Skip to main content

Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines


Photocatalytic oxidation has been widely employed in organic synthesis, by virtue of the green, mild and simple reaction conditions as well as high selectivity. Introducing oxygen vacancies (OVs) with proper concentrations into the photocatalysts has been proven as an effective strategy to boost the catalytic performances. However, the currently used treatment method under high temperature at reducing atmosphere inevitably introduces a large number of OVs at the interior of the catalyst and serving as the recombination centers of carriers. To address this issue, here we develop a facile solvothermal process to prepare ultrathin BiOBr nanosheets with rich surface OVs. This method effectively decreases the bulk of the material and the ratio of interior OVs, rendering most of the OVs exposed on the surfaces which act as exposed catalytic sites and enhance the separation of carriers, therefore significantly elevates the photocatalytic performances. For the photo-oxidation reaction of secondary amines, under the conditions of visible light, ambient temperature and atmosphere, the BiOBr nanosheets featuring rich surface OVs deliver a doubled conversion compared to those with low OV concentrations, and a high selectivity of 99%, a high stability as the performance shows no reduction after 5 times of circular reaction.

This is a preview of subscription content, access via your institution.


  1. [1]

    Cao, X.; Chen, Z.; Lin, R.; Cheong, W. C.; Liu, S. J.; Zhang, J.; Peng, Q.; Chen, C.; Han, T.; Tong, X. J. et al. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene. Nat. Catal. 2018, 1, 704–710.

    Article  Google Scholar 

  2. [2]

    Li, H.; Qin, F.; Yang, Z. P.; Cui, X. M.; Wang, J. F.; Zhang, L. Z. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 2017, 139, 3513–3521.

    Article  Google Scholar 

  3. [3]

    Lin, R.; Wan, J. W.; Xiong, Y.; Wu, K. L.; Cheong, W. C.; Zhou, G.; Wang, D. S.; Peng, Q.; Chen, C.; Li, Y. D. Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: Insight into the crystal facet effect in photocatalysis. J. Am. Chem. Soc. 2018, 140, 9078–9082.

    Article  Google Scholar 

  4. [4]

    Wu, Y. H.; Yuan, B.; Li, M. R.; Zhang, W. H.; Liu, Y.; Li, C. Well-defined BiOCl colloidal ultrathin nanosheets: Synthesis, characterization, and application in photocatalytic aerobic oxidation of secondary amines. Chem. Sci. 2015, 6, 1873–1878.

    Article  Google Scholar 

  5. [5]

    Zhang, N.; Li, X. Y.; Ye, H. C.; Chen, S. M.; Ju, H. X.; Liu, D. B.; Lin, Y.; Ye, W.; Wang, C. M.; Xu, Q. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928–8935.

    Article  Google Scholar 

  6. [6]

    Yu, Z. J.; Chen, Z.; Chen, Y. G.; Peng, Q.; Lin, R.; Wang, Y.; Shen, R. A.; Cao, X.; Zhuang, Z. B.; Li, Y. D. Photocatalytic hydrogenation of nitroarenes using Cu1.94S-Zn0.23Cd0.77S heteronanorods. Nano Res. 2018, 11, 3730–3738.

    Article  Google Scholar 

  7. [7]

    Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.

    Article  Google Scholar 

  8. [8]

    Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

    Article  Google Scholar 

  9. [9]

    Liu, Y. W.; Xiao, C.; Li, Z.; Xie, Y. Vacancy engineering for tuning electron and phonon structures of two-dimensional materials. Adv. Energy Mater. 2016, 6, 1600436.

    Article  Google Scholar 

  10. [10]

    Xiong, J.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 2018, 28, 1801983.

    Article  Google Scholar 

  11. [11]

    Li, H.; Li, J.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives. Angew. Chem., Int. Ed. 2018, 57, 122–138.

    Article  Google Scholar 

  12. [12]

    Wang, H.; Yong, D. Y.; Chen, S. C.; Jiang, S. L.; Zhang, X. D.; Shao, W.; Zhang, Q.; Yan, W. S.; Pan, B. C.; Xie, Y. Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J. Am. Chem. Soc. 2018, 140, 1760–1766.

    Article  Google Scholar 

  13. [13]

    Ma, Z. Y.; Li, P. H.; Ye, L. Q.; Zhou, Y.; Su, F. Y.; Ding, C. H.; Xie, H. Q.; Bai, Y.; Wong, P. K. Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO2 conversion. J. Mater. Chem. A 2017, 5, 24995–25004.

    Article  Google Scholar 

  14. [14]

    Kong, M.; Li, Y. Z.; Chen, X.; Tian, T. T.; Fang, P. F.; Zheng, F.; Zhao, X. J. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 2011, 133, 16414–16417.

    Article  Google Scholar 

  15. [15]

    Lv, Y. H.; Yao, W. Q.; Zong, R. L.; Zhu, Y. F. Fabrication of wide-range-visible photocatalyst Bi2WO6−x nanoplates via surface oxygen vacancies. Sci. Rep. 2016, 6, 19347.

    Article  Google Scholar 

  16. [16]

    Chen, D. M.; Wang, Z. H.; Ren, T. Z.; Ding, H.; Yao, W. Q.; Zong, R. L.; Zhu, Y. F. Influence of defects on the photocatalytic activity of ZnO. J. Phys. Chem. C 2014, 118, 15300–15307.

    Article  Google Scholar 

  17. [17]

    Wu, S. J.; Xiong, J. W.; Sun, J. G.; Hood, Z. D.; Zeng, W.; Yang, Z. Z.; Gu, L.; Zhang, X. X.; Yang, S. Z. Hydroxyl-dependent evolution of oxygen vacancies enables the regeneration of BiOCl photocatalyst. ACS Appl. Mater. Interfaces 2017, 9, 16620–16626.

    Article  Google Scholar 

  18. [18]

    Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821–831.

    Article  Google Scholar 

  19. [19]

    Mao, C. L.; Cheng, H. G.; Tian, H.; Li, H.; Xiao, W. J.; Xu, H.; Zhao, J. C.; Zhang, L. Z. Visible light driven selective oxidation of amines to imines with BiOCl: Does oxygen vacancy concentration matter? Appl. Catal. B Environ. 2018, 228, 87–96.

    Article  Google Scholar 

  20. [20]

    Cui, D. D.; Wang, L.; Xu, K.; Ren, L.; Wang, L.; Yu, Y. X.; Du, Y.; Hao, W. C. Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. J. Mater. Chem. A 2018, 6, 2193–2199.

    Article  Google Scholar 

  21. [21]

    Ji, M. X.; Chen, R.; Di, J.; Liu, Y. L.; Li, K.; Chen, Z. G.; Xia, J. X.; Li, H. M. Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to boost the photocatalytic activity. J. Colloid Interface Sci. 2019, 533, 612–620.

    Article  Google Scholar 

  22. [22]

    Hu, J.; Weng, S. X.; Zheng, Z. Y.; Pei, Z. X.; Huang, M. L.; Liu, P. Solvents mediated-synthesis of BiOI photocatalysts with tunable morphologies and their visible-light driven photocatalytic performances in removing of arsenic from water. J. Hazard. Mater. 2014, 264, 293–302.

    Article  Google Scholar 

  23. [23]

    Guan, M. L.; Xiao, C.; Zhang, J.; Fan, S. J.; An, R.; Cheng, Q. M.; Xie, J. F.; Zhou, M.; Ye, B. J.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2013, 135, 10411–10417.

    Article  Google Scholar 

  24. [24]

    Wu, X. Y.; Zhang, K. K.; Zhang, G. K.; Yin, S. Facile preparation of BiOX (X = Cl, Br, I) nanoparticles and up-conversion phosphors/BiOBr composites for efficient degradation of NO gas: Oxygen vacancy effect and near infrared light responsive mechanism. Chem. Eng. J. 2017, 325, 59–70.

    Article  Google Scholar 

  25. [25]

    Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024–4030.

    Article  Google Scholar 

  26. [26]

    Jin, X. L.; Lv, C. D.; Zhou, X.; Zhang, C. M.; Meng, Q. Q.; Liu, Y.; Chen, G. Molecular adsorption promotes carrier migration: Key step for molecular oxygen activation of defective Bi4O5I2. Appl. Catal. B Environ. 2018, 226, 53–60.

    Article  Google Scholar 

  27. [27]

    Wu, J.; Li, X. D.; Shi, W.; Ling, P. Q.; Sun, Y. F.; Jiao, X. C.; Gao, S.; Liang, L.; Xu, J. Q.; Yan, W. S. et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem., Int. Ed. 2018, 57, 8719–8723.

    Article  Google Scholar 

  28. [28]

    Kong, X. Y.; Tan, W. L.; Ng, B. J.; Chai, S. P.; Mohamed, A. R. Harnessing vis-NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets. Nano Res. 2017, 10, 1720–1731.

    Article  Google Scholar 

  29. [29]

    Wu, S. J.; Sun, W. W.; Sun, J. G.; Hood, Z. D.; Yang, S. Z.; Sun, L. D.; Kent, P. R. C.; Chisholm, M. F. Surface reorganization leads to enhanced photocatalytic activity in defective BiOCl. Chem. Mater. 2018, 30, 5128–5136.

    Article  Google Scholar 

  30. [30]

    Yu, S. X.; Zhang, Y. H.; Dong, F.; Li, M.; Zhang, T. R.; Huang, H. W. Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: Triple-functional role for efficient visible-light photocatalytic redox performance. Appl. Catal. B Environ. 2018, 226, 441–450.

    Article  Google Scholar 

  31. [31]

    Han, Q.; Wang, Y. L.; Sun, M.; Sun, C. Y.; Zhu, S. S.; Wang, X. L.; Su, Z. M. Metal-organic frameworks with organogold(III) complexes for photocatalytic amine oxidation with enhanced efficiency and selectivity. Chem.—Eur. J. 2018, 24, 15089–15095.

    Article  Google Scholar 

  32. [32]

    Jin, J. J.; Yang, C. J.; Zhang, B. G.; Deng, K. J. Selective oxidation of amines using O2 catalyzed by cobalt thioporphyrazine under visible light. J. Catal. 2018, 361, 33–39.

    Article  Google Scholar 

  33. [33]

    Han, A. J.; Zhang, H. W.; Chuah, G. K.; Jaenicke, S. Influence of the halide and exposed facets on the visible-light photoactivity of bismuth oxyhalides for selective aerobic oxidation of primary amines. Appl. Catal. B Environ. 2017, 219, 269–275.

    Article  Google Scholar 

  34. [34]

    Bi, W. T.; Ye, C. M.; Xiao, C.; Tong, W.; Zhang, X. D.; Shao, W.; Xie, Y. Spatial location engineering of oxygen vacancies for optimized photocatalytic H2 evolution activity. Small 2014, 10, 2820–2825.

    Article  Google Scholar 

Download references


This work was supported by the National Key R&D Program of China (Nos. 2016YFA0202801 and 2017YFA0700101), the National Natural Science Foundation of China (Nos. 21890383, 21872076, 21573119, and 21590792) and Beijing Natural Science Foundation (No. JQ18007).

Author information



Corresponding authors

Correspondence to Qing Peng or Yadong Li.

Electronic Supplementary Material


Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Cao, X., Han, T. et al. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Res. 12, 1625–1630 (2019).

Download citation


  • photocatalysis
  • oxygen vacancy
  • bismuth oxybromide
  • selective amines oxidation
  • solvothermal synthesis