Nano Research

, Volume 12, Issue 4, pp 759–766 | Cite as

Physical activation of graphene: An effective, simple and clean procedure for obtaining microporous graphene for high-performance Li/S batteries

  • Almudena Benítez
  • Alvaro Caballero
  • Julián MoralesEmail author
  • Jusef HassounEmail author
  • Enrique Rodríguez-Castellón
  • Jesús Canales-Vázquez
Research Article


Graphene nanosheets are a promising scaffold to accommodate S for achieving high performance Li/S battery. Nanosheet activation is used as a viable strategy to induce a micropore system and further improve the battery performance. Accordingly, chemical activation methods dominate despite the need of multiple stages, which slow down the process in addition to making them tiresome. Here, a three-dimensional (3D) N-doped graphene specimen was physically activated with CO2, a clean and single step process, and used for the preparation of a sulfur composite (A-3DNG/S). The A-3DNG/S composite exhibited outstanding electrochemical properties such as an excellent rate capability (1,000 mAh·g−1 at 2C), high reversible capacity and cycling stability (average capacity ~ 800 mAh·g−1 at 1C after 200 cycles), values which exceed those measured in chemically activated graphene. Therefore, these results support the use of physical activation as a simple and efficient alternative to improve the performance of carbons as an S host for high-performance Li-S batteries.


physical activation 3D-graphene solvothermal microwave synthesis Li-S battery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was performed with the financial support of the Ministerio de Economía y Competitividad (No. MAT2017-87541-R) and Junta de Andalucía (Group FQM-175). J. H. thank the University of Ferrara for the grant “Fondo di Ateneo per la Ricerca Locale (FAR) 2017”. E. Rodríguez-Castellón thanks to Ministry of Economy and Competitiveness (Spain) (MINECO), project CTQ2015-68951-C3-3R and FEDER funds.

Supplementary material

12274_2019_2282_MOESM1_ESM.pdf (2.7 mb)
Physical activation of graphene: An effective, simple and clean procedure for obtaining microporous graphene for high-performance Li/S batteries


  1. [1]
    Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.CrossRefGoogle Scholar
  2. [2]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.CrossRefGoogle Scholar
  3. [3]
    Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.CrossRefGoogle Scholar
  4. [4]
    Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Garsuch, A.; Chesneau. F. F. Review on Li-sulfur battery systems: An integral perspective. Adv. Energy Mater. 2015, 5, 1500212.CrossRefGoogle Scholar
  5. [5]
    Ely, T. O.; Kamzabek, D.; Chakraborty, D.; Doherty, M. F. Lithium-sulfur batteries: State of the art and future directions. ACS Appl. Energy Mater. 2018, 1, 1783–1814.CrossRefGoogle Scholar
  6. [6]
    Su, D. W.; Zhou, D.; Wang, C. Y.; Wang, G. X. Toward high performance lithium–sulfur batteries based on Li2S cathodes and beyond: Status, challenges, and perspectives. Adv. Funct. Mater. 2018, 28, 1800154.CrossRefGoogle Scholar
  7. [7]
    Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.CrossRefGoogle Scholar
  8. [8]
    Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904–5908.CrossRefGoogle Scholar
  9. [9]
    Tao, X. Y.; Chen, X. R.; Xia, Y.; Huang, H.; Gan, Y. P.; Wu, R.; Chen, F.; Zhang, W. K. Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium–sulfur batteries. J. Mater. Chem. A 2013, 1, 3295–3301.CrossRefGoogle Scholar
  10. [10]
    Hernández-Rentero, C.; Córdoba, R.; Moreno, N.; Caballero, A.; Morales, J.; Olivares-Marín, M.; Gómez-Serrano, V. Low-cost disordered carbons for Li/S batteries: A high-performance carbon with dual porosity derived from cherry pits. Nano Res. 2018, 11, 89–100.CrossRefGoogle Scholar
  11. [11]
    Chen, S. Q.; Sun, B.; Xie, X. Q.; Mondal, A. K.; Huang, X. D.; Wang, G. X. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy 2015, 16, 268–280.CrossRefGoogle Scholar
  12. [12]
    Moreno, N.; Caballero, A.; Hernán, L.; Morales, J.; Canales-Vázquez, J. Ordered mesoporous carbons obtained by a simple soft template method as sulfur immobilizers for lithium–sulfur cells. Phys. Chem. Chem. Phys. 2014, 16, 17332–17340.CrossRefGoogle Scholar
  13. [13]
    Ahn, W.; Kim, K. B.; Jung, K. N.; Shin, K. H.; Jin, C. S. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. J. Power Sources 2012, 202, 394–399.CrossRefGoogle Scholar
  14. [14]
    Ye, X. M.; Ma, J.; Hu, Y. S.; Wei, H. Y.; Ye, F. F. MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 775–780.CrossRefGoogle Scholar
  15. [15]
    Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.CrossRefGoogle Scholar
  16. [16]
    Moon, J.; Park, J.; Jeon, C.; Lee, J.; Jo, I.; Yu, S. H.; Cho, S. P.; Sung, Y. E.; Hong, B. H. An electrochemical approach to graphene oxide coated sulfur for long cycle life. Nanoscale 2015, 7, 13249–13255.CrossRefGoogle Scholar
  17. [17]
    Kim, H.; Lim, H. D.; Kim, J.; Kang, K. Graphene for advanced Li/S and Li/air batteries. J. Mater. Chem. A 2014, 2, 33–47.CrossRefGoogle Scholar
  18. [18]
    Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2014, 14, 271–279.CrossRefGoogle Scholar
  19. [19]
    Xu, J. T.; Shui, J. L.; Wang, J. L.; Wang, M.; Liu, H. K.; Dou, S. X.; Jeon, I. Y.; Seo, J. M.; Baek, J. B.; Dai, L. M. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries. ACS Nano 2014, 8, 10920–10930.CrossRefGoogle Scholar
  20. [20]
    Wei, M.; Yuan, P. L.; Chen, W. H.; Hu, J. H.; Mao, J.; Shao, G. S. Facile assembly of partly graphene-enveloped sulfur composites in double-solvent for lithium-sulfur batteries. Electrochim. Acta 2015, 178, 564–570.CrossRefGoogle Scholar
  21. [21]
    Sun, H. T.; Mei, L.; Liang, J. F.; Zhao, Z. P.; Lee, C.; Fei, H. L.; Ding, M. N.; Lau, J.; Li, M. F.; Wang, C. et al. Three-dimensional holey-graphene/ niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604.CrossRefGoogle Scholar
  22. [22]
    Xia, J. L.; Chen, F.; Li, J. H.; Tao, N. J. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 2009, 4, 505–509.CrossRefGoogle Scholar
  23. [23]
    Dai, S. G.; Liu, Z.; Zhao, B. T.; Zeng, J. H.; Hu, H.; Zhang, Q. B.; Chen, D. C.; Qu, C.; Dang, D.; Liu, M. L. A high-performance supercapacitor electrode based on N-doped porous graphene. J. Power Sources 2018, 387, 43–48.CrossRefGoogle Scholar
  24. [24]
    Wang, H.; Yuan, X. Z.; Zeng, G. M.; Wu, Y.; Liu, Y.; Jiang, Q.; Gu, S. S. Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Adv. Colloid Interface Sci. 2015, 221, 41–59.CrossRefGoogle Scholar
  25. [25]
    Zhou, G. M.; Li, L.; Ma, C. Q.; Wang, S. G.; Shi, Y.; Koratkar, N.; Ren, W. C.; Li, F.; Cheng, H. M. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy 2015, 11, 356–365.CrossRefGoogle Scholar
  26. [26]
    Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C. Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y.; Mai, L. Q. et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery. Nano Res. 2016, 9, 240–248.CrossRefGoogle Scholar
  27. [27]
    Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 2015, 6, 7760.CrossRefGoogle Scholar
  28. [28]
    Fei, L. F.; Li, X. G.; Bi, W. T.; Zhuo, Z. W.; Wei, W. F.; Sun, L.; Lu, W.; Wu, X. J.; Xie, K. Y.; Wu, C. Z. et al. Graphene/sulfur hybrid nanosheets from a space-confined “sauna” reaction for high-performance lithium–sulfur batteries. Adv. Mater. 2015, 27, 5936–5942.CrossRefGoogle Scholar
  29. [29]
    Xie, Y.; Meng, Z.; Cai, T. W.; Han, W. Q. Effect of boron-doping on the graphene aerogel used as cathode for the lithium–sulfur battery. ACS Appl. Mater. Interfaces 2015, 7, 25202–25210.CrossRefGoogle Scholar
  30. [30]
    Zegeye, T. A.; Tsai, M. C.; Cheng, J. H.; Lin, M. H.; Chen, H. M.; Rick, J.; Su, W. N.; Kuo, C. F. J.; Hwang, B. J. Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries. J. Power Sources 2017, 353, 298–311.CrossRefGoogle Scholar
  31. [31]
    Sui, Z. Y.; Yang, Q. S.; Zhou, H. Y.; Li, X.; Sun, Y. N.; Xiao, P. W.; Wei, Z. X.; Han, B. H. Nitrogen-doped graphene aerogel as both a sulfur host and an effective interlayer for high-performance lithium–sulfur batteries. Nanotechnology 2017, 28, 495701.CrossRefGoogle Scholar
  32. [32]
    Yu, M. P.; Ma, J. S.; Xie, M.; Song, H. Q.; Tian, F. Y.; Xu, S. S.; Zhou, Y.; Li, B.; Wu, D.; Qiu H. et al. Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium–sulfur batteries. Adv. Energy Mater. 2017, 7, 1602347.CrossRefGoogle Scholar
  33. [33]
    Li, L.; Zhou, G. M.; Yin, L. C.; Koratkar, N.; Li, F.; Cheng, H. M. Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li-S batteries. Carbon 2016, 108, 120–126.CrossRefGoogle Scholar
  34. [34]
    Zhang, F. F.; Wang, C. L.; Huang, G.; Yin, D. M.; Wang, L. M. Enhanced electrochemical performance by a three-dimensional interconnected porous nitrogen-doped graphene/carbonized polypyrrole composite for lithium-sulfur batteries. RSC Adv. 2016, 6, 26264–26270.CrossRefGoogle Scholar
  35. [35]
    Ding, K.; Bu, Y. K.; Liu, Q.; Li, T. F.; Meng, K.; Wang, Y. B. Ternarylayered nitrogen-doped graphene/sulfur/polyaniline nanoarchitecture for the high-performance of lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 8022–8027.CrossRefGoogle Scholar
  36. [36]
    Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. High-rate, ultralong cycle-life lithium/ sulfur batteries enabled by nitrogen-doped grapheme. Nano Lett. 2014, 14, 4821–4827.CrossRefGoogle Scholar
  37. [37]
    Wang, Z. Y.; Dong, Y. F.; Li, H. J.; Zhao, Z. B.; Wu, H. B.; Hao, C.; Liu, S. H.; Qiu, J. S.; Lou, X. W. Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 2014, 5, 5002.CrossRefGoogle Scholar
  38. [38]
    Wang, X. W.; Zhang, Z. A.; Qu, Y. H.; Lai, Y. Q.; Li, J. Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium–sulfur batteries. J. Power Sources 2014, 256, 361–368.CrossRefGoogle Scholar
  39. [39]
    Wang, C.; Su, K.; Wan, W.; Guo, H.; Zhou, H. H.; Chen, J. T.; Zhang, X. X.; Huang, Y. H. High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium–sulfur batteries. J. Mater. Chem. A 2014, 2, 5018–5023.CrossRefGoogle Scholar
  40. [40]
    Su, D. W.; Cortie, M.; Wang, G. X. Fabrication of N-doped graphene–carbon nanotube hybrids from prussian blue for lithium–sulfur batteries. Adv. Energy Mater. 2017, 7, 1602014.CrossRefGoogle Scholar
  41. [41]
    Kou, T. Y.; Yao, B.; Liu, T. Y.; Li, Y. Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors. J. Mater. Chem. A 2017, 5, 17151–17173.CrossRefGoogle Scholar
  42. [42]
    Ahmadpour, A.; Do, D. D. The preparation of active carbons from coal by chemical and physical activation. Carbon 1996, 34, 471–479.CrossRefGoogle Scholar
  43. [43]
    Yang, X.; Zhang, L.; Zhang, F.; Huang, Y.; Chen, Y. S. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries. ACS Nano 2014, 8, 5208–5215.CrossRefGoogle Scholar
  44. [44]
    Chen, X. A.; Xiao, Z. B.; Ning, X. T.; Liu, Z.; Yang, Z.; Zou, C.; Wang, S.; Chen, X. H.; Chen, Y.; Huang, S. M. Sulfur-impregnated, sandwich-type, hybrid carbon nanosheets with hierarchical porous structure for highperformance lithium-sulfur batteries. Adv. Energy Mater. 2014, 4, 1301988.CrossRefGoogle Scholar
  45. [45]
    You, Y.; Zeng, W. C.; Yin, Y. X.; Zhang, J.; Yang, C. P.; Zhu, Y. W.; Guo, Y. G. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries. J. Mater. Chem. A 2015, 3, 4799–4802.CrossRefGoogle Scholar
  46. [46]
    Xu, J.; Su, D. W.; Zhang, W. X.; Bao, W. Z.; Wang, G. X. A nitrogen–sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium–sulfur batteries. J. Mater. Chem. A 2016, 4, 17381–17393.CrossRefGoogle Scholar
  47. [47]
    Ding, B.; Yuan, C. Z.; Shen, L. F.; Xu, G. Y.; Nie, P.; Lai, Q. X.; Zhang, X. G. Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 1096–1101.CrossRefGoogle Scholar
  48. [48]
    Shan, J. Q.; Liu, Y. X.; Su, Y. Z.; Liu, P.; Zhuang, X. D.; Wu, D. Q.; Zhang, F.; Feng, X. L. Graphene-directed two-dimensional porous carbon frameworks for high-performance lithium-sulfur battery cathode. J. Mater. Chem. A 2016, 4, 314–320.CrossRefGoogle Scholar
  49. [49]
    Liu, S. Z.; Peng, W. C.; Sun, H. Q.; Wang, S. B. Physical and chemical activation of reduced graphene oxide for enhanced adsorption and catalytic oxidation. Nanoscale 2014, 6, 766–771.CrossRefGoogle Scholar
  50. [50]
    Benítez, A.; Di Lecce, D.; Elia, G. A.; Caballero, Á.; Morales, J.; Hassoun, J. A lithium-ion battery using a 3D-array nanostructured graphene-sulfur cathode and a silicon oxide-based anode. ChemSusChem 2018, 11, 1512–1520.CrossRefGoogle Scholar
  51. [51]
    Al-Hazmi, F. S.; Al-Harbi, G. H.; Beall, G. W.; Al-Ghamdi, A. A.; Obaid, A. Y.; Mahmoud, W. E. One pot synthesis of graphene based on microwave assisted solvothermal technique. Synth. Met. 2015, 200, 54–57.CrossRefGoogle Scholar
  52. [52]
    Chen, H. W.; Wang, C. H.; Dong, W. L.; Lu, W.; Du, Z. L.; Chen, L. W. Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano Lett. 2014, 15, 798–802.CrossRefGoogle Scholar
  53. [53]
    Nguyen, C.; Do, D. D. The Dubinin–Radushkevich equation and the underlying microscopic adsorption description. Carbon 2001, 39, 1327–1336.CrossRefGoogle Scholar
  54. [54]
    Vargas, O. A.; Caballero, Á.; Morales, J. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? Nanoscale 2012, 4, 2083–2092.CrossRefGoogle Scholar
  55. [55]
    Jorio, A.; Martins-Ferreira, E. H.; Moutinho, M. V. O.; Stavale, F.; Achete, C. A.; Capaz, R. B. Measuring disorder in graphene with the G and D bands. Phys. Status Solid B 2010, 247, 2980–2982.CrossRefGoogle Scholar
  56. [56]
    Benítez, A.; Di Lecce, D.; Caballero, Á.; Morales, J.; Rodríguez-Castellón, E.; Hassoun, J. Lithium sulfur battery exploiting material design and electrolyte chemistry: 3D graphene framework and diglyme solution. J. Power Sources 2018, 397, 102–112.CrossRefGoogle Scholar
  57. [57]
    Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C 2010, 114, 12800–12804.CrossRefGoogle Scholar
  58. [58]
    Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 2011, 115, 17009–17019.CrossRefGoogle Scholar
  59. [59]
    Jiang, Y.; Wei, M.; Feng, J. K.; Ma, Y. C.; Xiong, S. L. Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ. Sci. 2016, 9, 1430–1438.CrossRefGoogle Scholar
  60. [60]
    Song, M. K.; Cairns, E. J.; Zhang, Y. G. Lithium/sulfur batteries with high specific energy: Old challenges and new opportunities. Nanoscale 2013, 5, 2186–2204.CrossRefGoogle Scholar
  61. [61]
    Wu, F.; Li, J.; Tian, Y. F.; Su, Y. F.; Wang, J.; Yang, W.; Li, N.; Chen, S.; Bao, L. Y. 3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium-sulfur batteries. Sci. Rep. 2015, 5, 13340.CrossRefGoogle Scholar
  62. [62]
    Di Lecce, D.; Hassoun, J. Lithium transport properties in LiMn1-aFeaPO4 olivine cathodes. J. Phys. Chem. C 2015, 119, 20855–20863.CrossRefGoogle Scholar
  63. [63]
    Zhou, W. D.; Xiao, X. C.; Cai, M.; Yang, L. Polydopamine-coated, nitrogendoped, hollow carbon–sulfur double-layered core–shell structure for improving lithium–sulfur batteries. Nano Lett. 2014, 14, 5250–5256.CrossRefGoogle Scholar
  64. [64]
    Carbone, L.; Coneglian, T.; Gobet, M.; Munoz, S.; Devany, M.; Greenbaum, S.; Hassoun, J. A simple approach for making a viable, safe, and highperformances lithium-sulfur battery. J. Power Sources 2018, 377, 26–35.CrossRefGoogle Scholar
  65. [65]
    Chen, F.; Ma, L. L.; Ren, J. G.; Luo, X. Y.; Liu, B. B.; Zhou, X. Y. Sandwich-type nitrogen and sulfur codoped graphene-backboned porous carbon coated separator for high performance lithium-sulfur batteries. Nanomaterials 2018, 8, 191.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Almudena Benítez
    • 1
  • Alvaro Caballero
    • 1
  • Julián Morales
    • 1
    Email author
  • Jusef Hassoun
    • 2
    Email author
  • Enrique Rodríguez-Castellón
    • 3
  • Jesús Canales-Vázquez
    • 4
  1. 1.Dpto. Química Inorgánica e Ingeniería Química, Instituto de Química Fina y NanoquímicaUniversidad de CórdobaCórdobaSpain
  2. 2.Department of Chemical and Pharmaceutical SciencesUniversity of FerraraFerraraItaly
  3. 3.Dpto. de Química Inorgánica, Cristalografía y Mineralogía, Facultad de CienciasUniversidad de MálagaMálagaSpain
  4. 4.Instituto de Energías RenovablesUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations