Skip to main content

Quantum-confined ion superfluid in nerve signal transmission

Abstract

We propose a process of quantum-confined ion superfluid (QISF), which is enthalpy-driven confined ordered fluid, to explain the transmission of nerve signals. The ultrafast Na+ and K+ ions transportation through all sodium-potassium pump nanochannels simultaneously in the membrane is without energy loss, and leads to QISF wave along the neuronal axon, which acts as an information medium in the ultrafast nerve signal transmission. The QISF process will not only provide a new view point for a reasonable explanation of ultrafast signal transmission in the nerves and brain, but also challenge the theory of matter wave for ions, molecules and particles.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Hodgkin, A. L.; Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500–544.

    Article  Google Scholar 

  2. [2]

    Andersen, S. S. L.; Jackson, A. D.; Heimburg, T. Towards a thermodynamic theory of nerve pulse propagation. Prog. Neurobiol. 2009, 88, 104–113.

    Article  Google Scholar 

  3. [3]

    Barnett, M. W.; Larkman, P. M. The action potential. Pract. Neurol. 2007, 7, 192–197.

    Google Scholar 

  4. [4]

    Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 2005, 438, 44.

    Article  Google Scholar 

  5. [5]

    Sansom, M. S. P.; Shrivastava, I. H.; Bright, J. N.; Tate, J.; Capener, C. E.; Biggin, P. C. Potassium channels: Structures, models, simulations. Biochim. Biophys. Acta 2002, 1565, 294–307.

    Article  Google Scholar 

  6. [6]

    Chen, S. Y.; Tang, Y. L.; Zhan, K.; Sun, D. H.; Hou, X. Chemiresistive nanosensors with convex/concave structures. Nano Today 2018, 20, 84–100.

    Article  Google Scholar 

  7. [7]

    Zhu, Y. L.; Zhan, K.; Hou, X. Interface design of nanochannels for energy utilization. ACS Nano 2018, 12, 908–911.

    Article  Google Scholar 

  8. [8]

    Hou, X. Smart gating multi-scale pore/channel-based membranes. Adv. Mater. 2016, 28, 7049–7064.

    Article  Google Scholar 

  9. [9]

    Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A. L.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon, R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69–77.

    Article  Google Scholar 

  10. [10]

    MacKinnon, R. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angew. Chem., Int. Ed. 2004, 43, 4265–4277.

    Article  Google Scholar 

  11. [11]

    Shi, C. W.; He, Y.; Hendriks, K.; de Groot, B. L.; Cai, X. Y.; Tian, C. L.; Lange, A.; Sun, H. A single NaK channel conformation is not enough for non-selective ion conduction. Nat. Commun. 2018, 9, 717.

    Article  Google Scholar 

  12. [12]

    Tadross, M. R.; Dick, I. E.; Yue, D. T. Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell 2008, 133, 1228–1240.

    Article  Google Scholar 

  13. [13]

    Wen, L. P.; Zhang, X. Q.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China Mater. 2018, 61, 1027–1032.

    Article  Google Scholar 

  14. [14]

    Zhang, X. Q.; Liu, H. L.; Jiang, L. Wettability and applications of nanochannels. Adv. Mater., in press, DOI: 10.1002/adma.201804508.

  15. [15]

    Zhao, B. S.; Meijer, G.; Schöllkopf, W. Quantum reflection of He2 several nanometers above a grating surface. Science 2011, 331, 892–894.

    Article  Google Scholar 

  16. [16]

    Juffmann, T.; Milic, A.; Müllneritsch, M.; Asenbaum, P.; Tsukernik, A.; Tüxen, J.; Mayor, M.; Cheshnovsky, O.; Arndt, M. Real-time single-molecule imaging of quantum interference. Nat. Nanotechnol. 2012, 7, 297–300.

    Article  Google Scholar 

  17. [17]

    Hackermüller, L.; Uttenthaler, S.; Hornberger, K.; Reiger, E.; Brezger, B.; Zeilinger, A.; Arndt, M. Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett. 2003, 91, 090408.

    Article  Google Scholar 

  18. [18]

    Arndt, M.; Nairz, O.; Vos-Andreae, J.; Keller, C.; van der Zouw, G.; Zeilinger, A. Wave–particle duality of C60 molecules. Nature 1999, 401, 680–682.

    Article  Google Scholar 

  19. [19]

    Brezger, B.; Hackermüller, L.; Uttenthaler, S.; Petschinka, J.; Arndt, M.; Zeilinger, A. Matter-wave interferometer for large molecules. Phys. Rev. Lett. 2002, 88, 100404.

    Article  Google Scholar 

  20. [20]

    Gerlich, S.; Eibenberger, S.; Tomandl, M.; Nimmrichter, S.; Hornberger, K.; Fagan, P. J.; Tüxen, J.; Mayor, M.; Arndt, M. Quantum interference of large organic molecules. Nat. Commun. 2011, 2, 263.

    Article  Google Scholar 

  21. [21]

    Eibenberger, S.; Gerlich, S.; Arndt, M.; Mayor, M.; Tüxen, J. Matter–wave interference of particles selected from a molecular library with masses exceeding 10,000 amu. Phys. Chem. Chem. Phys. 2013, 15, 14696–14700.

    Article  Google Scholar 

  22. [22]

    Summhammer, J.; Sulyok, G.; Bernroider, G. Quantum dynamics and non-local effects behind ion transition states during permeation in membrane channel proteins. Entropy 2018, 20, 558.

    Article  Google Scholar 

  23. [23]

    Salari, V.; Moradi, N.; Sajadi, M.; Fazileh, F.; Shahbazi, F. Quantum decoherence time scales for ionic superposition states in ion channels. Phys. Rev. E 2015, 91, 032704.

    Article  Google Scholar 

  24. [24]

    Hille, B. The permeability of the sodium channel to metal cations in myelinated nerve. J. Gen. Physiol. 1972, 59, 637–658.

    Article  Google Scholar 

  25. [25]

    Sun, Y. M.; Favre, I.; Schild, L.; Moczydlowski, E. On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel. J. Gen. Physiol. 1997, 110, 693–715.

    Article  Google Scholar 

  26. [26]

    Zhou, Y. F.; Morais-Cabral, J. H.; Kaufman, A.; MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–fab complex at 2.0 Å resolution. Nature 2001, 414, 43–48.

    Article  Google Scholar 

  27. [27]

    Lynch, J. W. Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 2004, 84, 1051–1095.

    Article  Google Scholar 

  28. [28]

    Linsdell, P.; Tabcharani, J. A.; Rommens, J. M.; Hou, Y. X.; Chang, X. B.; Tsui, L. C.; Riordan, J. R.; Hanrahan, J. W. Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J. Gen. Physiol. 1997, 110, 355–364.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51603211 and 51673107), the National Key R&D program of China (No. 2016YFA0200803), and the 111 Project (No. B14009).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lei Jiang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Jiang, L. Quantum-confined ion superfluid in nerve signal transmission. Nano Res. 12, 1219–1221 (2019). https://doi.org/10.1007/s12274-019-2281-3

Download citation

Keywords

  • nerve signal transmission
  • quantum-confined ion superfluid
  • action potential
  • ion channels
  • matter wave