Nano Research

, Volume 12, Issue 4, pp 767–775 | Cite as

Extending the operational lifetimes of all-direct electron transfer enzymatic biofuel cells by magnetically assembling and exchanging the active biocatalyst layers on stationary electrodes

  • Katharina HerkendellEmail author
  • Andreas Stemmer
  • Ran Tel-VeredEmail author
Research Article


Enzymatic biofuel cells promise green power generation from a variety of natural resources, yet these systems all suffer from time-dependent degradation effects, in particular progressing inactivation of enzymes, which severely limit the operational lifetimes of such power sources. To extend operational lifetimes, we introduce a method to magnetically exchange exhausted enzymes for fresh ones. To this end, anodic and cathodic enzymes or enzyme cascades are immobilized on carbon coated magnetic nanoparticles. Under the action of suitable magnetic field gradients, these nanoparticles are assembled on the respective stationary electrodes, or released from the electrodes for collection and subsequent exchange. We demonstrate this method on a fructose/oxygen consuming biofuel cell employing fructose dehydrogenase and bilirubin oxidase as well as on anodic and cathodic cascades employing fructose dehydrogenase/invertase and bilirubin oxidase/catalase, respectively. The enzyme-modified nanoparticles support direct electron transfer bioelectrocatalytic currents by wiring the redox active cofactors to the carbonaceous coating and from there to the electrode surfaces. The facile injection, assembly, and removal of enzyme-modified magnetic nanoparticles along with fuel solution provides a promising approach to extend the operational lifetime of enzymatic biofuel cells without the need for exchanging entire systems including chambers and electrodes.


direct electron transfer magnetic nanoparticle enzymatic biofuel cell recharge lifetime enzyme cascade 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Enzymatic structures were visualized with Jmol: an open-source Java viewer for chemical structures in 3D.

Supplementary material

12274_2019_2285_MOESM1_ESM.pdf (1.8 mb)
Extending the operational lifetimes of all-direct electron transfer enzymatic biofuel cells by magnetically assembling and exchanging the active biocatalyst layers on stationary electrodes


  1. [1]
    Liu, C.; Alwarappan, S.; Chen, Z. F.; Kong, X. X.; Li, C. Z. Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens. Bioelectron. 2010, 25, 1829–1833.CrossRefGoogle Scholar
  2. [2]
    Kim, R. E.; Hong, S. G.; Ha, S.; Kim, J. Enzyme adsorption, precipitation and crosslinking of glucose oxidase and laccase on polyaniline nanofibers for highly stable enzymatic biofuel cells. Enzyme Microb. Technol. 2014, 66, 35–41.CrossRefGoogle Scholar
  3. [3]
    Liu, C.; Chen, Z. F.; Li, C. Z. Surface engineering of graphene-enzyme nanocomposites for miniaturized biofuel cell. IEEE Trans. Nanotechnol. 2011, 10, 59–62.CrossRefGoogle Scholar
  4. [4]
    Moehlenbrock, M. J.; Minteer, S. D. Extended lifetime biofuel cells. Chem. Soc. Rev. 2008, 37, 1188–1196.CrossRefGoogle Scholar
  5. [5]
    Vaddiraju, S.; Tomazos, I.; Burgess, D. J.; Jain, F. C.; Papadimitrakopoulos, F. Emerging synergy between nanotechnology and implantable biosensors: A review. Biosens. Bioelectron. 2010, 25, 1553–1565.CrossRefGoogle Scholar
  6. [6]
    Rasmussen, M.; Abdellaoui, S.; Minteer, S. D. Enzymatic biofuel cells: 30 years of critical advancements. Biosens. Bioelectron. 2016, 76, 91–102.CrossRefGoogle Scholar
  7. [7]
    Yang, X. Y.; Tian, G.; Jiang, N.; Su, B. L. Immobilization technology: A sustainable solution for biofuel cell design. Energy Environ. Sci. 2012, 5, 5540–5563.CrossRefGoogle Scholar
  8. [8]
    Cooney, M. J.; Svoboda, V.; Lau, C.; Martin, G.; Minteer, S. D. Enzyme catalysed biofuel cells. Energy Environ. Sci. 2008, 1, 320–337.CrossRefGoogle Scholar
  9. [9]
    Fischback, M. B.; Youn, J. K.; Zhao, X. Y.; Wang, P.; Park, H. G.; Chang, H. N.; Kim, J.; Ha, S. Miniature biofuel cells with improved stability under continuous operation. Electroanalysis 2006, 18, 2016–2022.CrossRefGoogle Scholar
  10. [10]
    Ramanavicius, A.; Kausaite, A.; Ramanaviciene, A. Enzymatic biofuel cell based on anode and cathode powered by ethanol. Biosens. Bioelectron. 2008, 24, 761–766.CrossRefGoogle Scholar
  11. [11]
    Wang, X. J.; Falk, M.; Ortiz, R.; Matsumura, H.; Bobacka, J.; Ludwig, R.; Bergelin, M.; Gorton, L.; Shleev, S. Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes. Biosens. Bioelectron. 2012, 31, 219–225.CrossRefGoogle Scholar
  12. [12]
    MacVittie, K.; Conlon, T.; Katz, E. A wireless transmission system powered by an enzyme biofuel cell implanted in an orange. Bioelectrochemistry 2015, 106, 28–33.CrossRefGoogle Scholar
  13. [13]
    Coman, V.; Vaz-Dominguez, C.; Ludwig, R.; Harreither, W.; Haltrich, D.; De Lacey, A. L.; Ruzgas, T.; Gorton, L.; Shleev, S. A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cell. Phys. Chem. Chem. Phys. 2008, 10, 6093–6096.CrossRefGoogle Scholar
  14. [14]
    Mazurenko, I.; Monsalve, K.; Infossi, P.; Giudici-Orticoni, M. T.; Topin, F.; Mano, N.; Lojou, E. Impact of substrate diffusion and enzyme distribution in 3D-porous electrodes: A combined electrochemical and modelling study of a thermostable H2/O2 enzymatic fuel cell. Energy Environ. Sci. 2017, 10, 1966–1982.CrossRefGoogle Scholar
  15. [15]
    Shao, M. L.; Zafar, M. N.; Falk, M.; Ludwig, R.; Sygmund, C.; Peterbauer, C. K.; Guschin, D. A.; MacAodha, D.; Conghaile, P. tÓ.; Leech, D. et al. Optimization of a membraneless glucose/oxygen enzymatic fuel cell based on a bioanode with high coulombic efficiency and current density. ChemPhysChem 2013, 14, 2260–2269.CrossRefGoogle Scholar
  16. [16]
    Ramanavicius, A.; Kausaite, A.; Ramanaviciene, A. Biofuel cell based on direct bioelectrocatalysis. Biosens. Bioelectron. 2005, 20, 1962–1967.CrossRefGoogle Scholar
  17. [17]
    Okuda, J.; Yamazaki, T.; Fukasawa, M.; Kakehi, N.; Sode, K. The application of engineered glucose dehydrogenase to a direct electron–transfer-type continuous glucose monitoring system and a compartmentless biofuel cell. Anal. Lett. 2007, 40, 431–440.CrossRefGoogle Scholar
  18. [18]
    Yuhashi, N.; Tomiyama, M.; Okuda, J.; Igarashi, S.; Ikebukuro, K.; Sode, K. Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase. Biosens. Bioelectron. 2005, 20, 2145–2150.CrossRefGoogle Scholar
  19. [19]
    Rubenwolf, S.; Kerzenmacher, S.; Zengerle, R.; Von Stetten, F. Strategies to extend the lifetime of bioelectrochemical enzyme electrodes for biosensing and biofuel cell applications. Appl. Microbiol. Biotechnol. 2011, 89, 1315–1322.CrossRefGoogle Scholar
  20. [20]
    Reuillard, B.; Abreu, C.; Lalaoui, N.; Le Goff, A.; Holzinger, M.; Ondel, O.; Buret, F.; Cosnier, S. One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode. Bioelectrochemistry 2015, 106, 73–76.CrossRefGoogle Scholar
  21. [21]
    Miyake, T.; Oike, M.; Yoshino, S.; Yatagawa, Y.; Haneda, K.; Nishizawa, M. Automatic, sequential power generation for prolonging the net lifetime of a miniature biofuel cell stack. Lab Chip 2010, 10, 2574–2578.CrossRefGoogle Scholar
  22. [22]
    Willner, I.; Yan, Y. M.; Willner, B.; Tel-Vered, R. Integrated enzyme-based biofuel cells—A review. Fuel Cells 2009, 9, 7–24.CrossRefGoogle Scholar
  23. [23]
    Willner, I.; Katz, E. Magnetic control of electrocatalytic and bioelectrocatalytic processes. Angew. Chem., Int. Ed. 2003, 42, 4576–4588.CrossRefGoogle Scholar
  24. [24]
    Katz, E.; Lioubashevski, O.; Willner, I. Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: Enhanced performance of biofuel cells. J. Am. Chem. Soc. 2005, 127, 3979–3988.CrossRefGoogle Scholar
  25. [25]
    Lee, J.; Lee, D.; Oh, E.; Kim, J.; Kim, Y. P.; Jin, S. M.; Kim, H. S.; Hwang, Y.; Kwak, J. H.; Park, J. G. et al. Preparation of a magnetically switchable bio-electrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. Angew. Chem. 2005, 117, 7593–7598.CrossRefGoogle Scholar
  26. [26]
    Wang, J.; Scampicchio, M.; Laocharoensuk, R.; Valentini, F.; González-García, O.; Burdick, J. Magnetic tuning of the electrochemical reactivity through controlled surface orientation of catalytic nanowires. J. Am. Chem. Soc. 2006, 128, 4562–4563.CrossRefGoogle Scholar
  27. [27]
    Loaiza, Ó. A.; Laocharoensuk, R.; Burdick, J.; Rodríguez, M. C.; Pingarron, J. M.; Pedrero, M.; Wang, J. Adaptive orientation of multifunctional nanowires for magnetic control of bioelectrocatalytic processes. Angew. Chem. 2007, 119, 1530–1533.CrossRefGoogle Scholar
  28. [28]
    Katz, E. Biofuel cells with switchable power output. Electroanalysis 2010, 22, 744–756.CrossRefGoogle Scholar
  29. [29]
    Bahshi, L.; Frasconi, M.; Tel-Vered, R.; Yehezkeli, O.; Willner, I. Following the biocatalytic activities of glucose oxidase by electrochemically cross-linked enzyme-Pt nanoparticles composite electrodes. Anal. Chem. 2008, 80, 8253–8259.CrossRefGoogle Scholar
  30. [30]
    Yan, Y. M.; Baravik, I.; Tel-Vered, R.; Willner, I. An ethanol/O2 biofuel cell based on an electropolymerized bilirubin oxidase/Pt nanoparticle bioelectrocatalytic O2-reduction cathode. Adv. Mater. 2009, 21, 4275–4279.CrossRefGoogle Scholar
  31. [31]
    Willner, I.; Willner, B.; Tel-Vered, R. Electroanalytical applications of metallic nanoparticles and supramolecular nanostructures. Electroanalysis 2011, 23, 13–28.CrossRefGoogle Scholar
  32. [32]
    Murata, K.; Kajiya, K.; Nakamura, N.; Ohno, H. Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell. Energy Environ. Sci. 2009, 2, 1280–1285.CrossRefGoogle Scholar
  33. [33]
    Katz, E.; Willner, I.; Wang, J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 2004, 16, 19–44.CrossRefGoogle Scholar
  34. [34]
    Peng, H. P.; Liang, R. P.; Zhang, L.; Qiu, J. D. Facile preparation of novel core–shell enzyme–Au–polydopamine–Fe3O4 magnetic bionanoparticles for glucosesensor. Biosens. Bioelectron. 2013, 42, 293–299.CrossRefGoogle Scholar
  35. [35]
    Katz, E.; Willner, I. Switching of directions of bioelectrocatalytic currents and photocurrents at electrode surfaces by using hydrophobic magnetic nanoparticles. Angew. Chem. 2005, 117, 4869–4872.CrossRefGoogle Scholar
  36. [36]
    Zakharchenko, A.; Guz, N.; Laradji, A. M.; Katz, E.; Minko, S. Magnetic field remotely controlled selective biocatalysis. Nat. Catal. 2018, 1, 73–81.CrossRefGoogle Scholar
  37. [37]
    Eskandari, K.; Zarei, H.; Ghourchian, H.; Amoozadeh, S. M. The electrochemical study of glucose oxidase on gold-coated magnetic iron oxide nanoparticles. J. Anal. Chem. 2015, 70, 1254–1260.CrossRefGoogle Scholar
  38. [38]
    Goh, W. J.; Makam, V. S.; Hu, J.; Kang, L. F.; Zheng, M. R.; Yoong, S. L.; Udalagama, C. N. B.; Pastorin, G. Iron oxide filled magnetic carbon nanotube–enzyme conjugates for recycling of amyloglucosidase: Toward useful applications in biofuel production process. Langmuir 2012, 28, 16864–16873.CrossRefGoogle Scholar
  39. [39]
    Katz, E.; Baron, R.; Willner, I. Magnetoswitchable electrochemistry gated by alkyl-chain-functionalized magnetic nanoparticles: Control of diffusional and surface-confined electrochemical processes. J. Am. Chem. Soc. 2005, 127, 4060–4070.CrossRefGoogle Scholar
  40. [40]
    Taurino, I.; Sanzò, G.; Antiochia, R.; Tortolini, C.; Mazzei, F.; Favero, G.; De Micheli, G.; Carrara, S. Recent advances in third generation biosensors based on au and pt nanostructured electrodes. TrAC Trends Anal. Chem. 2016, 79, 151–159.CrossRefGoogle Scholar
  41. [41]
    Das, P.; Das, M.; Chinnadayyala, S. R.; Singha, I. M.; Goswami, P. Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens. Bioelectron. 2016, 79, 386–397.CrossRefGoogle Scholar
  42. [42]
    Lu, X. B.; Wen, Z. H.; Li, J. H. Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors. Biomaterials 2006, 27, 5740–5747.CrossRefGoogle Scholar
  43. [43]
    Zhang, Q.; Qiao, Y.; Hao, F.; Zhang, L.; Wu, S. Y.; Li, Y.; Li, J. H.; Song, X. M. Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chem. Eur.—J. 2010, 16, 8133–8139.CrossRefGoogle Scholar
  44. [44]
    Milton, R. D.; Minteer, S. D. Direct enzymatic bioelectrocatalysis: Differentiating between myth and reality. J. Roy. Soc. Interface 2017, 14, 20170253.CrossRefGoogle Scholar
  45. [45]
    Cosnier, S.; Gross, A. J.; Le Goff, A.; Holzinger, M. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations. J. Power Sources 2016, 325, 252–263.CrossRefGoogle Scholar
  46. [46]
    Falk, M.; Blum, Z.; Shleev, S. Direct electron transfer based enzymatic fuel cells. Electrochim. Acta 2012, 82, 191–202.CrossRefGoogle Scholar
  47. [47]
    Wen, Z. H.; Ci, S. Q.; Hou, Y.; Chen, J. H. Facile one-pot, one-step synthesis of a carbon nanoarchitecture for an advanced multifunctonal electrocatalyst. Angew. Chem., Int. Ed. 2014, 53, 6496–6500.CrossRefGoogle Scholar
  48. [48]
    So, K.; Kawai, S.; Hamano, Y.; Kitazumi, Y.; Shirai, O.; Hibi, M.; Ogawa, J.; Kano, K. Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode. Phys. Chem. Chem. Phys. 2014, 16, 4823–4829.CrossRefGoogle Scholar
  49. [49]
    Trifonov, A.; Herkendell, K.; Tel-Vered, R.; Yehezkeli, O.; Woerner, M.; Willner, I. Enzyme-capped relay-functionalized mesoporous carbon nanoparticles: Effective bioelectrocatalytic matrices for sensing and biofuel cell applications. ACS Nano 2013, 7, 11358–11368.CrossRefGoogle Scholar
  50. [50]
    Taylor, A.; Krupskaya, Y.; Costa, S.; Oswald, S.; Krämer, K.; Füssel, S.; Klingeler, R.; Büchner, B.; Borowiak-Palen, E.; Wirth, M. P. Functionalization of carbon encapsulated iron nanoparticles. J. Nanopart. Res. 2010, 12, 513–519.CrossRefGoogle Scholar
  51. [51]
    Ameyama, M.; Shinagawa, E.; Matsushita, K.; Adachi, O. D-fructose dehydrogenase of gluconobacter industrius: Purification, characterization, and application to enzymatic microdetermination of D-fructose. J. Bacteriol. 1981, 145, 814–823.Google Scholar
  52. [52]
    Herkendell, K.; Tel-Vered, R.; Stemmer, A. Switchable aerobic/anaerobic multi-substrate biofuel cell operating on anodic and cathodic enzymatic cascade assemblies. Nanoscale 2017, 9, 14118–14126.CrossRefGoogle Scholar
  53. [53]
    Otsuka, K.; Sugihara, T.; Tsujino, Y.; Osakai, T.; Tamiya, E. Electrochemical consideration on the optimum ph of bilirubin oxidase. Anal. Biochem. 2007, 370, 98–106.CrossRefGoogle Scholar
  54. [54]
    Trifonov, A.; Tel-Vered, R.; Fadeev, M.; Willner, I. Electrically contacted bienzyme-functionalized mesoporous carbon nanoparticle electrodes: Applications for the development of dual amperometric biosensors and multifuel-driven biofuel cells. Adv. Energy Mater. 2015, 5, 1401853.CrossRefGoogle Scholar
  55. [55]
    Ramírez, P.; Mano, N.; Andreu, R.; Ruzgas, T.; Heller, A.; Gorton, L.; Shleev, S. Direct electron transfer from graphite and functionalized gold electrodes to T1 and T2/T3 copper centers of bilirubin oxidase. Biochim. Biophys. Acta 2008, 1777, 1364–1369.CrossRefGoogle Scholar
  56. [56]
    Frasconi, M.; Boer, H.; Koivula, A.; Mazzei, F. Electrochemical evaluation of electron transfer kinetics of high and low redox potential laccases on gold electrode surface. Electrochim. Acta 2010, 56, 817–827.CrossRefGoogle Scholar
  57. [57]
    Filip, J.; Šefčovičová, J.; Gemeiner, P.; Tkac, J. Electrochemistry of bilirubin oxidase and its use in preparation of a low cost enzymatic biofuel cell based on a renewable composite binder chitosan. Electrochim. Acta 2013, 87, 366–374.CrossRefGoogle Scholar
  58. [58]
    Messiha, H. L.; Wongnate, T.; Chaiyen, P.; Jones, A. R.; Scrutton, N. S. Magnetic field effects as a result of the radical pair mechanism are unlikely in redox enzymes. J. Roy. Soc. Interface 2015, 12, 20141155.CrossRefGoogle Scholar
  59. [59]
    Tsujimura, S.; Nishina, A.; Kamitaka, Y.; Kano, K. Coulometric D-fructose biosensor based on direct electron transfer using D-fructose dehydrogenase. Anal. Chem. 2009, 81, 9383–9387.CrossRefGoogle Scholar
  60. [60]
    Bourdillon, C.; Demaille, C.; Moiroux, J.; Saveant, J. M. New insights into the enzymic catalysis of the oxidation of glucose by native and recombinant glucose oxidase mediated by electrochemically generated one-electron redox cosubstrates. J. Am. Chem. Soc. 1993, 115, 1–10.CrossRefGoogle Scholar
  61. [61]
    Zhao, M.; Gao, Y.; Sun, J. Y.; Gao, F. Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots. Anal. Chem. 2015, 87, 2615–2622.CrossRefGoogle Scholar
  62. [62]
    Zeng, T.; Pankratov, D.; Falk, M.; Leimkühler, S.; Shleev, S.; Wollenberger, U. Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells. Biosens. Bioelectron. 2015, 66, 39–42.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Säumerstrasse 4, Nanotechnology Group, D-MAVTETH ZürichRüschlikonSwitzerland

Personalised recommendations