Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures


The combination of mixed-dimensional semiconducting materials can provide additional freedom to construct integrated nanoscale electronic and optoelectronic devices with diverse functionalities. In this work, we report a high-performance dual-channel phototransistor based on one-dimensional (1D)/two-dimensional (2D) trigonal selenium (t-Se)/ReS2 heterostructures grown by chemical vapor deposition. The injection and separation efficiency of photogenerated electron–hole pairs can be greatly improved due to the high-quality interfacial contact between t-Se nanobelts and ReS2 films. Compared with bare ReS2 film devices, the dual-channel phototransistor based on t-Se/ReS2 heterostructure exhibits considerable enhancement with the responsivity (R) and detectivity (D*) up to 98 A·W–1 and 6 × 1010 Jones at 400 nm illumination with an intensity of 1.7 mW·cm−2, respectively. Besides, the response time can also be reduced by three times of magnitude to less than 50 ms due to the type-II band alignment at the interface. This study opens up a promising avenue for high-performance photodetectors by constructing mixed-dimensional heterostructures.

This is a preview of subscription content, log in to check access.


  1. [1]

    Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M. Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 2015, 45, 1–27.

    Article  Google Scholar 

  2. [2]

    Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181.

    Article  Google Scholar 

  3. [3]

    Gao, S. Y.; Yang, L.; Spataru, C. D. Interlayer coupling and gate-tunable excitons in transition metal dichalcogenide heterostructures. Nano Lett. 2017, 17, 7809–7813.

    Article  Google Scholar 

  4. [4]

    Jin, C. H.; Kim, J.; Suh, J.; Shi, Z. W.; Chen, B.; Fan, X.; Kam, M.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Interlayer electron–phonon coupling in WSe2/hBN heterostructures. Nat. Phys. 2017, 13, 127–131.

    Article  Google Scholar 

  5. [5]

    Li, Y.; Qin, J. K.; Xu, C. Y.; Cao, J.; Sun, Z. Y.; Ma, L. P.; Hu, P. A.; Ren, W. C.; Zhen, L. Electric field tunable interlayer relaxation process and interlayer coupling in WSe2/graphene heterostructures. Adv. Funct. Mater. 2016, 26, 4319–4328.

    Article  Google Scholar 

  6. [6]

    Li, Y.; Xu, C. Y.; Qin, J. K.; Feng, W.; Wang, J. Y.; Zhang, S. Q.; Ma, L. P.; Cao, J.; Hu, P. A.; Ren, W. C. et al. Tuning the excitonic states in MoS2/ graphene van der Waals heterostructures via electrochemical gating. Adv. Funct. Mater. 2016, 26, 293–302.

    Article  Google Scholar 

  7. [7]

    Kufer, D.; Konstantatos, G. Photo-FETs: Phototransistors enabled by 2D and 0D nanomaterials. ACS Photonics 2016, 3, 2197–2210.

    Article  Google Scholar 

  8. [8]

    Ma, C.; Shi, Y. M.; Hu, W. J.; Chiu, M. H.; Liu, Z. X.; Bera, A.; Li, F.; Wang, H.; Li, L. J.; Wu, T. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 2016, 28, 3683–3689.

    Article  Google Scholar 

  9. [9]

    Ra, H.-S.; Kwak, D.-H.; Lee, J.-S. A hybrid MoS2 nanosheet–CdSe nanocrystal phototransistor with a fast photoresponse. Nanoscale 2016, 8, 17223–17230.

    Article  Google Scholar 

  10. [10]

    Schornbaum, J.; Winter, B.; Schieβl, S. P.; Gannott, F.; Katsukis, G.; Guldi, D. M.; Spiecker, E.; Zaumseil, J. Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 2014, 24, 5798–5806.

    Article  Google Scholar 

  11. [11]

    Wen, Y.; Yin, L.; He, P.; Wang, Z. X.; Zhang, X. K.; Wang, Q. S.; Shifa, T. A.; Xu, K.; Wang, F. M.; Zhan, X. Y. et al. Integrated high-performance infrared phototransistor arrays composed of nonlayered PbS–MoS2 heterostructures with edge contacts. Nano Lett. 2016, 16, 6437–6444.

    Article  Google Scholar 

  12. [12]

    Zheng, W.; Feng, W.; Zhang, X.; Chen, X. S.; Liu, G. B.; Qiu, Y. F.; Hasan, T.; Tan, P. H.; Hu, P. A. Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv. Funct. Mater. 2016, 26, 2648–2654.

    Article  Google Scholar 

  13. [13]

    Qin, J.-K.; Ren, D.-D.; Shao, W.-Z.; Li, Y.; Miao, P.; Sun, Z.-Y.; Hu, P. A.; Zhen, L.; Xu, C.-Y. Photoresponse enhancement in monolayer ReS2 phototransistor decorated with CdSe–CdS–ZnS quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 39456–39463.

    Article  Google Scholar 

  14. [14]

    Li, Z. W.; Ye, R. Q.; Feng, R.; Kang, Y. M.; Zhu, X.; Tour, J. M.; Fang, Z. Y. Graphene quantum dots doping of MoS2 monolayers. Adv. Mater. 2015, 27, 5235–5240.

    Article  Google Scholar 

  15. [15]

    Oakes, L.; Carter, R.; Hanken, T.; Cohn, A. P.; Share, K.; Schmidt, B.; Pint, C. L. Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity. Nat. Commun. 2016, 7, 11796.

    Article  Google Scholar 

  16. [16]

    Ansari, S. A.; Cho, M. H. Simple and large scale construction of MoS2- gC3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications. Sci. Rep. 2017, 7, 43055.

    Article  Google Scholar 

  17. [17]

    Wu, L. M.; Guo, J.; Wang, Q. K.; Lu, S. B.; Dai, X. Y.; Xiang, Y. J.; Fan, D. Y. Sensitivity enhancement by using few-layer black phosphorusgraphene/ TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B: Chem. 2017, 249, 542–548.

    Article  Google Scholar 

  18. [18]

    Li, M. Y.; Chen, C.-H.; Shi, Y. M.; Li, L.-J. Heterostructures based on two-dimensional layered materials and their potential applications. Mate. Today 2016, 19, 322–335.

    Article  Google Scholar 

  19. [19]

    Pecora, E. F.; Sun, H. D.; Dal Negro, L.; Moustakas, T. D. Deep-UV optical gain in AlGaN-based graded-index separate confinement heterostructure. Opt. Mater. Express 2015, 5, 809–817.

    Article  Google Scholar 

  20. [20]

    Kasap, S.; Frey, J. B.; Belev, G.; Tousignant, O.; Mani, H.; Laperriere, L.; Reznik, A.; Rowlands, J. A. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Phys. Status Solidi B 2009, 246, 1794–1805.

    Article  Google Scholar 

  21. [21]

    Qin, J. K.; Qiu, G.; Jian, J.; Zhou, H.; Yang, L. M.; Charnas, A.; Zemlyanov, D. Y.; Xu, C.-Y.; Xu, X. F.; Wu, W. Z. et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications. ACS Nano 2017, 11, 10222–10229.

    Article  Google Scholar 

  22. [22]

    Wang, K.; Chen, F.; Belev, G.; Kasap, S.; Karim, K. S. Lateral metalsemiconductor- metal photodetectors based on amorphous selenium. Appl. Phys. Lett. 2009, 95, 013505.

    Article  Google Scholar 

  23. [23]

    Mukherjee, P.; Konar, S.; Gupta, B. C. Structural and electrical properties of selenium nanotubes. Phys. Lett. A 2016, 380, 238–241.

    Article  Google Scholar 

  24. [24]

    Sridharan, K.; Ollakkan, M. S.; Philip, R.; Park, T. J. Non-hydrothermal synthesis and optical limiting properties of one-dimensional Se/C, Te/C and Se–Te/C core–shell nanostructures. Carbon 2013, 63, 263–273.

    Article  Google Scholar 

  25. [25]

    Wang, R. P.; Su, X. Q.; Bulla, D.; Wang, T.; Gai, X.; Yang, Z. Y.; Madden, S.; Luther-Davies, B. Identifying the best chalcogenide glass compositions for the application in mid-infrared waveguides. In Proceedings Volume 9444, International Seminar on Photonics, Optics, and Its Applications, Bali, Indonesia, 2015.

    Google Scholar 

  26. [26]

    Yang, W.; Hu, K.; Teng, F.; Weng, J. H.; Zhang, Y.; Fang, X. S. High-performance silicon-compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched type II Se/n-Si heterojunctions. Nano Lett. 2018, 18, 4697–4703.

    Article  Google Scholar 

  27. [27]

    Gao, X. Y.; Gao, T.; Zhang, L. D. Solution–solid growth of α-monoclinic selenium nanowires at room temperature. J Mater. Chem. Mater. 2003, 13, 6–8.

    Article  Google Scholar 

  28. [28]

    Luo, L. B.; Jie, J. S.; Chen, Z. H.; Zhang, X. J.; Fan, X.; Yuan, G. D.; He, Z. B.; Zhang, W. F.; Zhang, W. J.; Lee, S. T. Photoconductive properties of selenium nanowire photodetectors. J. Nanosci. Nanotechnol. 2009, 9, 6292–6298.

    Article  Google Scholar 

  29. [29]

    Liu, E. F.; Long, M. S.; Zeng, J. W.; Luo, W.; Wang, Y. J.; Pan, Y. M.; Zhou, W.; Wang, B. G.; Hu, W. D.; Ni, Z. H. et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv. Funct. Mater. 2016, 26, 1938–1944.

    Article  Google Scholar 

  30. [30]

    Ghoshal, D.; Yoshimura, A.; Gupta, T.; House, A.; Basu, S.; Chen, Y. W.; Wang, T. M.; Yang, Y.; Shou, W. J.; Hachtel, J. A. et al. Theoretical and experimental insight into the mechanism for spontaneous vertical growth of ReS2 nanosheets. Adv. Funct. Mater. 2018, 28, 1801286.

    Article  Google Scholar 

  31. [31]

    Cui, F. F.; Wang, C.; Li, X. B.; Wang, G.; Liu, K. Q.; Yang, Z.; Feng, Q. L.; Liang, X.; Zhang, Z. Y.; Liu, S. Z. et al. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater. 2016, 28, 5019–5024.

    Article  Google Scholar 

  32. [32]

    Li, X. B.; Cui, F. F.; Feng, Q. L.; Wang, G.; Xu, X. S.; Wu, J. X.; Mao, N. N.; Liang, X.; Zhang, Z. Y.; Zhang, J. et al. Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 2016, 8, 18956–18962.

    Article  Google Scholar 

  33. [33]

    Qin, J. K.; Qiu, G.; He, W.; Jian, J.; Si, M.-W.; Duan, Y.-Q.; Charnas, A.; Zemlyanov, D. Y.; Wang, H.-Y.; Shao, W.-Z. et al. Epitaxial growth of 1D atomic chain based se nanoplates on monolayer ReS2 for high-performance photodetectors. Adv. Funct. Mater. 2018, 28, 1806254.

    Article  Google Scholar 

  34. [34]

    Li, Y. T.; Huang, L.; Li, B.; Wang, X. T.; Zhou, Z. Q.; Li, J. B.; Wei, Z. M. Co-nucleus 1D/2D heterostructures with Bi2S3 nanowire and MoS2 monolayer: One-step growth and defect-induced formation mechanism. ACS Nano 2016, 10, 8938–8946.

    Article  Google Scholar 

  35. [35]

    Miwa, J. A.; Dendzik, M.; Grønborg, S. S.; Bianchi, M.; Lauritsen, J. V.; Hofmann, P.; Ulstrup, S. Van der Waals epitaxy of two-dimensional MoS2–graphene heterostructures in ultrahigh vacuum. ACS Nano 2015, 9, 6502–6510.

    Article  Google Scholar 

  36. [36]

    Zhou, X.; Gan, L.; Tian, W. M.; Zhang, Q.; Jin, S. Y.; Li, H. Q.; Bando, Y.; Golberg, D.; Zhai, T. Y. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 2015, 27, 8035–8041.

    Article  Google Scholar 

  37. [37]

    Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

    Article  Google Scholar 

  38. [38]

    Suh, J.; Park, T. E.; Lin, D. Y.; Fu, D. Y.; Park, J.; Jung, H. J.; Chen, Y. B.; Ko, C.; Jang, C.; Sun, Y. H. et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 2014, 14, 6976–6982.

    Article  Google Scholar 

  39. [39]

    Joshi, S. S.; Lokhande, C. D. Fabrication of isotype (p-p) selenium-polyaniline heterojunction diode by electrochemical method. Appl. Surf. Sci. 2006, 252, 8539–8543.

    Article  Google Scholar 

  40. [40]

    Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F. H. L.; Konstantatos, G. Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Adv. Mater. 2015, 27, 176–180.

    Article  Google Scholar 

  41. [41]

    Liu, Y. Y.; Wu, W. Z.; Goddard, W. A., III. Tellurium: Fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc. 2018, 140, 550–553.

    Google Scholar 

  42. [42]

    Ren, L.; Zhang, H. Z.; Tan, P. H.; Chen, Y. F.; Zhang, Z. S.; Chang, Y. Q.; Xu, J.; Yang, F. H.; Yu, D. P. Hexagonal selenium nanowires synthesized via vapor-phase growth. J. Phys. Chem. B 2004, 108, 4627–4630.

    Article  Google Scholar 

  43. [43]

    Liu, H. M.; Xu, B.; Liu, J. M.; Yin, J.; Miao, F.; Duan, C.-G.; Wan, X. G. Highly efficient and ultrastable visible-light photocatalytic water splitting over ReS2. Phys. Chem. Chem. Phys. 2016, 18, 14222–14227.

    Article  Google Scholar 

  44. [44]

    Perini, C. A. R.; Barker, A, J.; Sala, M.; Petrozza, A.; Caironi, M. High speed solution-processed hybrid perovskite photodetectors with low dark current enabled by a low temperature metal oxide interlayer. Semicond. Sci. Technol. 2018, 33, 094004.

    Article  Google Scholar 

  45. [45]

    Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm. J. Mater. Chem. C 2016, 4, 7831–7840.

    Article  Google Scholar 

  46. [46]

    Wang, Q. S.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z. X.; He, J. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497–7505.

    Article  Google Scholar 

Download references


The work is in part supported by the National Natural Science Foundation of China (Nos. 51572057 and 51772064), AFOSR/NSF EFRI 2DARE program, ARO and SRC.

Author information



Corresponding authors

Correspondence to Chengyan Xu or Peide D Ye.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Yan, H., Qiu, G. et al. Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures. Nano Res. 12, 669–674 (2019). https://doi.org/10.1007/s12274-019-2275-1

Download citation


  • van der Waals heterostructures
  • ReS2
  • trigonal selenium (t-Se) nanobelt
  • phototransistor