Puma, G. L.; Dionysiou, D. D. Photocatalysis: Fundamentals and Perspectives; Royal Society of Chemistry: Cambridge, 2016.

    Google Scholar 

  106. [106]

    Li, X. P.; Qi, F.; Xue, Y. M.; Yu, C.; Jia, H. C.; Bai, Y. H.; Wang, S.; Liu, Z. Y.; Zhang, J.; Tang, C. C. Porous boron nitride coupled with CdS for adsorption-photocatalytic synergistic removal of RhB. RSC Adv. 2016, 6, 99165–99171.

    Google Scholar 

  107. [107]

    Liu, X.; Jin, A. L.; Jia, Y. S.; Xia, T. L.; Deng, C. X.; Zhu, M. H.; Chen, C. F.; Chen, X. S. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Appl. Surf. Sci. 2017, 405, 359–371.

    Google Scholar 

  108. [108]

    Vinodgopal, K.; Wynkoop, D. E.; Kamat, P. V. Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light. Environ. Sci. Technol. 1996, 30, 1660–1666.

    Google Scholar 

  109. [109]

    Chen, F.; Xie, Y. D.; Zhao, J. C.; Lu, G. X. Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation. Chemosphere 2001, 44, 1159–1168.

    Google Scholar 

  110. [110]

    Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B: Environ. 2002, 39, 75–90.

    Google Scholar 

  111. [111]

    Saquib, M.; Abu Tariq, M.; Faisal, M.; Muneer, M. Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide. Desalination 2008, 219, 301–311.

    Google Scholar 

  112. [112]

    Aguedach, A.; Brosillon, S.; Morvan, J.; Lhadi, E. K. Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide. Appl. Catal. B: Environ. 2005, 57, 55–62.

    Google Scholar 

  113. [113]

    Sakthivel, S.; Neppolian, B.; Shankar, M. V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energ. Mat. Sol. C. 2003, 77, 65–82.

    Google Scholar 

  114. [114]

    Behnajady, M. A.; Modirshahla, N.; Hamzavi, R. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. 2006, 133, 226–232.

    Google Scholar 

  115. [115]

    Nagaraja, R.; Kottam, N.; Girija, C. R.; Nagabhushana, B. M. Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol. 2012, 215–216, 91–97.

    Google Scholar 

  116. [116]

    Tian, C. G.; Zhang, Q.; Wu, A. P.; Jiang, M. J.; Liang, Z. L.; Jiang, B. J.; Fu, H. G. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. 2012, 48, 2858–2860.

    Google Scholar 

  117. [117]

    Kansal, S. K.; Singh, M.; Sud, D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J. Hazard. Mater. 2007, 141, 581–590.

    Google Scholar 

  118. [118]

    Neppolian, B.; Choi, H. C.; Sakthivel, S.; Arabindoo, B.; Murugesan, V. Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J. Hazard. Mater. 2002, 89, 303–317.

    Google Scholar 

  119. [119]

    Mohamed, M. M.; Ahmed, S. A.; Khairou, K. S. Unprecedented high photocatalytic activity of nanocrystalline WO3/NiWO4 hetero-junction towards dye degradation: Effect of template and synthesis conditions. Appl. Catal. B: Environ. 2014, 150–151, 63–73.

    Google Scholar 

  120. [120]

    Han, C. C.; Ge, L.; Chen, C. F.; Li, Y. J.; Xiao, X. L.; Zhang, Y. N.; Guo, L. L. Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange. Appl. Catal. B: Environ. 2014, 147, 546–553.

    Google Scholar 

  121. [121]

    Chen, L.; Yin, S.-F.; Luo, S.-L.; Huang, R.; Zhang, Q.; Hong, T.; Au, P. C. T. Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater. Ind. Eng. Chem. Res. 2012, 51, 6760–6768.

    Google Scholar 

  122. [122]

    He, Y. M.; Zhang, L. H.; Fan, M. H.; Wang, X. X.; Walbridge, M. L.; Nong, Q. Y.; Wu, Y.; Zhao, L. H. Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Sol. Energ. Mat. Sol. C. 2015, 137, 175–184.

    Google Scholar 

  123. [123]

    Liu, Y.; Shi, Y. D.; Liu, X.; Li, H. X. A facile solvothermal approach of novel Bi2S3/TiO2/RGO composites with excellent visible light degradation activity for methylene blue. Appl. Surf. Sci. 2017, 396, 58–66.

    Google Scholar 

  124. [124]

    Reddy, K. H.; Martha, S.; Parida, K. M. Fabrication of novel p-BiOI/ n-ZnTiO3 heterojunction for degradation of rhodamine 6G under visible light irradiation. Inorg. Chem. 2013, 52, 6390–6401.

    Google Scholar 

  125. [125]

    Wang, W. J.; Cheng, H. F.; Huang, B. B.; Lin, X. J.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Synthesis of Bi2O2CO3/Bi2S3 hierarchical microspheres with heterojunctions and their enhanced visible light-driven photocatalytic degradation of dye pollutants. J. Colloid Interface Sci. 2013, 402, 34–39.

    Google Scholar 

  126. [126]

    Di, J.; Xia, J. X.; Yin, S.; Xu, H.; Xu, L.; Xu, Y. G.; He, M. Q.; Li, H. M. Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. J. Mater. Chem. A 2014, 2, 5340–5351.

    Google Scholar 

  127. [127]

    Wang, S. M.; Guan, Y.; Wang, L. P.; Zhao, W.; He, H.; Xiao, J.; Yang, S. G.; Sun, C. Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption–photocatalysis for efficient treatment of dye wastewater. Appl. Catal. B: Environ. 2015, 168–169, 448–457.

    Google Scholar 

  128. [128]

    Li, Z. S.; Yang, S. Y.; Zhou, J. M.; Li, D. H.; Zhou, X. F.; Ge, C. Y.; Fang, Y. P. Novel mesoporous g-C3N4 and BiPO4 nanorods hybrid architectures and their enhanced visible-light-driven photocatalytic performances. Chem. Eng. J. 2014, 241, 344–351.

    Google Scholar 

  129. [129]

    Zhan, W. T.; Ni, H. W.; Chen, R. S.; Wang, Z. Y.; Li, Y. W.; Li, J. H. One-step hydrothermal preparation of TiO2/WO3 nanocomposite films on anodized stainless steel for photocatalytic degradation of organic pollutants. Thin Solid Films 2013, 548, 299–305.

    Google Scholar 

  130. [130]

    Zheng, F.; Lu, H.; Guo, M.; Zhang, M.; Zhen, Q. Hydrothermal preparation of WO3 nanorod array and ZnO nanosheet array composite structures on FTO substrates with enhanced photocatalytic properties. J. Mater. Chem. C 2015, 3, 7612–7620.

    Google Scholar 

  131. [131]

    Gao, Y.; Liu, H. T. Preparation and catalytic property study of a novel kind of suspended photocatalyst of TiO2-activated carbon immobilized on silicone rubber film. Mater. Chem. Phys. 2005, 92, 604–608.

    Google Scholar 

  132. [132]

    Wang, H.-J.; Sun, Y.-Y.; Wang, C.-F.; Cao, Y. Controlled synthesis, cytotoxicity and photocatalytic comparison of ZnO films photocatalysts supported on aluminum matrix. Chem. Eng. J. 2012, 198–199, 154–162.

    Google Scholar 

  133. [133]

    Liu, Z. S.; Wu, B. T.; Niu, J. N.; Huang, X.; Zhu, Y. B. Solvothermal synthesis of BiOBr thin film and its photocatalytic performance. Appl. Surf. Sci. 2014, 288, 369–372.

    Google Scholar 

  134. [134]

    Zhang, Y. R.; Wan, J.; Ke, Y. Q. A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange. J. Hazard. Mater. 2010, 177, 750–754.

    Google Scholar 

  135. [135]

    Arconada, N.; Castro, Y.; Durán, A. Photocatalytic properties in aqueous solution of porous TiO2-anatase films prepared by sol–gel process. Appl. Catal. A: Gen. 2010, 385, 101–107.

    Google Scholar 

  136. [136]

    Zhang, X. F.; Li, R.; Wang, Y. F.; Zhang, X. C.; Wang, Y. W.; Fan, C. M. Slow-releasing Cl–to prepare BiOCl thin film on Bi plate and its photocatalytic properties. Mater. Lett. 2016, 174, 126–128.

    Google Scholar 

  137. [137]

    Li, K.; Tang, Y. P.; Xu, Y. L.; Wang, Y. L.; Huo, Y. N.; Li, H. X.; Jia, J. P. A BiOCl film synthesis from Bi2O3 film and its UV and visible light photocatalytic activity. Appl. Catal. B: Environ. 2013, 140–141, 179–188.

    Google Scholar 

  138. [138]

    Rapsomanikis, A.; Apostolopoulou, A.; Stathatos, E.; Lianos, P. Ceriummodified TiO2 nanocrystalline films for visible light photocatalytic activity. J. Photochem. Photobiol. A: Chem. 2014, 280, 46–53.

    Google Scholar 

  139. [139]

    Mohamed, R. M.; Aazam, E. Synthesis and characterization of P-doped TiO2 thin-films for photocatalytic degradation of butyl benzyl phthalate under visible-light irradiation. Chinese J. Catal. 2013, 34, 1267–1273.

    Google Scholar 

  140. [140]

    Uddin, M. T.; Nicolas, Y.; Olivier, C.; Toupance, T.; Servant, L.; Müller, M. M.; Kleebe, H.-J.; Ziegler, J.; Jaegermann, W. Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 2012, 51, 7764–7773.

    Google Scholar 

  141. [141]

    Sun, M.; Chen, G. D.; Zhang, Y. K.; Wei, Q.; Ma, Z. M.; Du, B. Efficient degradation of azo dyes over Sb2S3/TiO2 heterojunction under visible light irradiation. Ind. Eng. Chem. Res. 2012, 51, 2897–2903.

    Google Scholar 

  142. [142]

    Lu, W. Y.; Xu, T. F.; Wang, Y.; Hu, H. G.; Li, N.; Jiang, X. M.; Chen, W. X. Synergistic photocatalytic properties and mechanism of g-C3N4 coupled with zinc phthalocyanine catalyst under visible light irradiation. Appl. Catal. B: Environ. 2016, 180, 20–28.

    Google Scholar 

  143. [143]

    Wang, W. Z.; Wang, J.; Wang, Z. Z.; Wei, X. Z.; Liu, L.; Ren, Q. S.; Gao, W. L.; Liang, Y. J.; Shi, H. L. p-n junction CuO/BiVO4 heterogeneous nanostructures: Synthesis and highly efficient visible-light photocatalytic performance. Dalton Trans. 2014, 43, 6735–6743.

    Google Scholar 

  144. [144]

    Li, Y.; Liu, F.-T.; Chang, Y.; Wang, J.; Wang, C.-W. High efficient photocatalytic activity from nanostructuralized photonic crystal-like p-n coaxial hetero-junction film photocatalyst of Cu3SnS4/TiO2 nanotube arrays. Appl. Surf. Sci. 2017, 426, 770–780.

    Google Scholar 

  145. [145]

    Peng, Y.; Yu, P.-P.; Zhou, H.-Y.; Xu, A.-W. Synthesis of BiOI/Bi4O5I2/ Bi2O2CO3 p-n-p heterojunctions with superior photocatalytic activities. New J. Chem. 2015, 39, 8321–8328.

    Google Scholar 

  146. [146]

    Zha, R. H.; Nadimicherla, R.; Guo, X. Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J. Mater. Chem. A 2015, 3, 6565–6574.

    Google Scholar 

  147. [147]

    Zhu, B. C.; Xia, P. F.; Li, Y.; Ho, W.; Yu, J. G. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl. Surf. Sci. 2017, 391, 175–183.

    Google Scholar 

  148. [148]

    He, Y. M.; Zhang, L. H.; Wang, X. X.; Wu, Y.; Lin, H. J.; Zhao, L. H.; Weng, W. Z.; Wan, H. L.; Fan, M. H. Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-g-C3N4 composite under visible light irradiation. RSC Adv. 2014, 4, 13610–13619.

    Google Scholar 

  149. [149]

    Zhu, C. S.; Zhang, L.; Jiang, B.; Zheng, J. T.; Hu, P.; Li, S. J.; Wu, M. B.; Wu, W. T. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl. Surf. Sci. 2016, 377, 99–108.

    Google Scholar 

  150. [150]

    Apte, S. K.; Garaje, S. N.; Arbuj, S. S.; Kale, B. B.; Baeg, J. O.; Mulik, U. P.; Naik, S. D.; Amalnerkar, D. P.; Gosavi, S. W. A novel template free, one pot large scale synthesis of cubic zinc sulfide nanotriangles and its functionality as an efficient photocatalyst for hydrogen production and dye degradation. J. Mater. Chem. 2011, 21, 19241–19248.

    Google Scholar 

  151. [151]

    Sharma, M.; Jain, T.; Singh, S.; Pandey, O. P. Photocatalytic degradation of organic dyes under UV–visible light using capped ZnS nanoparticles. Sol. Energy 2012, 86, 626–633.

    Google Scholar 

  152. [152]

    Liu, Y. G.; Ohko, Y.; Zhang, R. Q.; Yang, Y. N.; Zhang, Z. Y. Degradation of malachite green on Pd/WO3 photocatalysts under simulated solar light. J. Hazard. Mater. 2010, 184, 386–391.

    Google Scholar 

  153. [153]

    Zhang, J. Q.; Yu, K.; Yu, Y. F.; Lou, L.-L.; Yang, Z. Q.; Yang, J. W.; Liu, S. X. Highly effective and stable Ag3PO4/WO3 photocatalysts for visible light degradation of organic dyes. J. Mol. Catal. A: Chem. 2014, 391, 12–18.

    Google Scholar 

  154. [154]

    Singh, S. A.; Madras, G. Photocatalytic degradation with combustion synthesized WO3 and WO3TiO2 mixed oxides under UV and visible light. Sep. Purif. Technol. 2013, 105, 79–89.

    Google Scholar 

  155. [155]

    Reutergådh, L. B.; Iangphasuk, M. Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and US photocatalysis. Chemosphere 1997, 35, 585–596.

    Google Scholar 

  156. [156]

    Yu, Z.; Yin, B. S.; Qu, F. Y.; Wu, X. Synthesis of self-assembled CdS nanospheres and their photocatalytic activities by photodegradation of organic dye molecules. Chem. Eng. J. 2014, 258, 203–209.

    Google Scholar 

  157. [157]

    Repo, E.; Rengaraj, S.; Pulkka, S.; Castangnoli, E.; Suihkonen, S.; Sopanen, M.; Sillanpää, M. Photocatalytic degradation of dyes by CdS microspheres under near UV and blue LED radiation. Sep. Purif. Technol. 2013, 120, 206–214.

    Google Scholar 

  158. [158]

    Soltani, N.; Saion, E.; Yunus, W. M. M.; Erfani, M.; Navasery, M.; Bahmanrokh, G.; Rezaee, K. Enhancement of visible light photocatalytic activity of ZnS and CdS nanoparticles based on organic and inorganic coating. Appl. Surf. Sci. 2014, 290, 440–447.

    Google Scholar 

  159. [159]

    Tong, T. Z.; Zhang, J. L.; Tian, B. Z.; Chen, F.; He, D. N. Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 2008, 155, 572–579.

    Google Scholar 

  160. [160]

    Chen, J. F.; Zhong, J. B.; Li, J. Z.; Huang, S. T.; Hu, W.; Li, M. J.; Du, Q. Synthesis and characterization of novel Ag2CO3/g-C3N4 composite photocatalysts with excellent solar photocatalytic activity and mechanism insight. Mol. Catal. 2017, 435, 91–98.

    Google Scholar 

  161. [161]

    Liu, T. Y.; Liu, B.; Yang, L. F.; Ma, X. L.; Li, H.; Yin, S.; Sato, T.; Sekino, T.; Wang, Y. H. RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Appl. Catal. B: Environ. 2017, 204, 593–601.

    Google Scholar 

  162. [162]

    Jiang, Y. H.; Liu, P. P.; Liu, Y.; Liu, X. F.; Li, F.; Ni, L.; Yan, Y. S.; Huo, P. W. Construction of amorphous Ta2O5/g-C3N4 nanosheet hybrids with superior visible-light photoactivities for organic dye degradation and mechanism insight. Sep. Purif. Technol. 2016, 170, 10–21.

    Google Scholar 

  163. [163]

    Tang, B.; Chen, H. Q.; He, Y. F.; Wang, Z. W.; Zhang, J.; Wang, J. P. Influence from defects of three-dimensional graphene network on photocatalytic performance of composite photocatalyst. Compos. Sci. Technol. 2017, 150, 54–64.

    Google Scholar 

  164. [164]

    Nguyen-Phan, T.-D.; Pham, V. H.; Yun, H.; Kim, E. J.; Hur, S. H.; Chung, J. S.; Shin, E. W. Influence of heat treatment on thermally-reduced graphene oxide/TiO2 composites for photocatalytic applications. Korean J. Chem. Eng. 2011, 28, 2236–2241.

    Google Scholar 

  165. [165]

    Singh, S.; Khare, N. Reduced graphene oxide coupled CdS/CoFe2O4 ternary nanohybrid with enhanced photocatalytic activity and stability: A potential role of reduced graphene oxide as a visible light responsive photosensitizer. RSC Adv. 2015, 5, 96562–96572.

    Google Scholar 

  166. [166]

    Ganesh, I.; Gupta, A. K.; Kumar, P. P.; Sekhar, P. S. C.; Radha, K.; Padmanabham, G.; Sundararajan, G. Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications. Sci. World J. 2012, 2012, 127326.

    Google Scholar 

  167. [167]

    Pawar, R. C.; Khare, V.; Lee, C. S. Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light. Dalton Trans. 2014, 43, 12514–12527

    Google Scholar 

Download references

Acknowledgements

K. H. K. and J. W. P. acknowledge support made by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, & Future Planning Grant Nos. 2016R1E1A1A01940995 and 2018R1A2A1A05023555, respectively.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ki-Hyun Kim or Jae-Woo Park.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anwer, H., Mahmood, A., Lee, J. et al. Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Res. 12, 955–972 (2019). https://doi.org/10.1007/s12274-019-2287-0

Download citation

Keywords

  • photocatalyst
  • dye wastewater
  • degradation mechanism
  • performance evaluation